
����������
�������

Citation: Tudić, V.; Kralj, D.; Hoster,

J.; Tropčić, T. Design and

Implementation of a Ball-Plate

Control System and Python Script for

Educational Purposes in STEM

Technologies. Sensors 2022, 22, 1875.

https://doi.org/10.3390/s22051875

Academic Editor: Miguel

Ángel Conde

Received: 20 December 2021

Accepted: 23 February 2022

Published: 27 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Design and Implementation of a Ball-Plate Control System and
Python Script for Educational Purposes in STEM Technologies
Vladimir Tudić * , Damir Kralj , Josip Hoster and Tomislav Tropčić

Department of Mechanical Engineering, Karlovac University of Applied Sciences, 47000 Karlovac, Croatia;
damir.kralj@vuka.hr (D.K.); josip.hoster@vuka.hr (J.H.); tomislav.tropcic@gmail.com (T.T.)
* Correspondence: vladimir.tudic@vuka.hr

Abstract: This paper presents the process of designing, fabricating, assembling, programming and op-
timizing a prototype nonlinear mechatronic Ball-Plate System (BPS) as a laboratory platform for engi-
neering education STEM. Due to the nonlinearity and complexity of BPS, the task presents challenges
such as: (1) difficulty in controlling the stabilization of a particular position point, known as steady-
state error, (2) position resolution, known as specific distance error, and (3) adverse environmental
effects—light-shadow error, which is also discussed in this paper. The laboratory prototype BPS
for education was designed, manufactured and installed at Karlovac University of Applied Sciences
in the Department of Mechanical Engineering, Mechatronics program. The low-cost two-degree
BPS uses a USB HD camera for computer vision as a feedback sensor and two DC servo motors as
actuators. Due to control problems, an advanced block diagram of the control system is proposed
and discussed. An open-source control system based on Python scripts, which allows the use of
ready-made functions from the library, allows the color of the ball and the parameters of the PID
controller to be changed, indirectly simplifying the control system and performing mathematical
calculations directly. The authors will continue their research on this BPS mechatronic platform and
control algorithms.

Keywords: Ball-Plate System; STEM; USB HD camera; Python scripts; ready-made functions;
PID controller

1. Introduction

Engineering students in STEM need the practical application of theoretical concepts
learned in class to master the methods and problems of controlling. The author’s goal is
to help students learn the control theories of systems in an engineering context through
the design and implementation of a simple and low-cost BPS. Students will be able to
apply computer modeling tools, control the system design and achieve software–hardware
implementation in real-time while solving the ball position control problem. The overall
project development is presented and can be adopted as a guide for replicating the results
or as a basis for a new approach to the design of mechatronic learning platforms. In both
cases, we have a tool for implementing and evaluating experimentally controlled strategies
that can be further improved in the future. University laboratories and experiments play a
very important role in successful education in STEM engineering, especially when it comes
to robotics and automatic control applications. The rapid development of BPS applications
was noted recently due to the challenges related to control and fast dynamic response,
which requires short and fast sensing and immediate correction of the selected controller.
Since control of fast unstable systems is very important in a variety of practical applications,
a mechatronic learning platform BPS can be a successful tool when used for training in
robotics and automation control applications and control methods. In the literature, we
find several examples of approaches to this topic.

The feedback of the position of a sphere is detected with the help of a camera, as
shown in [1]. The article describes the synthesis of a controller for a two-dimensional

Sensors 2022, 22, 1875. https://doi.org/10.3390/s22051875 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22051875
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5089-1732
https://orcid.org/0000-0002-2596-3554
https://doi.org/10.3390/s22051875
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22051875?type=check_update&version=2

Sensors 2022, 22, 1875 2 of 24

electromechanical system consisting of the ball and a plate, intended for a study of system
dynamics and laboratory experiments with various control methods based on classical and
modern control theory. The system consists of a square plate movably fixed in the center.
Its inclination can be changed in two orthogonal directions. A servo drive with a controller
and two stepper motors was used to tilt the plate. The control problem of the described
system is to keep the freely rolling ball in a certain position on the plate. An intelligent
video system consisting of a CCD camera, an image interface and a program for real-time
image processing is used to measure the position of the ball.

The BPS was also understood as the two-dimensional movement of the sphere and
beam system presented in [2]. The author S. Awtar and others presented the dynamic
properties of the BPS, the mathematical model with the corresponding simplified model
and the analysis of the applications of different types of PID controllers. Based on the
results of the analysis of different controllers, a controller with a switching mechanism is
proposed to control the position of the BPS [3]. In addition, F. Zheng describes in [4] the
design of the hardware, the selection of sensors and actuators, the modeling of the system,
the identification of the parameters, the design of the controller and experimental tests.

The authors in [5] proposed a resistive touch screen technique to determine the position
of a ball. This successfully eliminated the illumination effect that can cause an error in
camera-dependent control systems. For the multivariable and complicated control system
of a BPS, a touch screen and a rotating pneumatic cylinder are chosen in this paper instead
of a camera and a stepper motor. The simulation results show that the system with the
proposed control method has good dynamic and static characteristics. Not only has the
fuzzy technique become a popular choice for the BPS, but there are also works that use a
genetic algorithm with a neural network or a sliding mode controller to solve this nonlinear
problem, as shown in [6]. In this paper, a genetic algorithm (GA)-based PIDNN controller
(PIDNN) is proposed for the BPS. GA is used as a training weighting factor for a multilayer
neural network, overcoming the disadvantage of the backpropagated algorithm (BP),
which easily falls into partial extremes, and at the same time the advantage of the PIDNN
controller, which has a simple structure and good dynamic and static performance.

Furthermore, the authors Y. Pattanapong and C. Deelertpaiboon in [7] propose a
position control technique for the BPS using fuzzy logic with adaptive integral control.
The aim is that the adaptive integral gain automatically adjusts its value and becomes
active only when the position of the ball is within the specified distance error. This novel
system takes advantage of the integral gain’s ability to eliminate steady-state errors and
uses the fuzzy logic technique because it is simple without finding a mathematical-ematic
model for this nonlinear system [8]. The current position of the ball is determined using
a webcam mounted directly above the plate. Fuzzy controllers as advanced solutions are
also described in [9,10]. In articles [11,12], the authors propose sliding mode techniques
(adaptive back stepping control) with the strategy of fuzzy monitoring. They have exper-
imentally found that adaptive back stepping control is more effective than conventional
SMC control because it takes much time to achieve favorable tracking accuracy. In addi-
tion, one paper presents the use of FCMAC controllers [13] and feedback linearization
controllers [14]. Another paper deals with disturbance modeling and state estimation for
offset-free predictive control with state-space models [15].

In another paper, a virtual and remote laboratory for the ball and plate system is
presented [16]. The authors in [17] proposed a control algorithm based on cascade PID and
compared it with another control method. The paper shows the results of the accuracy of
the ball stabilization and the influence of the philter used on the waveform. The application
used to detect the ball position measured by the digital camera was developed using a
cross-platform Net wrapper for the OpenCV image processing library—EmguCV. The aim
of the paper [18] is to teach students the theory of control systems in an engineering context,
through the design and implementation of a simple and low-cost ball and plate system.
Students will be able to apply mathematical and computer modeling tools, control system

Sensors 2022, 22, 1875 3 of 24

design and the implementation of real-time software and hardware while solving a position
control problem.

Numerous MPC algorithms have been used in the past for various industrial process
controls, but also for numerous other processes. Examples of applications are: heating, venti-
lation and air conditioning systems [19], robotic manipulators [20], electromagnetic mills [21],
servo motors [22], quadrotors [23], autonomous vehicles [24], modular multirotors, improved
design of unmanned aerial vehicles [25,26].

A fast state-space MPC algorithm was presented in papers [27,28]. The paper [27]
shows the development and modeling of a laboratory ball on plate process that uses the
touchpad as feedback; a simplified process model based on a state-space process description.
In paper [28], a fast state-space MPC algorithm is discussed. According to the authors,
its main advantage is the simplicity of the computation: the manipulated variables are
found online using explicit formulae, with the parameters computed offline; no real-time
optimization is required. The articles [29,30] describe MPC algorithms with state-space
process modeling and state estimation methods for these algorithms.

A practical approach is described in [31], but only for processes described by simple
step-response models and by discrete transfer functions (i.e., difference equations). This
work follows the idea presented for state-space models. Some specialized methods were
developed to handle constraints in online MPC optimization that make it possible to use
sampling times of the order of milliseconds [32].

A more advanced approach according to Lyapunov functions is discussed in the
next papers. In both theory and practice, Lyapunov functions are an important tool for
analyzing the stability of dynamical systems [33]. They guarantee the stability of equilibria
or more generic invariant sets, as well as their basin of attraction. Numerous computational
building approaches were created within the Engineering, Informatics, and Mathematics
communities due to their usefulness in stability analysis. They apply methods such as series
expansion, linear programming, linear matrix inequalities, collocation methods, algebraic
methods, set-theoretic methods, and many others to various types of systems, such as
ordinary differential equations, switched systems, non-smooth systems, discrete-time
systems, and so on [34,35]. A method based on semi-definite programming is proposed
in work [36] to estimate an invariance kernel with a target as large as possible by iteratively
searching for Lyapunov-like functions. Central to the paper framework in [37] are Lyapunov
invariants. These are properly constructed functions of the program variables, and satisfy
certain properties—analogous to those of Lyapunov functions—along the execution trace.

Finally, the book [38] describes PID management of nonlinear systems based on
passivity for the general engineering population towards the user-friendly approach. The
E-book offers the material with minimal mathematical background, making it relevant
to a wide audience. Familiarity with the theoretical tools reported in the control systems
literature is not necessary to understand the concepts contained within. The latter was
an inspiration to the authors of this research in order to adapt the topic of PID control to
undergraduate study programs.

This paper describes the stages of designing and building a mechatronic BPS system
with computer vision as feedback for educational purposes in STEM engineer education
at the Karlovac University of Applied Sciences. The concept design of the depicted pro-
totype emphasizes the avoidance of complicated mathematical methods and formulas
in the ball control process. Aiming to achieve low-cost, well-documented, simple and
easy implementation and good control precision, this paper proposes computer vision as
feedback, via a Python OpenCV script PID controller with adjustable PID parameters to
balance different positioning of given ball setPoints, as explained in the examples in the
reference [39]. General knowledge of the theory of control of dynamical and nonlinear
systems was used from the reference literature [40–42].

This paper’s contribution is divided into numerous thematic sections:

1. The BPS mechatronic prototype’s original design was based on computer modelling
capabilities for the manufacture of all robotic and auxiliary parts.

Sensors 2022, 22, 1875 4 of 24

2. To prevent machining metal pieces, all intended parts were produced utilizing 3D
printing technology and prefabricated aluminium square tubes.

3. Instead of elaborate mathematical models and settings for a nonlinear system, the
Python OpenCV script with ready-made functions was used.

4. A control technique is presented and implemented in the program code in accordance
with the simplification of parameter manipulation by introducing ready-made Python
script functions.

5. A new interactive pop-up window for manipulating sensor outputs for process control,
changing the colour, and setting the setPoint.

The following is a breakdown of the article’s structure.
Section 2 explains the methodology used in this research study. The computer design

methods and procedures for building a laboratory BPS prototype are briefly described in
Section 3. Individual robotic parts are designed in this area, including servo motor shaft
holders, levers, and plate joints, with as few parts as possible. In Section 4, the Python
script technique is detailed, with an emphasis on the ready-made functions for generating
feedback by transforming a picture from a USB camera into a collection of ball position
correction request data. The pop-up window software implementation in connection to
the HSV standard color palette settings and the PID controller coefficients settings are
discussed in Section 5. The findings of tests comparing the influence of the controller
coefficients, the roughness of the substrate, and the amount of light are briefly presented in
Section 6. Finally, Section 7 brings the article’s issues to a close.

2. Methodology

In this part of the paper, the authors discuss the methods they used in the research
study. The chapter on methodology explains what they did and how they did it so that
readers can assess the reliability and validity of the research. It covers the type of research
conducted, how the data were collected and how the data samples were analyzed. It
discusses which sensors and materials were used in the study and the reasons for choosing
these methods.

The research design generally focuses on applied research with the aim of developing
design techniques, building prototypes and implementing the control procedures. The
authors wanted to increase the scientific understanding and solve the practical problem of
controlling nonlinear systems more easily. In general, applied deductive research aims to
test theory. However, in the case of this case study research, the focus is on demonstrating
a new and simpler method for controlling a nonlinear system based on research and
prototype implementation.

In collecting original data and analyzing the data, quantitative research was carried
out with numerical results, while qualitative research is concerned with the descriptions
and meanings of the experiments carried out. Both analyses were applied in this work.
Quantitative research is expressed in numbers and diagrams, while qualitative research
is expressed in words. It was used to understand design concepts, simple solutions for
robotic servo arm design with dry bearing, observed uncertainties and inadequacies in
the control system, and interpretation of the results of the numerous experiments. This
type of research allows the reader to gain deeper insight into certain segments that may
be misunderstood. Part of the qualitative method includes interviews with open-ended
questions, observations described in words, and the literature reviews that explore similar
concepts and theories of nonlinear systems control.

Of course, reliability and validity are usually terms used to assess the quality of
research. The extent to which results are reproducible when the study is repeated under
the same conditions cannot be guaranteed by the authors. The authors are aware that
a reliable measurement is not always valid: the results may be reproducible but are not
necessarily accurate.

Sensors 2022, 22, 1875 5 of 24

An effective measurement was produced after determining a criterion variable. The
correlations between measurement outcomes and criterion measurement results were not
calculated expressly to test the criteria’s validity.

3. BPS Computer Design and Fabrication

The steps of the original BPS design and production phase are discussed in this section
of the article. The BPS concept that was evaluated, designed, and chosen for production is
essentially a clone of similar BPS solutions stated in the works [1,3,7,11,16–18], but with
details similar to [11,27]. However, the “driving board” for the two servo motors had
to be picked first. The well-documented Arduino UNO microcontroller board with two
matched step actuators [43,44] was the obvious choice. The Arduino Uno is a low-cost,
well-documented platform that was demonstrated to work in a variety of multi-platform
applications. SolidWorks is well known as a software solution for computer-aided design
(CAD) and computer-aided engineering (CAE) that is widely used in all cases of technical
and engineering design [45]. Ultimaker Cura is the most popular printing software in
the world [46].

3.1. Fabrication and Mounting

Because of its simplicity, the BPS prototype, shown in Figure 1, is made up of a dozen
printed parts, including the servo motor first plug-arm, as shown in Figures 2 and 3, servo
motor knee-arm shown in Figures 4 and 5, servo motor housing, shown in Figures 6 and 7,
the BPS bottom plate (five millimetres thick and upper plate of smooth Plexiglas two
millimetres thick) shown in Figures 8 and 9, camera housing shown in Figure 10a, tube
slippers shown in Figure 10b, the base plate shown in Figure 11a, the central pillar of the
BPS plate shown in Figure 11b, tube knees shown in Figure 12, and Arduino board base
plate and mounting screws. The DC servo motor’s first robotic arm is designed and built
with a central elliptical hole for the servo motor axle holder and a smaller round hole for
the arm bearing shaft as shown in Figures 2 and 3. This connection must take the entire
servo motor axle holder, as well as the arm bearing shaft, without any air clearance.

Sensors 2022, 22, 1875 5 of 25

Of course, reliability and validity are usually terms used to assess the quality of re-

search. The extent to which results are reproducible when the study is repeated under the

same conditions cannot be guaranteed by the authors. The authors are aware that a relia-

ble measurement is not always valid: the results may be reproducible but are not neces-

sarily accurate.

An effective measurement was produced after determining a criterion variable. The

correlations between measurement outcomes and criterion measurement results were not

calculated expressly to test the criteria’s validity.

3. BPS Computer Design and Fabrication

The steps of the original BPS design and production phase are discussed in this sec-

tion of the article. The BPS concept that was evaluated, designed, and chosen for produc-

tion is essentially a clone of similar BPS solutions stated in the works [1,3,7,11,16–18], but

with details similar to [11,27]. However, the “driving board” for the two servo motors had

to be picked first. The well-documented Arduino UNO microcontroller board with two

matched step actuators [43,44] was the obvious choice. The Arduino Uno is a low-cost,

well-documented platform that was demonstrated to work in a variety of multi-platform

applications. SolidWorks is well known as a software solution for computer-aided design

(CAD) and computer-aided engineering (CAE) that is widely used in all cases of technical

and engineering design [45]. Ultimaker Cura is the most popular printing software in the

world [46].

3.1. Fabrication and Mounting

Because of its simplicity, the BPS prototype, shown in Figure 1, is made up of a dozen

printed parts, including the servo motor first plug-arm, as shown in Figures 2 and 3, servo

motor knee-arm shown in Figures 4 and 5, servo motor housing, shown in Figures 6 and

7, the BPS bottom plate (five millimetres thick and upper plate of smooth Plexiglas two

millimetres thick) shown in Figures 8 and 9, camera housing shown in Figure 10a, tube

slippers shown in Figure 10b, the base plate shown in Figure 11a, the central pillar of the

BPS plate shown in Figure 11b, tube knees shown in Figure 12, and Arduino board base

plate and mounting screws. The DC servo motor’s first robotic arm is designed and built

with a central elliptical hole for the servo motor axle holder and a smaller round hole for

the arm bearing shaft as shown in Figures 2 and 3. This connection must take the entire

servo motor axle holder, as well as the arm bearing shaft, without any air clearance.

Figure 1. Laboratory educational BPS prototype in action.

The knee-arm shown in Figures 4 and 5 is the second portion of the DC servo motor

robotic arm, and it is built and parameterized to match the actual size of the BPS plate for

Figure 1. Laboratory educational BPS prototype in action.

Sensors 2022, 22, 1875 6 of 24

Sensors 2022, 22, 1875 6 of 25

the same horizontal distances from the plate’s centre, providing equivalent angular trans-

mission from the DC servo motors [44]. The DC servo motor is held in place by the servo

motor housing, shown in Figures 6 and 7, which is screwed to the base plate shown in

Figure 11a. The integrated tiny metallic ball in the top of the centre pillar of the BPS plate

shown in Figure 11b provides a robust but flexible connection and ensures the BPS plate’s

central location, as shown in Figure 11b. Furthermore, both servo motor knee-arms have

small integrated metallic balls on top and support the BPS plate in a horizontal position

as shown in Figure 11b by securely embracing the magnetic cups from the bottom of the

BPS plate in a vertical position. A detailed description of the robotic system is available in

[47].

The design steps of some BPS parts are displayed in SolidWorks software as final

files for the Ultimaker Cura printing software in the following photographs from Figures

2–9. Figure 2a,b illustrate the first part of the robotic servo arm, as an adjunct to the DC

servo motor half-shaft, whose goal is a strong connection to the original output of the DC

servo motor shaft on one side and a spaceless junction of the shaft with the jaws of a knee

joint on the other side.

(a) (b)

Figure 2. Servo motor first servo arm: (a) Visualization in SolidWorks; (b) SolidWorks mesh

model.

Figure 3 represents the first robotic servo arm “slice phase” in the printing software

and the finished part of the servo arm after the printing process.

(a) (b)

Figure 3. Servo motor first servo arm: (a) Visualization in Ultimaker Cura software; (b) Actual 3D

print.

The crankshaft with the jaws of the second robotic arm of the servo motor is con-

nected to the first servo handle by inserting the shaft into a small hole through both parts,

as shown in Figure 4. The hole at the left side is a holder for a ball dry bearing.

Figure 2. Servo motor first servo arm: (a) Visualization in SolidWorks; (b) SolidWorks mesh model.

Sensors 2022, 22, 1875 6 of 25

the same horizontal distances from the plate’s centre, providing equivalent angular trans-

mission from the DC servo motors [44]. The DC servo motor is held in place by the servo

motor housing, shown in Figures 6 and 7, which is screwed to the base plate shown in

Figure 11a. The integrated tiny metallic ball in the top of the centre pillar of the BPS plate

shown in Figure 11b provides a robust but flexible connection and ensures the BPS plate’s

central location, as shown in Figure 11b. Furthermore, both servo motor knee-arms have

small integrated metallic balls on top and support the BPS plate in a horizontal position

as shown in Figure 11b by securely embracing the magnetic cups from the bottom of the

BPS plate in a vertical position. A detailed description of the robotic system is available in

[47].

The design steps of some BPS parts are displayed in SolidWorks software as final

files for the Ultimaker Cura printing software in the following photographs from Figures

2–9. Figure 2a,b illustrate the first part of the robotic servo arm, as an adjunct to the DC

servo motor half-shaft, whose goal is a strong connection to the original output of the DC

servo motor shaft on one side and a spaceless junction of the shaft with the jaws of a knee

joint on the other side.

(a) (b)

Figure 2. Servo motor first servo arm: (a) Visualization in SolidWorks; (b) SolidWorks mesh

model.

Figure 3 represents the first robotic servo arm “slice phase” in the printing software

and the finished part of the servo arm after the printing process.

(a) (b)

Figure 3. Servo motor first servo arm: (a) Visualization in Ultimaker Cura software; (b) Actual 3D

print.

The crankshaft with the jaws of the second robotic arm of the servo motor is con-

nected to the first servo handle by inserting the shaft into a small hole through both parts,

as shown in Figure 4. The hole at the left side is a holder for a ball dry bearing.

Figure 3. Servo motor first servo arm: (a) Visualization in Ultimaker Cura software; (b) Actual 3D print.

Sensors 2022, 22, 1875 7 of 25

(a) (b)

Figure 4. Servo motor crank knee-arm: (a) Visualization in SolidWorks; (b) SolidWorks mesh

model.

The crankshaft “slice phase” in the printing software and the finished part with an

installed magnet after the printing process are shown in Figure 5.

(a) (b)

Figure 5. Servo motor arm crank part: (a) Visualization in Ultimaker Cura software; (b) Actual 3D

print.

The Tower Pro MG995 DC servo motor housing design phases are shown in Figure

6.

(a) (b)

Figure 6. Servo motor housing: (a) Visualization in SolidWorks; (b) SolidWorks mesh model.

The DC servo motor housing “slice phase” and finished part with built-in servo mo-

tor are shown in Figure 7a,b.

Figure 4. Servo motor crank knee-arm: (a) Visualization in SolidWorks; (b) SolidWorks mesh model.

Sensors 2022, 22, 1875 7 of 25

(a) (b)

Figure 4. Servo motor crank knee-arm: (a) Visualization in SolidWorks; (b) SolidWorks mesh

model.

The crankshaft “slice phase” in the printing software and the finished part with an

installed magnet after the printing process are shown in Figure 5.

(a) (b)

Figure 5. Servo motor arm crank part: (a) Visualization in Ultimaker Cura software; (b) Actual 3D

print.

The Tower Pro MG995 DC servo motor housing design phases are shown in Figure

6.

(a) (b)

Figure 6. Servo motor housing: (a) Visualization in SolidWorks; (b) SolidWorks mesh model.

The DC servo motor housing “slice phase” and finished part with built-in servo mo-

tor are shown in Figure 7a,b.

Figure 5. Servo motor arm crank part: (a) Visualization in Ultimaker Cura software; (b) Actual 3D print.

Sensors 2022, 22, 1875 7 of 24

Sensors 2022, 22, 1875 7 of 25

(a) (b)

Figure 4. Servo motor crank knee-arm: (a) Visualization in SolidWorks; (b) SolidWorks mesh

model.

The crankshaft “slice phase” in the printing software and the finished part with an

installed magnet after the printing process are shown in Figure 5.

(a) (b)

Figure 5. Servo motor arm crank part: (a) Visualization in Ultimaker Cura software; (b) Actual 3D

print.

The Tower Pro MG995 DC servo motor housing design phases are shown in Figure

6.

(a) (b)

Figure 6. Servo motor housing: (a) Visualization in SolidWorks; (b) SolidWorks mesh model.

The DC servo motor housing “slice phase” and finished part with built-in servo mo-

tor are shown in Figure 7a,b.

Figure 6. Servo motor housing: (a) Visualization in SolidWorks; (b) SolidWorks mesh model.

Sensors 2022, 22, 1875 8 of 25

(a) (b)

Figure 7. Servo motor housing: (a) Visualization in Ultimaker Cura software; (b) Actual 3D print.

The BPS plate housing design phases are shown in Figure 8a,b.

(a) (b)

Figure 8. BPS plate bottom view: (a) Visualization in SolidWorks; (b) SolidWorks mesh model.

The bottom BPS plate “slice phase” and the finished part with installed magnetic

cups are shown in Figure 9.

(a) (b)

Figure 9. Bottom view of the BPS plate: (a) Visualization in Ultimaker Cura software; (b) Actual

plate print with built-in magnetic cups for spaceless joint to the magnets.

The system sensor-HD USB camera is built into the white housing as shown in Figure

10a. The tube slippers for the two vertical square tube pillars are visible in Figure 10b.

Figure 7. Servo motor housing: (a) Visualization in Ultimaker Cura software; (b) Actual 3D print.

Sensors 2022, 22, 1875 8 of 25

(a) (b)

Figure 7. Servo motor housing: (a) Visualization in Ultimaker Cura software; (b) Actual 3D print.

The BPS plate housing design phases are shown in Figure 8a,b.

(a) (b)

Figure 8. BPS plate bottom view: (a) Visualization in SolidWorks; (b) SolidWorks mesh model.

The bottom BPS plate “slice phase” and the finished part with installed magnetic

cups are shown in Figure 9.

(a) (b)

Figure 9. Bottom view of the BPS plate: (a) Visualization in Ultimaker Cura software; (b) Actual

plate print with built-in magnetic cups for spaceless joint to the magnets.

The system sensor-HD USB camera is built into the white housing as shown in Figure

10a. The tube slippers for the two vertical square tube pillars are visible in Figure 10b.

Figure 8. BPS plate bottom view: (a) Visualization in SolidWorks; (b) SolidWorks mesh model.

Sensors 2022, 22, 1875 8 of 25

(a) (b)

Figure 7. Servo motor housing: (a) Visualization in Ultimaker Cura software; (b) Actual 3D print.

The BPS plate housing design phases are shown in Figure 8a,b.

(a) (b)

Figure 8. BPS plate bottom view: (a) Visualization in SolidWorks; (b) SolidWorks mesh model.

The bottom BPS plate “slice phase” and the finished part with installed magnetic

cups are shown in Figure 9.

(a) (b)

Figure 9. Bottom view of the BPS plate: (a) Visualization in Ultimaker Cura software; (b) Actual

plate print with built-in magnetic cups for spaceless joint to the magnets.

The system sensor-HD USB camera is built into the white housing as shown in Figure

10a. The tube slippers for the two vertical square tube pillars are visible in Figure 10b.

Figure 9. Bottom view of the BPS plate: (a) Visualization in Ultimaker Cura software; (b) Actual plate
print with built-in magnetic cups for spaceless joint to the magnets.

Sensors 2022, 22, 1875 8 of 24Sensors 2022, 22, 1875 9 of 25

(a) (b)

Figure 10. Printed BPS system parts: (a) USB camera housing; (b) USB camera tube slippers.

The base plate assembly for the servo motors and central BPS pillar is visible in Figure

11a and three metallic balls for three magnetic cups under the BPS plate are shown in

Figure 11b.

(a) (b)

Figure 11. Printed BPS system parts: (a) Base plate; (b) Three pillars; central fixed pillar and two

vertical servo motor knee-arms.

Figure 12 shows the elbows for the horizontal and vertical mounting tubes for the

camera holder.

(a) (b)

Figure 12. Printed square elbow for the camera holder tubes: (a) Front view; (b) Rear view.

Figure 10. Printed BPS system parts: (a) USB camera housing; (b) USB camera tube slippers.

Sensors 2022, 22, 1875 9 of 25

(a) (b)

Figure 10. Printed BPS system parts: (a) USB camera housing; (b) USB camera tube slippers.

The base plate assembly for the servo motors and central BPS pillar is visible in Figure

11a and three metallic balls for three magnetic cups under the BPS plate are shown in

Figure 11b.

(a) (b)

Figure 11. Printed BPS system parts: (a) Base plate; (b) Three pillars; central fixed pillar and two

vertical servo motor knee-arms.

Figure 12 shows the elbows for the horizontal and vertical mounting tubes for the

camera holder.

(a) (b)

Figure 12. Printed square elbow for the camera holder tubes: (a) Front view; (b) Rear view.

Figure 11. Printed BPS system parts: (a) Base plate; (b) Three pillars; central fixed pillar and two
vertical servo motor knee-arms.

Sensors 2022, 22, 1875 9 of 25

(a) (b)

Figure 10. Printed BPS system parts: (a) USB camera housing; (b) USB camera tube slippers.

The base plate assembly for the servo motors and central BPS pillar is visible in Figure

11a and three metallic balls for three magnetic cups under the BPS plate are shown in

Figure 11b.

(a) (b)

Figure 11. Printed BPS system parts: (a) Base plate; (b) Three pillars; central fixed pillar and two

vertical servo motor knee-arms.

Figure 12 shows the elbows for the horizontal and vertical mounting tubes for the

camera holder.

(a) (b)

Figure 12. Printed square elbow for the camera holder tubes: (a) Front view; (b) Rear view. Figure 12. Printed square elbow for the camera holder tubes: (a) Front view; (b) Rear view.

Sensors 2022, 22, 1875 9 of 24

The knee-arm shown in Figures 4 and 5 is the second portion of the DC servo motor
robotic arm, and it is built and parameterized to match the actual size of the BPS plate
for the same horizontal distances from the plate’s centre, providing equivalent angular
transmission from the DC servo motors [44]. The DC servo motor is held in place by the
servo motor housing, shown in Figures 6 and 7, which is screwed to the base plate shown
in Figure 11a. The integrated tiny metallic ball in the top of the centre pillar of the BPS plate
shown in Figure 11b provides a robust but flexible connection and ensures the BPS plate’s
central location, as shown in Figure 11b. Furthermore, both servo motor knee-arms have
small integrated metallic balls on top and support the BPS plate in a horizontal position as
shown in Figure 11b by securely embracing the magnetic cups from the bottom of the BPS
plate in a vertical position. A detailed description of the robotic system is available in [47].

The design steps of some BPS parts are displayed in SolidWorks software as final files
for the Ultimaker Cura printing software in the following photographs from Figures 2–9.
Figure 2a,b illustrate the first part of the robotic servo arm, as an adjunct to the DC servo
motor half-shaft, whose goal is a strong connection to the original output of the DC servo
motor shaft on one side and a spaceless junction of the shaft with the jaws of a knee joint
on the other side.

Figure 3 represents the first robotic servo arm “slice phase” in the printing software
and the finished part of the servo arm after the printing process.

The crankshaft with the jaws of the second robotic arm of the servo motor is connected
to the first servo handle by inserting the shaft into a small hole through both parts, as
shown in Figure 4. The hole at the left side is a holder for a ball dry bearing.

The crankshaft “slice phase” in the printing software and the finished part with an
installed magnet after the printing process are shown in Figure 5.

The Tower Pro MG995 DC servo motor housing design phases are shown in Figure 6.
The DC servo motor housing “slice phase” and finished part with built-in servo motor

are shown in Figure 7a,b.
The BPS plate housing design phases are shown in Figure 8a,b.
The bottom BPS plate “slice phase” and the finished part with installed magnetic cups

are shown in Figure 9.
The system sensor-HD USB camera is built into the white housing as shown in Figure 10a.

The tube slippers for the two vertical square tube pillars are visible in Figure 10b.
The base plate assembly for the servo motors and central BPS pillar is visible in

Figure 11a and three metallic balls for three magnetic cups under the BPS plate are shown
in Figure 11b.

Figure 12 shows the elbows for the horizontal and vertical mounting tubes for the
camera holder.

3.2. General BPS Design

This section of the paper describes the implementation of computer vision in the
mechatronic education BPS prototype. During the project’s execution, which included the
preparation of the student’s practical diploma thesis and subsequent experimentation by
the co-authors in this paper, some limitations and flaws in the prototype, 3D print material
and method, as well as difficulties in achieving stability when placing the ball in the desired
position, were discovered. The purpose of this paper and project is to provide a basic and
accessible experimental setup for learning, programming, and comprehending feedback
control concerns in a real-case manual setting.

The mechatronic system described in the paper was originally designed, developed
and programmed with the help of the student Tomislav Tropčić at the Karlovac University
of Applied Sciences [40]. The sideways view of the experimental platform is shown
in Figure 13 (top left and right). The system uses a USB HD camera as a feedback sensor,
placed 160 mm above the controlled platform embedded in the camera holder, as shown
in Figure 13. The 1920 × 1080 pixel (Full HD) camera captures 30 frames per second. Other

Sensors 2022, 22, 1875 10 of 24

technical data of the camera are: High-Speed 120 fps PCB USB2.0 Webcam Board 2 Mega
Pixels, 1080P, OV2710 CMOS, Camera Module with 2.1 mm Lens, ELP-USBFHD01M-L21.

Sensors 2022, 22, 1875 10 of 25

3.2. General BPS Design

This section of the paper describes the implementation of computer vision in the

mechatronic education BPS prototype. During the project’s execution, which included the

preparation of the student’s practical diploma thesis and subsequent experimentation by

the co-authors in this paper, some limitations and flaws in the prototype, 3D print material

and method, as well as difficulties in achieving stability when placing the ball in the de-

sired position, were discovered. The purpose of this paper and project is to provide a basic

and accessible experimental setup for learning, programming, and comprehending feed-

back control concerns in a real-case manual setting.

The mechatronic system described in the paper was originally designed, developed

and programmed with the help of the student Tomislav Tropčić at the Karlovac Univer-

sity of Applied Sciences [40]. The sideways view of the experimental platform is shown

in Figure 13 (top left and right). The system uses a USB HD camera as a feedback sensor,

placed 160 mm above the controlled platform embedded in the camera holder, as shown

in Figure 13. The 1920 × 1080 pixel (Full HD) camera captures 30 frames per second. Other

technical data of the camera are: High-Speed 120 fps PCB USB2.0 Webcam Board 2 Mega

Pixels, 1080P, OV2710 CMOS, Camera Module with 2.1 mm Lens, ELP-USBFHD01M-L21.

Figure 13. Educational BPS system with three experimental balls.

Three balls with identical sizes but different colours were chosen for the experiment,

as indicated in Figure 13 bottom and left segments. Table tennis balls with a diameter of

40 mm were chosen in the following order: black, red, and orange. A smaller red ball with

a diameter of 20 mm was utilized as a comparison, composed of a silicone mixture with a

substantially higher mass. The ball was moved using a variety of materials with varying

friction properties: 3D print material, two millimetre Plexiglas cover plate, white paper,

and light grey sandpaper (180 particles per inch). The chosen materials had varying

roughness values, which resulted in unequal resistance during the movement of the test

balls over time. The white 3D printed platform plate is 150 × 150 mm and is supported by

three supports, or pillars, the middle of which is vertically immobile and located in the

geometric centre of the platform’s square surface. A simple dry “magnetic” bearing with

a metallic ball and a magnetic cup on the underside of the platform in the geometric centre

was designed to tilt the platform in both horizontal axes. When the DC servo motor’s two

vertical robotic arms are raised and lowered, the platform tilts in firm contact with the

robotic handle through a dry bearing on one side or the other. Servo motors are connected

to the lower half of the motor with steerable arms with a wedge in the elbow, as shown in

Figure 13. Educational BPS system with three experimental balls.

Three balls with identical sizes but different colours were chosen for the experiment,
as indicated in Figure 13 bottom and left segments. Table tennis balls with a diameter of
40 mm were chosen in the following order: black, red, and orange. A smaller red ball
with a diameter of 20 mm was utilized as a comparison, composed of a silicone mixture
with a substantially higher mass. The ball was moved using a variety of materials with
varying friction properties: 3D print material, two millimetre Plexiglas cover plate, white
paper, and light grey sandpaper (180 particles per inch). The chosen materials had varying
roughness values, which resulted in unequal resistance during the movement of the test
balls over time. The white 3D printed platform plate is 150 × 150 mm and is supported
by three supports, or pillars, the middle of which is vertically immobile and located in the
geometric centre of the platform’s square surface. A simple dry “magnetic” bearing with a
metallic ball and a magnetic cup on the underside of the platform in the geometric centre
was designed to tilt the platform in both horizontal axes. When the DC servo motor’s two
vertical robotic arms are raised and lowered, the platform tilts in firm contact with the
robotic handle through a dry bearing on one side or the other. Servo motors are connected
to the lower half of the motor with steerable arms with a wedge in the elbow, as shown
in Figure 13 above and left. They are at a 90-degree angle to each other geometrically,
and the grips are equidistant from the central fixed bearing. The servo motor handle’s
horizontal portion (first arm) is attached to the servo motor protrusion, while the vertical
portion (second arm with jaws) includes a spherical metallic ball glued to the top and a
magnetic cup. Because the cup is fastened in the lower half of the steerable base, they form
a firm and dry bearing that facilitates rotation.

A simple robotic lever system was created using a solid elbow and a shaft with a
wedge diameter of 4mm as a dry bearing, in which both DC servo motors with a rotating
angle of ±15 degrees transmit the same angular motion to the BPS platform.

Sensors 2022, 22, 1875 11 of 24

4. Python Script
4.1. Computer Vision Issues

Performance in applications of recognizing patterns, forms, colours, and positions
of objects is one of the most critical difficulties in the application of computer vision.
Given the limited quantity of data available in robotics, the issues of choosing the right
substrate, lighting, and methods for evaluating image and video quality without a reference
are significant. Although simulations and visualization are crucial components in the
preliminary phase of the scientific setup of an experiment, the algorithms utilized concern
real applications rather than the development of mere theory.

Image formation, CCD camera resolution, advanced image features, real-time sam-
pling frequency, binary vision, optical flow, image filters, object creation, epipolar geometry
reconstruction, motion tracking, segmentation, grouping, and also recognition of objects are
all unavoidable topics in computational vision in mechatronics. Advanced research in this
scientific subject is enabled by the capabilities of software modelling of image processing
techniques and approaches for object localization and geometric measurements. If the
experimental setup is conventional, such as a USB HD camera, software for analysing and
developing image processing functionality is becoming a powerful tool.

4.2. Image Converting Technicques

The description of the ready-made functions used in the Python script related to
image converting techniques is given in the order in which the image obtained using
the USB camera is processed. In order to get more images per second, in the program
code, the resolution is halved to 640 × 480 pixels, so the number of captured images
can be doubled, from 30 to 60 images per second. Ready-made Python image resolution
function is defined as: “self.cam_width = 640, self.cam_height = 480”. The camera uses
a USB connector to power and communicate with the computer.

4.3. List of Python Ready-Made Functions

• VideoCapture object—VideoCapture()

When launching the application, it is necessary to create an object that will capture
a video recorded with a USB camera. The application does not process the stored video
(e.g., on the hard disk or memory card) but the stream of data that the camera records in real-
time (live stream), to download a series of images from the camera (30 images per second),
the so-called VideoCapture object. The VideoCapture object only needs to specify the
camera number (0 = built-in, 1 = external USB camera) where the recording comes from.
Algorithm 1 shows a fragment of the code. All other processing (reception, processing and
image formation) will be performed autonomously “under the hood” of the ready-made
function and thus free the programmer from a big job.

Algorithm 1. Fragment of the Python code: function cv2.VideoCapture(1).

def start_cam(self):
self.capture = cv2.VideoCapture(1)

0 for webcam, 1 for extern

In this part of the code, it is necessary to define the dimensions of the images captured
by the camera, and it is defined that the image is 480 pixels high and 640 pixels wide.

• Colour model conversion from RGB to HSV—cvtColor()

All colours are obtained by using and combining colours in the colour palette. If we
use the RGB (R-Red, G-Green, B-Blue) palette then we have three basic colours: red, green
and blue. If each colour is written in 256 shades, then by a combination of available shades
we get a palette of 16.7 million colours. Another colour representation (or colour space)
is HSV (H-Hue or Tone, S-Saturation, V-Value or Brightness). RGB color space does not
separate color and brightness information so brightness variations affect RGB channel

Sensors 2022, 22, 1875 12 of 24

values. HSV color space abstracts color from saturation and brightness and is suitable for
color-based image segmentation [48]. The switching was carried out in secret because it is
easier to get a binary image of the object when it is written in HSV format. The function is
shown in the code fragment in Algorithm 2.

• Noise image removal—GaussianBlur()

The next step is the process of removing noise from each image. The first step is
blurring the edges of the image (Blur), using the Gaussian Blur function (blurring is
performed using the Gaussian formula). When applied in two dimensions, this formula
produces a surface whose contours are concentric circles with a Gaussian distribution from
the center point. OpenCV documentation related to the Gaussian Blur states that the kernel
size should be a positive and odd value. Higher values imply a more blurred image and
vice versa. The authors decided to use a Gaussian kernel size of 11 × 11 pixels which
is used by the OpenCV 2D filter function as the minimum size in order to convolve an
image with the Discrete Fourier Transform-based algorithm [49]. The function is shown in
Algorithm 2.

• Binary image formation—inRange()

The captured image has a certain resolution (640 × 480 pixels), is converted to an HSV
colour model and noise is removed. It is necessary to translate the image from a coloured
to a black and white image without shades—where the pixel in the image is coloured
with either black or white. It is necessary to determine which HSV formatted colours are
converted to black and which to white. The utilized object tracking methodology detects
the object based on the range of pixel color values in the HSV color space. The selected
color will be displayed as white, while all other colors will be displayed as black in the
binary image, as shown in Figure 15. The function is also shown in Algorithm 2.

• Binary image noise reduction—erode()

The resulting binary image may have certain noises that are usually located at the
boundary of the contour of the object (in the binary image). Applying the erode() function
of the application will remove certain noise, but the consequence may be a reduction in the
contour of the object; shown in Algorithm 2.

• Contour thickening—dilate()

In order to amplify the contour of the object on the binary image, it is necessary to
use the dilate() function, which will “thicken” the contour by a certain amount of pixels in
order to be more clearly visible (Algorithm 2).

Algorithm 2. Fragment of the Python code: other conversion function with associated
parameters.

def process_frame(self, frame):
self.hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
transform into HSV color space· · · blurred = cv2.GaussianBlur(self.hsv, (11,11), 0)
mask = cv2.inRange(blurred, self.color_low, self.color_high) # threshold
mask = cv2.erode(mask, None, iterations = 2)
mask = cv2.dilate(mask, None, iterations = 2)

• Object localization on a binary image—findContours()

After forming the binary image and the object, it is necessary to determine the contours
of the object located in the image. The contours are passed to the application as a list of
coordinates of the outer points that close the contour. There may be multiple contours in the
image (intentionally, by mistake, or so) and then the application will look for the contour
that occupies the largest area. The function is shown in code fragment in Algorithm 3.

Sensors 2022, 22, 1875 13 of 24

Algorithm 3. Fragment of the Python code: function findContours().

find countours in the mask
ctns = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL
find the largest contour in the mask, then use
it to compute the minimum enclosing circ
c = max(cnts, key = cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)

• Minimal circle within the contour—minEnclosingCircle()

After locating the contour of the object, the smallest circle is entered inside it so that the
coordinates of the centre and the size of the radius of the object can be determined. In this
way, the centre and edge of the contour on the binary image are determined (Algorithm 3).
The procedure requires that the radius of the contour be a minimum of 10 pixels in length,
and after finding the contour, the application displays a circle and its centre so that the
application user has an idea of where the application has located the centre of mass or
geometric centre of the sphere. After determination, it is necessary to send the coordinates
of the centre of the contour and the radius according to the function that controls the PID
controller function: self.PID(self.setPointX), as shown in Algorithm 4.

Algorithm 4. Fragment of the Python code: drawing setPoint on screen cv2.circle() and self.PID().

only proceed if the radius meets a minimum size
if radius > 10:· · · # length of min 10 pixel
draw setpoint on screen—5 pixel red dot
cv2.circle(frame, (int(self.setPointX), int(self.setPointY)), 5, (0, 0, 255), −1)
self.PID(self.setPointX, self.setPointY, x, y)
PID setpoint actual position in x, y,

All used ready-made functions: VideoCapture(), cvtColor(), GaussianBlur(), inRange(),
erodes(), dilates(), findContours(), minEnclosingCircle) and self.PID() in parentheses can
receive certain parameter values. Each function does a lot of work (calculations) and
significantly simplifies the application and its use. For this reason, the number of lines in
the program and consequently the size of the control program is significantly reduced.

After running the script all functions and parameters are prepared to locate and
calculate the ball shape and find its geometrical center as the start setPoint (inputX, inputY).
The Python script starts the motors and aligns the axes of the platform at the appropriate
angles to align the stability with the initial start-position of the ball.

4.4. Python Control Script Design

Python’s control algorithm requires knowledge of past values. Proportional-integral
control, for example, monitors the cumulative sum of differences between a setPoint and a
process variable. Because the Python function disappears completely after feedback, the
value of the cumulative sum must be stored elsewhere in the code. The problem with
coding is figuring out how and where to store this information between call algorithms.
For coding reasons, an object generator was created where certain parameter values can
be received in parentheses. There are several ways to get value from a so-called number
generator. One way is to use the next() Python function which executes the generator until
the next yield expression is encountered and then returns the value.

Python script captures a series of camera images at 30 frames per second, approxi-
mately every 33 ms, which is the sampling rate of the ball position or the speed of calculating
the position correction. Thus, the parameter dT is a time constant that correlates with the
image processing speed, which is a PID controller iteration parameter. Algorithm 5 shows
the code fragment where the time variable was defined.

Sensors 2022, 22, 1875 14 of 24

Algorithm 5. Fragment of the Python code: time variable dT definition.

how long since we last calculated (dT definition)
now = time.time() # now = begining of application
change in time (dT =)
dT = now − self.last_time· · · # print (dT)
save for next iteration
self.last_time = now

4.5. Advanced Block Diagram of PID Controller

During the experiment and the selection of the most suitable colour, shape and size of
the ball, as well as the surface of the plate, it was realized that the block diagram is not as
simple as it seemed at first glance. Significant and unavoidable disturbances were observed,
i.e., external influences that prevented the stable operation of the mechatronic system and
the placement of the ball at a given setPoint. Interference functions were observed that
cannot be accurately described mathematically but have proven to be influential because
methods of reducing problems and attempts to eliminate them have led to better results
and greater stability. For this reason, and shown in Figure 14, an improved block diagram
control loop was proposed that highlights the locations in the CLC loop and the type of
dysfunction or detrimental effect on ball position stabilization. First of all, a dysfunction
(accidental disorder) is defined, which is denoted as d1(t), which represents mechanical
imperfections and clearances of the handles that contribute to the increase in error.

Sensors 2022, 22, 1875 15 of 25

the ball at all due to the above errors or conversion imperfections. In block diagram view,

dysfunction d1(t) has a direct impact on the process (plate position) and form “steady state

error”. Similarly, dysfunction d2(t) as “internal” uncertainty creates a cumulative effect on

the Python output dataset (inputX, inputY) before the setPoint calculation process (set-

PointX, setPointY) and thus forms a “light shadow error”.

Figure 14. Advanced CLC control diagram scheme.

4.6. CLC Error Value Calculation

The equations in Algorithms 6 and 7 put into the Python script make significant pro-

gress, highlighting the capacity to generate ball control utilizing program ready-made cal-

culations through functions and handle ball control without real physical hardware (ex-

ternal controller). The CLC comparison process generates error values for both the X- and

Y-axes, errorX and errorY, which are defined in the computer code by parameters, as

shown in Algorithm 6. In Algorithm 6, the phrase “inputX” refers to the ball’s real begin-

ning location in the plate along the X-axis, while the term “self.setPointX” refers to the

new ball position setPoint.

Algorithm 6. Fragment of the Python code: calculation of the error values.

error variables from the comparison process

errorX = self.setPointX − inputX

errorY = self.setPointY − inputY

print(errorX, errorY)

In most cases, a PID control system comprises two independent classic PID control-

lers connected by a single loop. The first manipulates the PWM control signal of the first

DC servo motor to control the ball’s X position. The second, as illustrated in Algorithm 7,

uses the PWM control signal of the second DC servo motor to regulate the Y position.

Assuming the board has two axes, uniformity and ideal perpendicularity, the PID con-

troller used the identical coefficients for both axes. Equation (1), as described in [40,41], is

the canonical mathematical form in general theory:

𝑢(𝑡) = 𝑘𝑃𝑒(𝑡) + 𝑘𝐼 ∫ 𝑒(𝑡′)𝑑𝑡′
𝑡

0

+ 𝑘𝐷
𝑑𝑒(𝑡)

𝑑𝑡
 (1)

where term e(t) in Equation (1) is the errorX value in the Python script shown in Algorithm

7, term e(t’)dt’ is term self.error.SumX and term de(t)/dt is dErrorX shown in Algorithm 7.

The control signal voltage u(t) is represented in the program as the control signal for op-

erating the X-axis DC servo motor and is denoted by “angle X” according to Equation (1).

Figure 14. Advanced CLC control diagram scheme.

Furthermore, another dysfunction d2(t) describes a group of functions within the
software that, if inconsistent or unable to perform their task properly, increase position
vagueness and introduce uncertainty and directly lead to significant problems and instabil-
ities during position control.

The third influential quantity that contributes the most to the results of the experiment
is the amount of scattering or light intensity. The system was shown to have the greatest
stability if the illumination is adequate and light is scattered on the substrate from several
sources and the original beam of the lamp is shaded. Each shadow of the ball from the
light source significantly changes the colour shade of the ball on the edge of the ball and
changes the contour image, which contributes to poorer recognition of the contour shape
and consequently the creation of a binary image. It was observed that with a single light
source although the system has a dispersive structure, the controller cannot stabilize the

Sensors 2022, 22, 1875 15 of 24

ball at all due to the above errors or conversion imperfections. In block diagram view,
dysfunction d1(t) has a direct impact on the process (plate position) and form “steady
state error”. Similarly, dysfunction d2(t) as “internal” uncertainty creates a cumulative
effect on the Python output dataset (inputX, inputY) before the setPoint calculation process
(setPointX, setPointY) and thus forms a “light shadow error”.

4.6. CLC Error Value Calculation

The equations in Algorithms 6 and 7 put into the Python script make significant
progress, highlighting the capacity to generate ball control utilizing program ready-made
calculations through functions and handle ball control without real physical hardware
(external controller). The CLC comparison process generates error values for both the
X- and Y-axes, errorX and errorY, which are defined in the computer code by parameters,
as shown in Algorithm 6. In Algorithm 6, the phrase “inputX” refers to the ball’s real
beginning location in the plate along the X-axis, while the term “self.setPointX” refers to
the new ball position setPoint.

Algorithm 6. Fragment of the Python code: calculation of the error values.

error variables from the comparison process
errorX = self.setPointX − inputX
errorY = self.setPointY − inputY
print(errorX, errorY)

In most cases, a PID control system comprises two independent classic PID controllers
connected by a single loop. The first manipulates the PWM control signal of the first DC
servo motor to control the ball’s X position. The second, as illustrated in Algorithm 7, uses
the PWM control signal of the second DC servo motor to regulate the Y position. Assuming
the board has two axes, uniformity and ideal perpendicularity, the PID controller used the
identical coefficients for both axes. Equation (1), as described in [40,41], is the canonical
mathematical form in general theory:

u(t) = kPe(t) + kI
∫ t

0
e
(
t′
)
dt′ + kD

de(t)
dt

(1)

where term e(t) in Equation (1) is the errorX value in the Python script shown in Algorithm 7,
term e(t′)dt′ is term self.error.SumX and term de(t)/dt is dErrorX shown in Algorithm 7.
The control signal voltage u(t) is represented in the program as the control signal for
operating the X-axis DC servo motor and is denoted by “angle X” according to Equation (1).
The X-axis control signal is thus a sum of three terms. The voltage control signal is labeled
“angleY” in Algorithm 7, similar to a Y-axis DC servo motor.

Algorithm 7. Fragment of the Python code: calculation of both axis PID control signals.

angle variables
angleX = self.zero_x + (errorX * self.kP + dErrorX * self.kD + self.kI * self.errorSumX)
angleY = self.zero_y + (errorY * self.kP + dErrorY * self.kD + self.kI * self.errorSumY)

The coefficients of the PID controller kP, kD, and kI stated in Equation (1) were chosen
and placed into the program code as default values during the optimization process, as
shown in Algorithm 8. They can be changed during the experiment in the 0.001 value
stages of the control application pop-up window.

Sensors 2022, 22, 1875 16 of 24

Algorithm 8. Fragment of the Python code: PID controller coefficients default values.

PID coefficients
self.default_P = 0.033
self.default_D = 0.023
self.default_I = 0.001

Proportion gain, term kP, is responsible for the corrective reaction and is used to
identify the difference between the desired and actual values, as shown in [40]. With the
increasing gain, the error lowers as the system gets more oscillatory. To determine the
integral value, the integral term kI is used to calculate all previous error values and then
integrate them. Integral action can also be thought of as a way to automatically generate
the bias term in a proportional controller [41]. When the error value is removed from the
system, this integral term stops growing. Based on current values, the derivative kD is used
to anticipate future expected error levels. If the system has a fast rate of change, which
is also reliant on the derivative component, the controlling effect can be amplified. The
entire value of the required correction is obtained by combining these three operations. The
PID controller’s constants kP, kI, and kD can be adjusted both in the program code and
in the graphical visualization space boxes shown in Figure 15. As shown in Algorithm 9,
calculated control signals for Arduino board as PWM driving platform for both DC servo
motors are presented below.

Algorithm 9. Fragment of the Python code: formatted values for the Arduino board.

send to Arduino board − X and Y control signals
arduino.write((str(angleX) + “,” + str(angleY) + “\n”).encode())
print(angleX, angleY)

5. Dynamics and PID Control Issues Overview

There are numerous methods for controlling a dynamic system [40,41]. The philosoph-
ical principles that underpin these methodologies can be broadly classified into three types
for the sake of this case study: descriptive, model-based, and myoptic. Descriptive tech-
niques presume that a controller is provided, and the purpose is to determine whether the
controlled system meets certain stability requirements. Simulating the system or running it
under a variety of operational light and surface conditions and seeing the outcomes are
examples of empirical tests. After the control parameter is chosen at the current moment, a
myoptic approach will look at the direction of a ball movement in state space.

The core algorithm of 1D control systems, i.e., the X-axis control, is proportional-
integral-derivative control [40]. It is the most studied class of controllers due to its simplicity,
and it is almost always the first thing to test on a new system [41]. Despite the fact that it
lacks a model and is short-sighted, it may operate admirably with a few manual tweaks.

During experiments, it was discovered that the ODE solution is a damped harmonic
oscillator. This oscillatory behaviour means that the oscillation will overshoot the setPoint
for any nonzero setPoint starting state. Furthermore, the frequency of oscillation ω is
dependent on both the gain coefficients and the system coefficients. Lower kI values will
minimize and finally eliminate oscillation, although recovery from steady-state error will
be slower.

A comparable consideration of the PD control problem for a second-order system yields
the damped harmonic oscillator system, which is also featured in the experiment. Because
derivatives can be approximated using finite position differencing: x = x(t) − x(t − dt)dt,
derivative estimation mistakes are an issue. The derivative contribution, however, is more
sensitive to measurement noise than position estimations since t is tiny and in the denomina-
tor. As a result, the derivative term varies, leading the control to track less precisely and in
an irregular manner.

Sensors 2022, 22, 1875 17 of 24

5.1. BPS Visualization and Control

In this part of the paper, a discussion is focused on visualizing the position of the
ball after activating the application and managing the position of the ball. First, dur-
ing the experiment, it was proved that of the three selected balls, the highest quality
conversion to a binary image and the entire image processing covers the case of the
modified orange colour (HSV format parameters–0/77/115/51/253/255) with a slight
deviation from the entered “default” value in relation to the value entered in program
code (HSV–default 1/77/115/61/153/255). The red colour (HSV–default parameters
121/157/86/243/255/255) did not give sufficient response quality, despite parameter
modification, which resulted in an increase in the value of the disturbance function d2(t)
and ultimately too much error and deviation in the calculation, which manifested itself
as the possibility of setting the red ball to a given default setPoint on the platform. The
black ball, despite having the strongest colour contrast in its parameters (HSV–default
0/0/0/25/25/25), could not be recognized at all as a shape or contour in the HSV standard,
probably due to poor lighting quality.

5.2. Application “Ball Tracking”

Figure 15 shows an interactive “Ball Tracking” pop-up window that serves as the
controlling device window for the mechatronic BPS prototype. It is possible to control the
process with different critical parameters using designed functions that are performed on
the screen. The centre of mass estimated in Python script as the true centre of the orange
ball is represented by the small white dot, which is five pixels wide. The normal and
computed binary variants of ball pictures are displayed in the upper right corner of the ball
tracking window, as shown in Figure 15a,b. Although the small white dot on the computer
screen symbolizes the ball’s centre, clicking on a new place on the plate establishes the
ball’s desired position as a small red dot, also five pixels wide, as seen in Figure 19. In a
Python script, the equations for calculating PID error values automatically generate the
correction value for both the X- and Y-axes, balancing the BPS plate with both actuators.

Sensors 2022, 22, 1875 18 of 25

15a). A binary figure of the ideal shape depicts the identical position of the ball in Figure
15b. By pressing the “Show Thresh”/”Normal View” button, you can change the images.

(a) (b)

Figure 15. “Ball Tracking” pop-up window: (a) “Normal View” shows actual camera live stream
image; (b) “Show Thresh” shows binary image (white ball contour on the black plate).

As for the servo motor’s robotic arms, the calibrated mechanical “zero horizontal po-
sition” of the plate is a default angle of 37 degrees for both actuators, as shown in Figure
15a,b. If necessary, the “zero position” can be adjusted in one-degree increments within
the “Calibrate” X- and Y-axis space boxes. Angle control is limited to ± 15 degrees on both
axes. In the experiment, the proportional coefficient kP is chosen at a value of 0.03, the
coefficient kD is chosen at a value of 0.02, and kI is chosen at a value of 0.01 or less.

Two further pop-up screens were added to the Python script, which initiate the
graphical representation, time period charts, and numerical matrix representation of the
relevant parameters for future mathematical analyses. Figure 16 shows, for example, a 6-
s time period chart with a graphical representation of the actual and selected position set-
Point, as well as shaft angle value as PID control signal. For a better understanding of the
dynamics and stability of the BPS system, the time period of the strip chart is extended to
20 s in Figures 17, 21 and 22.

The second manageable pop-up window in the Python code but on the background
screen represents numerical data of parameters shown in the figures in the same time
period for additional analyses, if needed, respectively.

6. Experimental Results
Following the creation of the prototype, it was required to functionally verify the

work and optimize all of the Python script’s functionalities using actual BPS prototype
components. After multiple revisions, the BPS system’s functional operation was
achieved, allowing the setting of a ball setPoint anywhere on the plate’s surface (150 × 150
mm). The “sliding” of a smooth ball on a smooth Plexiglas plate was the first item that
was noted. As indicated in the advanced block diagram in Figure 14, this is a verified flaw
of the mechanical system according to the plate smooth surface, generally referred to as
“steady-state error” or dysfunction d1(t).

In this research, a graphical depiction of the ball movement exclusively along the
horizontal X-axis was used due to the easier explanation and highlighting of crucial ele-
ments connected to the control problem. There is a usual “exceeding” of the value of the
ball position in both directions during the first experiments. Several items sparked suspi-
cion: specific PID values, sliding on a flat surface, and mechanical clearances. The process

Figure 15. “Ball Tracking” pop-up window: (a) “Normal View” shows actual camera live stream
image; (b) “Show Thresh” shows binary image (white ball contour on the black plate).

Six HSV palette sliders are located on the left side of the Ball Tracking pop-up window,
allowing fine customization of colour hues for the best binary conversion. Figure 15a
shows a real-time image from a USB camera with an orange ball that showed the best
responsiveness and presentation of the image live stream during the experiment in the

Sensors 2022, 22, 1875 18 of 24

upper right corner. Below this section are three frames or “space boxes” for fine-tuning the
controller PID coefficients in 0.001 unit increments or the “Reset PID” option for default
values (stored in script). The object search (Start/Stop Tracking) is controlled by two
square space boxes in the lower-left corner, while the right button controls the servo motors
(Start/Stop Motors). Furthermore, at the very bottom of the interactive window, there is
a very handy option to modify the horizontality of the plate manually in relation to the
unevenness of the substrate on which the prototype is positioned. In the upper left corner,
the image’s sampling frequency in milliseconds is also shown (insert value 32 in Figure 15a).
A binary figure of the ideal shape depicts the identical position of the ball in Figure 15b. By
pressing the “Show Thresh”/”Normal View” button, you can change the images.

As for the servo motor’s robotic arms, the calibrated mechanical “zero horizontal
position” of the plate is a default angle of 37 degrees for both actuators, as shown in
Figure 15a,b. If necessary, the “zero position” can be adjusted in one-degree increments
within the “Calibrate” X- and Y-axis space boxes. Angle control is limited to ±15 degrees
on both axes. In the experiment, the proportional coefficient kP is chosen at a value of 0.03,
the coefficient kD is chosen at a value of 0.02, and kI is chosen at a value of 0.01 or less.

Two further pop-up screens were added to the Python script, which initiate the
graphical representation, time period charts, and numerical matrix representation of the
relevant parameters for future mathematical analyses. Figure 16 shows, for example,
a 6-s time period chart with a graphical representation of the actual and selected position
setPoint, as well as shaft angle value as PID control signal. For a better understanding of
the dynamics and stability of the BPS system, the time period of the strip chart is extended
to 20 s in Figures 17, 21 and 22.

The second manageable pop-up window in the Python code but on the background
screen represents numerical data of parameters shown in the figures in the same time
period for additional analyses, if needed, respectively.

6. Experimental Results

Following the creation of the prototype, it was required to functionally verify the
work and optimize all of the Python script’s functionalities using actual BPS prototype
components. After multiple revisions, the BPS system’s functional operation was achieved,
allowing the setting of a ball setPoint anywhere on the plate’s surface (150 × 150 mm).
The “sliding” of a smooth ball on a smooth Plexiglas plate was the first item that was
noted. As indicated in the advanced block diagram in Figure 14, this is a verified flaw
of the mechanical system according to the plate smooth surface, generally referred to as
“steady-state error” or dysfunction d1(t).

In this research, a graphical depiction of the ball movement exclusively along the
horizontal X-axis was used due to the easier explanation and highlighting of crucial
elements connected to the control problem. There is a usual “exceeding” of the value of
the ball position in both directions during the first experiments. Several items sparked
suspicion: specific PID values, sliding on a flat surface, and mechanical clearances. The
process of altering the X-position of the ball from one side of the plate to the other along
the X-axis by roughly 250 pixels, as shown in Figure 16, is typical of the first series of
tests. The graph in Figure 16 displays the ball’s actual beginning X-position: 100 pixels
at 0 s (blue line) and the newly selected (setPoint) position at 390 pixels (red line) farther
along the X-axis. Additionally, kP = 0.033, kI = 0.010, and kD = 0.023 are the controller
constants. The PID control system can keep the ball within an overshoot of ±24 pixels,
or around ±8 mm, using this set of constants. The controller does 32 control adjustments
every second, and there are exactly 16 signal orders for the X-axis servo motor in each
exceeding of the ball’s setPoint, as shown in the lower section of Figure 16. Angle variations
are approximately ±4 degrees. Without a doubt, a typical example of unsteady system
operation with the harmonic frequency of one Hz is illustrated [50].

Sensors 2022, 22, 1875 19 of 24

Sensors 2022, 22, 1875 19 of 25

of altering the X-position of the ball from one side of the plate to the other along the X-

axis by roughly 250 pixels, as shown in Figure 16, is typical of the first series of tests. The

graph in Figure 16 displays the ball’s actual beginning X-position: 100 pixels at 0 s (blue

line) and the newly selected (setPoint) position at 390 pixels (red line) farther along the X-

axis. Additionally, kP = 0.033, kI = 0.010, and kD = 0.023 are the controller constants. The

PID control system can keep the ball within an overshoot of ± 24 pixels, or around ± 8 mm,

using this set of constants. The controller does 32 control adjustments every second, and

there are exactly 16 signal orders for the X-axis servo motor in each exceeding of the ball’s

setPoint, as shown in the lower section of Figure 16. Angle variations are approximately

± 4 degrees. Without a doubt, a typical example of unsteady system operation with the

harmonic frequency of one Hz is illustrated [50].

Figure 16. Experiment result: BPS printed bottom plate and upper Plexiglas smooth plate.

In the following studies, despite varying PID parameters, no substantial stability was

attained. Several mechanical flaws were discovered after the study. When using additive

technologies, such as 3D printing, keep in mind that due to the thermoplastic material’s

characteristics, deviations in all three axes might occur throughout the printing and cool-

ing process. This is mostly dependent on the thickness of the filament material to be ap-

plied, with rises and depressions being observed in thin layers of big surfaces, such as

tiles. In this scenario, mechanical levelling was required to mechanically polish the surface

of the printed BPS bottom plate. Furthermore, a new two-millimetre-thick Plexiglas plate

with a sandblasted surface was added instead of smooth Plexiglas. Figure 17 displays the

BPS chart for a 20-s period with the X-setPoint changing from 110 to 400 pixels. Within

the first two seconds of the average range of ± 12 pixels, rough stabilization of the location

is noticeable, followed by fine stabilization of the position after four to five seconds within

the limits of ± 6 pixels. The controller coefficients in this experiment are kP = 0.033, kD =

0.022, and kI = 0.001.

Figure 16. Experiment result: BPS printed bottom plate and upper Plexiglas smooth plate.

In the following studies, despite varying PID parameters, no substantial stability was
attained. Several mechanical flaws were discovered after the study. When using additive
technologies, such as 3D printing, keep in mind that due to the thermoplastic material’s
characteristics, deviations in all three axes might occur throughout the printing and cooling
process. This is mostly dependent on the thickness of the filament material to be applied,
with rises and depressions being observed in thin layers of big surfaces, such as tiles.
In this scenario, mechanical levelling was required to mechanically polish the surface of
the printed BPS bottom plate. Furthermore, a new two-millimetre-thick Plexiglas plate
with a sandblasted surface was added instead of smooth Plexiglas. Figure 17 displays the
BPS chart for a 20-s period with the X-setPoint changing from 110 to 400 pixels. Within the
first two seconds of the average range of ±12 pixels, rough stabilization of the location is
noticeable, followed by fine stabilization of the position after four to five seconds within the
limits of ±6 pixels. The controller coefficients in this experiment are kP = 0.033, kD = 0.022,
and kI = 0.001.

Sensors 2022, 22, 1875 20 of 25

Figure 17. Experiment with the rough BPS plate surface.

During the studies, it was discovered that lighting had a significant impact on the

sensor system’s operation. As seen in Figure 18, strong light sources on one side of the

ball were demonstrated to destabilize the BPS system (d). Figure 18 depicts multiple sce-

narios based on the ball’s strong and low illumination: (a) weak illumination conditions;

(b) and (c) one dominant light source. The physical interruption of the ball’s border con-

tour as a result of this effect leads to an inaccurate determination of the ball’s centre of

mass in the binary representation of the image.

(a) (b) (c) (d)

Figure 18. Examples of “light shadow error”.

This makes it difficult to use the Python method “inRange ()” as previously de-

scribed. As indicated in the advanced block diagram in Figure 14, it was important to

describe and document these sensor feedback defects caused by a poor image conversion

system, which is referred to as “light shadow error” or d2(t) dysfunction.

Several smaller discrete shaded light sources were added to mitigate this negative

effect, and the control precision was greatly enhanced.

This increased the amount of light directed towards the ball, which at the time had

no visible shadow. A resolution issue, known as “particular distance mistake”, was also

discovered. It is the control system’s failure to recognize a new sphere centre position

setPoint that is very close to the existing actual setPoint. This could be classified as a sort

of hysteresis, i.e., sensor or computer vision recognition insensitivity.

The largest specified distance error was found to be 6-pixels or roughly two millime-

tres. This is the same as the diameter of the red dot that represents the sphere’s center of

mass. The control instruction to move the ball 4 pixels in the horizontal X-axis direction is

shown in Figure 19, however, there is no answer since the needed setPoint offset is within

the defined distance error, which is the size of the sensor recognition error. Figure 19’s

time graph on the right side displays the setPoint value of the ball at “201 pixels” on the

panel and no actual signal from the controller. The blue line represents the signal noise

Figure 17. Experiment with the rough BPS plate surface.

Sensors 2022, 22, 1875 20 of 24

During the studies, it was discovered that lighting had a significant impact on the
sensor system’s operation. As seen in Figure 18, strong light sources on one side of the ball
were demonstrated to destabilize the BPS system (d). Figure 18 depicts multiple scenarios
based on the ball’s strong and low illumination: (a) weak illumination conditions; (b) and
(c) one dominant light source. The physical interruption of the ball’s border contour as a
result of this effect leads to an inaccurate determination of the ball’s centre of mass in the
binary representation of the image.

Sensors 2022, 22, 1875 20 of 25

Figure 17. Experiment with the rough BPS plate surface.

During the studies, it was discovered that lighting had a significant impact on the

sensor system’s operation. As seen in Figure 18, strong light sources on one side of the

ball were demonstrated to destabilize the BPS system (d). Figure 18 depicts multiple sce-

narios based on the ball’s strong and low illumination: (a) weak illumination conditions;

(b) and (c) one dominant light source. The physical interruption of the ball’s border con-

tour as a result of this effect leads to an inaccurate determination of the ball’s centre of

mass in the binary representation of the image.

(a) (b) (c) (d)

Figure 18. Examples of “light shadow error”.

This makes it difficult to use the Python method “inRange ()” as previously de-

scribed. As indicated in the advanced block diagram in Figure 14, it was important to

describe and document these sensor feedback defects caused by a poor image conversion

system, which is referred to as “light shadow error” or d2(t) dysfunction.

Several smaller discrete shaded light sources were added to mitigate this negative

effect, and the control precision was greatly enhanced.

This increased the amount of light directed towards the ball, which at the time had

no visible shadow. A resolution issue, known as “particular distance mistake”, was also

discovered. It is the control system’s failure to recognize a new sphere centre position

setPoint that is very close to the existing actual setPoint. This could be classified as a sort

of hysteresis, i.e., sensor or computer vision recognition insensitivity.

The largest specified distance error was found to be 6-pixels or roughly two millime-

tres. This is the same as the diameter of the red dot that represents the sphere’s center of

mass. The control instruction to move the ball 4 pixels in the horizontal X-axis direction is

shown in Figure 19, however, there is no answer since the needed setPoint offset is within

the defined distance error, which is the size of the sensor recognition error. Figure 19’s

time graph on the right side displays the setPoint value of the ball at “201 pixels” on the

panel and no actual signal from the controller. The blue line represents the signal noise

Figure 18. Examples of “light shadow error”.

This makes it difficult to use the Python method “inRange ()” as previously described.
As indicated in the advanced block diagram in Figure 14, it was important to describe and
document these sensor feedback defects caused by a poor image conversion system, which
is referred to as “light shadow error” or d2(t) dysfunction.

Several smaller discrete shaded light sources were added to mitigate this negative
effect, and the control precision was greatly enhanced.

This increased the amount of light directed towards the ball, which at the time had
no visible shadow. A resolution issue, known as “particular distance mistake”, was also
discovered. It is the control system’s failure to recognize a new sphere centre position
setPoint that is very close to the existing actual setPoint. This could be classified as a sort of
hysteresis, i.e., sensor or computer vision recognition insensitivity.

The largest specified distance error was found to be 6-pixels or roughly two millimetres.
This is the same as the diameter of the red dot that represents the sphere’s center of mass.
The control instruction to move the ball 4 pixels in the horizontal X-axis direction is shown
in Figure 19, however, there is no answer since the needed setPoint offset is within the
defined distance error, which is the size of the sensor recognition error. Figure 19’s time
graph on the right side displays the setPoint value of the ball at “201 pixels” on the panel
and no actual signal from the controller. The blue line represents the signal noise from the
ball’s actual position sensor, which has an average value of 197.3 pixels and a variance of
±0.2 pixels (±0.07 mm) and this is the proven sensitivity of the CCD sensor.

Sensors 2022, 22, 1875 21 of 25

from the ball’s actual position sensor, which has an average value of 197.3 pixels and a

variance of ±0.2 pixels (±0.07 mm) and this is the proven sensitivity of the CCD sensor.

Figure 19. Specific difference between the distance of the actual (red dot) and setPoint (white dot)

ball position.

Figure 20 shows the residual specific distance error after the controller correction

process: the setPoint position demand in the horizontal X-axis direction is 12 pixels (four

millimetres). After two seconds of signal control, there is stabilization and residual dislo-

cation of the real ball position of around two pixels, which is about 0.7 mm distance.

Figure 20. Experiment with residual ball position error-specific distance error.

Many variants of the controller coefficient were developed in order to further im-

prove the stability of the BPS system. The system works very quickly and nervously with

large oscillations and the inability to stabilize the ball for a long period, roughly five sec-

onds, when an integral coefficient kI is present, as illustrated before in Figure 21. The con-

trolling process is greatly enhanced when the integral coefficient kI is excluded from the

equation. The controller coefficients in this experiment, shown in Figure 22, are kP = 0.030,

kD = 0.020, and kI = 0. The specific error of the final X-position distance is still occasionally

seen in the steady location of the ball. The dislocation of the ball in a stable position 6 to 9

pixels (two to three millimetres) distance from the defined setPoint may be seen in the

graph in Figure 22.

Figure 21. Experiment with kP = 0.030; kI = 0.010; kD = 0.020; ball stabilization after five seconds.

Figure 19. Specific difference between the distance of the actual (red dot) and setPoint (white dot)
ball position.

Figure 20 shows the residual specific distance error after the controller correction
process: the setPoint position demand in the horizontal X-axis direction is 12 pixels
(four millimetres). After two seconds of signal control, there is stabilization and residual
dislocation of the real ball position of around two pixels, which is about 0.7 mm distance.

Sensors 2022, 22, 1875 21 of 24

Sensors 2022, 22, 1875 21 of 25

from the ball’s actual position sensor, which has an average value of 197.3 pixels and a

variance of ±0.2 pixels (±0.07 mm) and this is the proven sensitivity of the CCD sensor.

Figure 19. Specific difference between the distance of the actual (red dot) and setPoint (white dot)

ball position.

Figure 20 shows the residual specific distance error after the controller correction

process: the setPoint position demand in the horizontal X-axis direction is 12 pixels (four

millimetres). After two seconds of signal control, there is stabilization and residual dislo-

cation of the real ball position of around two pixels, which is about 0.7 mm distance.

Figure 20. Experiment with residual ball position error-specific distance error.

Many variants of the controller coefficient were developed in order to further im-

prove the stability of the BPS system. The system works very quickly and nervously with

large oscillations and the inability to stabilize the ball for a long period, roughly five sec-

onds, when an integral coefficient kI is present, as illustrated before in Figure 21. The con-

trolling process is greatly enhanced when the integral coefficient kI is excluded from the

equation. The controller coefficients in this experiment, shown in Figure 22, are kP = 0.030,

kD = 0.020, and kI = 0. The specific error of the final X-position distance is still occasionally

seen in the steady location of the ball. The dislocation of the ball in a stable position 6 to 9

pixels (two to three millimetres) distance from the defined setPoint may be seen in the

graph in Figure 22.

Figure 21. Experiment with kP = 0.030; kI = 0.010; kD = 0.020; ball stabilization after five seconds.

Figure 20. Experiment with residual ball position error-specific distance error.

Many variants of the controller coefficient were developed in order to further improve
the stability of the BPS system. The system works very quickly and nervously with large
oscillations and the inability to stabilize the ball for a long period, roughly five seconds,
when an integral coefficient kI is present, as illustrated before in Figure 21. The controlling
process is greatly enhanced when the integral coefficient kI is excluded from the equation.
The controller coefficients in this experiment, shown in Figure 22, are kP = 0.030, kD = 0.020,
and kI = 0. The specific error of the final X-position distance is still occasionally seen in
the steady location of the ball. The dislocation of the ball in a stable position 6 to 9 pixels
(two to three millimetres) distance from the defined setPoint may be seen in the graph
in Figure 22.

Sensors 2022, 22, 1875 21 of 25

from the ball’s actual position sensor, which has an average value of 197.3 pixels and a

variance of ±0.2 pixels (±0.07 mm) and this is the proven sensitivity of the CCD sensor.

Figure 19. Specific difference between the distance of the actual (red dot) and setPoint (white dot)

ball position.

Figure 20 shows the residual specific distance error after the controller correction

process: the setPoint position demand in the horizontal X-axis direction is 12 pixels (four

millimetres). After two seconds of signal control, there is stabilization and residual dislo-

cation of the real ball position of around two pixels, which is about 0.7 mm distance.

Figure 20. Experiment with residual ball position error-specific distance error.

Many variants of the controller coefficient were developed in order to further im-

prove the stability of the BPS system. The system works very quickly and nervously with

large oscillations and the inability to stabilize the ball for a long period, roughly five sec-

onds, when an integral coefficient kI is present, as illustrated before in Figure 21. The con-

trolling process is greatly enhanced when the integral coefficient kI is excluded from the

equation. The controller coefficients in this experiment, shown in Figure 22, are kP = 0.030,

kD = 0.020, and kI = 0. The specific error of the final X-position distance is still occasionally

seen in the steady location of the ball. The dislocation of the ball in a stable position 6 to 9

pixels (two to three millimetres) distance from the defined setPoint may be seen in the

graph in Figure 22.

Figure 21. Experiment with kP = 0.030; kI = 0.010; kD = 0.020; ball stabilization after five seconds. Figure 21. Experiment with kP = 0.030; kI = 0.010; kD = 0.020; ball stabilization after five seconds.

With practically every start of the ball position adjustment, the absolute angle cor-
rection of the DC servo motor with a maximum permissible correction of ±15 degrees
can be seen in the lower graph in Figure 22. The proportional and derivative parts of the
controller’s usual activity can be seen as characteristic control signals to the actuator in the
lower graph in Figure 22.

Sensors 2022, 22, 1875 22 of 24

Sensors 2022, 22, 1875 22 of 25

With practically every start of the ball position adjustment, the absolute angle correc-

tion of the DC servo motor with a maximum permissible correction of ± 15 degrees can be

seen in the lower graph in Figure 22. The proportional and derivative parts of the control-

ler’s usual activity can be seen as characteristic control signals to the actuator in the lower

graph in Figure 22.

Figure 22. Experiment with kP = 0.030; kI = 0; kD = 0.020; ball stabilization after two seconds.

Of course, in the absence of integration contribution, there is a delay in position con-

trol in the case of PD controllers, about 0.15 s after initiation, but the BPS system has con-

siderably superior stability. According to iteration method frequencies, the frequency of

the controller control signal directed to the X-axis DC angle correction actuator is 32 con-

trol actions per second, as shown in Figure 22.

7. Conclusions

The implementation of the BPS prototype as a laboratory platform for the education

of STEM engineers is discussed in this study. In addition, the design and implementation

of software and hardware are explored in detail. The computation time of an open-source

control system based on Python scripts that permits the usage of ready-made functions

from the library is quite short. Because of the OpenCV environment, the calculation may

be made as simple as possible. The OpenCV technique was found to work when applied

to the BPS process, however, it is important to improve the system in comparison to other

publications in order to eliminate or partially minimize the influence of the amount of the

disturbances indicated as mistakes in the improved block diagram. Because of the dy-

namic features of the mechatronic prototype and the circumstances surrounding suitable

lighting, the PD algorithm proved to be more successful than the conventional PID solu-

tion. Because of the required amount of consistent light illumination, choosing an HD

camera as a sensor for the control system feedback proved to be quite challenging.

A quantitative study was carried out with numerical results in collecting original

data and analysing the data, whereas qualitative research was concerned with the descrip-

tions and meanings of the tests carried out. In this study, both analyses were used. Qual-

itative research is expressed in words, whereas quantitative research is expressed in num-

bers and graphs. It was used to grasp design principles, simple solutions for robotic servo

arm design with dry bearing, control system observed uncertainties and inadequacies,

and interpretation of the results of multiple trials.

The scientific approach always seeks some categorical views and evidence and even

doubts that open up opportunities for other research teams to investigate, confirm, or

deny such phenomena more deeply. Additionally, the scientific approach always requires

Figure 22. Experiment with kP = 0.030; kI = 0; kD = 0.020; ball stabilization after two seconds.

Of course, in the absence of integration contribution, there is a delay in position
control in the case of PD controllers, about 0.15 s after initiation, but the BPS system has
considerably superior stability. According to iteration method frequencies, the frequency
of the controller control signal directed to the X-axis DC angle correction actuator is
32 control actions per second, as shown in Figure 22.

7. Conclusions

The implementation of the BPS prototype as a laboratory platform for the education
of STEM engineers is discussed in this study. In addition, the design and implementation
of software and hardware are explored in detail. The computation time of an open-source
control system based on Python scripts that permits the usage of ready-made functions
from the library is quite short. Because of the OpenCV environment, the calculation may
be made as simple as possible. The OpenCV technique was found to work when applied to
the BPS process, however, it is important to improve the system in comparison to other
publications in order to eliminate or partially minimize the influence of the amount of the
disturbances indicated as mistakes in the improved block diagram. Because of the dynamic
features of the mechatronic prototype and the circumstances surrounding suitable lighting,
the PD algorithm proved to be more successful than the conventional PID solution. Because
of the required amount of consistent light illumination, choosing an HD camera as a sensor
for the control system feedback proved to be quite challenging.

A quantitative study was carried out with numerical results in collecting original data
and analysing the data, whereas qualitative research was concerned with the descriptions
and meanings of the tests carried out. In this study, both analyses were used. Qualitative
research is expressed in words, whereas quantitative research is expressed in numbers
and graphs. It was used to grasp design principles, simple solutions for robotic servo arm
design with dry bearing, control system observed uncertainties and inadequacies, and
interpretation of the results of multiple trials.

The scientific approach always seeks some categorical views and evidence and even
doubts that open up opportunities for other research teams to investigate, confirm, or deny
such phenomena more deeply. Additionally, the scientific approach always requires that
readers from the presented paper can assess the reliability and validity of the research.

Nevertheless, the authors hope that the presented works will inspire readers and
students to develop new methods and applications of machine vision and computer vision
for industrial and non-industrial applications, as the authors will undoubtedly continue
their research on the BPS mechatronic platform and control algorithms. The selection of
various control algorithms and the usage of a resistive touchpad as a feedback sensor are
the most likely directions for future study.

Sensors 2022, 22, 1875 23 of 24

Author Contributions: Conceptualization, V.T., J.H. and D.K.; methodology, V.T. and J.H.; software,
T.T.; validation, V.T. and D.K.; formal analysis, D.K. and J.H.; investigation, T.T.; resources, T.T.;
data curation, V.T.; writing—original draft preparation, V.T.; writing—review and editing, D.K.;
visualization, V.T. and T.T.; supervision, D.K. and J.H.; project administration, V.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This paper was produced as part of the “Atrium of Knowledge” project co-financed by the
European Union from the European Regional Development Fund and the Operational Programme
“Competitiveness and Cohesion” (OPCC) 2014–2020. Contract No: KK.01.1.1.02.0005.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Knuplez, A.; Chowdhury, A.; Svecko, R. Modeling and Control design for the ball and plate system. In Proceedings of the IEEE

International Conference on Industrial Technology, Maribor, Slovenia, 10–12 December 2003; pp. 1064–1067. [CrossRef]
2. Hongwei, L.; Yanyang, L. Trajectory tracking sliding mode control of ball and plate system. In Proceedings of the 2nd International

Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010), Wuhan, China, 6–7 March 2010; pp. 142–145.
[CrossRef]

3. Awtar, S.; Bernard, C.; Boklund, N.; Master, A.; Ueda, D.; Craig, K. Mechatronic design of a ball-on-plate balancing system.
Mechatronics 2002, 12, 217–228. [CrossRef]

4. Zheng, F.; Li, X.; Wang, S.; Ding, D. Position Control of Ball and Plate System Based on Switching Mechanism. In Proceedings of
the IEEE International Conference on Automation and Logistics, Chongqing, China, 15–16 August 2011; pp. 233–237. [CrossRef]

5. Matsuo, T.; Tsuruta, K.; Suemitsu, H. Fuzzy adaptive identification method based on Riccati equation and its application to
ball-pate control system. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, Japan,
12–15 October 1999; pp. 162–167. [CrossRef]

6. Dong, X.; Zhang, Z.; Chen, C. Applying genetic algorithm to on-line updated PID neural network controllers for ball and plate
system. In Proceedings of the IEEE International Conference on Innovative Computing, Information and Control (ICICIC),
Kaohsiung, Taiwan, 7–9 December 2009; pp. 751–755. [CrossRef]

7. Pattanapong, Y.; Deelertpaiboon, C. On Ball and plate position control based on fuzzy logic with adaptive integral control
action. In Proceedings of the IEEE International Conference on Mechatronics and Automation, 4–7 August 2013; pp. 1513–1517.
[CrossRef]

8. Kassem, A.; Haddad, H.; Albitar, C. Commparison between Different Methods of Control of Ball and Plate System with 6DOF
Stewart Platform. IFAC-PapersOnLine 2015, 48, 47–52. [CrossRef]

9. Morales, L.; Gordón, M.; Camacho, O.; Rosales, A.; Pozo, D. A Comparative Analysis among Different Controllers Applied to the
Experimental Ball and Plate System. In Proceedings of the 2017 International Conference on Information Systems and Computer
Science (INCISCOS), Quito, Ecuador, 23–25 November 2017; pp. 108–114. [CrossRef]

10. Robayo Betancourt, F.I.; Brand Alarcon, S.M.; Aristizabal Velasquez, L.F. Fuzzy and PID controllers applied to ball and plate
system. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia,
15–18 October 2019; pp. 1–6. [CrossRef]

11. Bdoor, S.R.; Ismail, O.; Roman, M.R.; Hendawi, Y. Design and Implementation of a Vision-based Control for a Ball and Plate
System. In Proceedings of the 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing
(ICIEAM), Chelyabinsk, Russia, 19–20 May 2016. [CrossRef]

12. Jeon, J.H.; Hyun, C.H. Adaptive Sliding Mode Control of Ball and Plate Systems for Its Practical Application. In Proceedings of
the 2nd International Conference on Control and Robotics Engineering, Bangkok, Thailand, 1–3 April 2017. [CrossRef]

13. Moreno-Armendáriz, M.A.; Pérez-Olvera, C.A.; Rodríguez, F.O. Indirect hierarchical FCMAC control for the ball and plate system.
Neurocomputing 2010, 73, 2454–2463. [CrossRef]

14. Huang, W.; Zhao, Y.; Ye, Y.; Xie, W. State Feedback Control for Stabilization of the Ball and Plate System. In Proceedings of the
2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 687–690.

15. Tatjewski, P. Disturbance modeling and state estimation for offset-free predictive control with state-space models. Int. J. Appl.
Math. Comput. Sci. 2014, 24, 313–323. [CrossRef]

16. Fabregas, E.; Dormido-Canto, S.; Dormido, S. Virtual and Remote Laboratory with the Ball and Plate System. IFAC-PapersOnLine
2017, 50, 9132–9137. [CrossRef]

17. Linder, T.; Rybarczik, D.; Wirwal, D. Stabilisation problem in biaxial platform. Arch. Mech. Technol. Mater. 2016, 36. [CrossRef]

http://doi.org/10.1109/ICIT.2003.1290810
http://doi.org/10.1109/CAR.2010.5456649
http://doi.org/10.1016/S0957-4158(01)00062-9
http://doi.org/10.1109/ICAL.2011.6024719
http://doi.org/10.1109/ICSMC.1999.816510
http://doi.org/10.1109/ICICIC.2009.113
http://doi.org/10.1109/ICMA.2013.6618138
http://doi.org/10.1016/j.ifacol.2015.09.158
http://doi.org/10.1109/INCISCOS.2017.27
http://doi.org/10.1109/CCAC.2019.8921113
http://doi.org/10.1109/ICIEAM.2016.7910965
http://doi.org/10.1109/ICCRE.2017.7935054
http://doi.org/10.1016/j.neucom.2010.03.023
http://doi.org/10.2478/amcs-2014-0023
http://doi.org/10.1016/j.ifacol.2017.08.1716
http://doi.org/10.1515/amtm-2016-0012

Sensors 2022, 22, 1875 24 of 24

18. Stander, D.; Jiménez-Leudo, S.; Quijano, N. Low-Cost “ball and Plate” design and implementation for learning control sys-
tems. In Proceedings of the 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), Cartagena, Colombia,
18–20 October 2017; pp. 1–6.

19. Carli, R.; Cavone, G.; Ben Othman, S.; Dotoli, M. IoT Based Architecture for Model Predictive Control of HVAC Systems in Smart
Buildings. Sensors 2020, 20, 781. [CrossRef]

20. Rybus, T.; Seweryn, K.; Sasiadek, J.Z. Application of predictive control for manipulator mounted on a satellite. Arch. Control Sci.
2018, 28, 105–118. [CrossRef]

21. Ogonowski, S.; Bismor, D.; Ogonowski, Z. Control of complex dynamic nonlinear loading process for electromagnetic mill. Arch.
Control Sci. 2020, 30, 471–500. [CrossRef]

22. Horla, D. Experimental Results on Actuator/Sensor Failures in Adaptive GPC Position Control. Actuators 2021, 10, 43. [CrossRef]
23. Eskandarpour, A.; Sharf, I. A constrained error-based MPC for path following of quadrotor with stability analysis. Nonlinear Dyn.

2020, 98, 899–918. [CrossRef]
24. Ducajú, S.; Salt Llobregat, J.J.; Cuenca, Á.; Tomizuka, M. Autonomous Ground Vehicle Lane-Keeping LPV Model-Based Control:

Dual-Rate State Estimation and Comparison of Different Real-Time Control Strategies. Sensors 2021, 21, 1531. [CrossRef]
25. Kotarski, D.; Piljek, P.; Kasać, J.; Majetić, D. Performance Analysis of Fully Actuated Multirotor Unmanned Aerial Vehicle

Configurations with Passively Tilted Rotors. Appl. Sci. 2021, 11, 8786. [CrossRef]
26. Kotarski, D.; Piljek, P.; Pranjić, M.; Giorgio Grlj, C.; Kasać, J. A Modular Multirotor Unmanned Aerial Vehicle Design Approach

for Development of an Engineering Education Platform. Sensors 2021, 21, 2737. [CrossRef] [PubMed]
27. Zarzycki, K.; Ławrynczuk, M. Development and Modelling of a Laboratory Ball on Plate Process. In Advanced, Contemporary

Control. Advances in Intelligent Systems and Computing; Bartoszewicz, A., Kabzinski, J., Kacprzyk, J., Eds.; Springer International
Publishing: Cham, Switzerland, 2020; Volume 1196, pp. 396–408.

28. Zarzycki, K.; Ławrynczuk, M. Fast Real-Time Model Predictive Control for a Ball-on-Plate Process. Sensors 2021, 21, 3959.
[CrossRef]

29. Tatjewski, P.; Ławrynczuk, M. Algorithms with state estimation in linear and nonlinear model predictive control. Comput. Chem.
Eng. 2020, 143, 107065. [CrossRef]

30. Ławrynczuk, M. Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach; Studies in Systems,
Decision and Control; Springer International Publishing: Cham, Switzerland, 2014; Volume 3.

31. Chaber, P.; Ławryńczuk, M. Fast Analytical Model Predictive Controllers and Their Implementation for STM32 ARM Microcon-
troller. IEEE Trans. Ind. Inf. 2019, 15, 4580–4590. [CrossRef]

32. Valencia-Palomo, G.; Rossiter, J.A. Programmable logic controller implementation of an auto-tuned predictive control based on
minimal plant information. ISA Trans. 2011, 50, 92–100. [CrossRef]

33. Giesl, P.; Hafstein, S. Review on computational methods for Lyapunov functions. AIMS Am. Inst. Math. Sci. 2015, 20, 2291–2331.
[CrossRef]

34. Tanaka, K.; Hori, T.; Wang, H. A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE T. Fuzzy
Syst. 2003, 11, 582–589. [CrossRef]

35. Sontag, E.; Sussman, H. Nonsmooth control-Lyapunov functions. In Proceedings of the 34th IEEE Conference on Decision and
Control, New Orleans, LA, USA, 13–15 December 1995; pp. 2799–2805. [CrossRef]

36. She, Z.; Xue, B. Computing an invariance kernel with target by computing Lyapunov-like functions. IET Control Theory Appl.
2013, 7, 1932–1940. [CrossRef]

37. Roozbehani, M.; Megretski, S.; Feron, E. Optimization of Lyapunov invariants in verification of software systems. IEEE Trans.
Automat. Control 2013, 58, 696–711. [CrossRef]

38. Ortega, R.; Romero, J.G.; Borja, P.; Donaire, A. PID Passivity-Based Control of Nonlinear Systems with Applications; E-Book; Wiley-IEEE
Press: New York, NY, USA, 2021; 240p, ISBN 978-1-119-69418-2.

39. Available online: https://docs.python.org/3/ (accessed on 5 December 2021).
40. Franklin, G.F.; Powell, J.D.; Emami-Naeini, A. Feedback Control of Dynamical Systems, 4th ed.; Prentice Hall: Hoboken, NJ, USA, 2002.
41. Perić, N.; Vukić, Z.; Baotić, M.; Vašak, M.; Mišković, N. Automatsko Upravljanje—Predavanja; Sveučilište u Zagrebu Fakultet

Elektrotehnike i Računarstva: Zagreb, Croatia, 2010. (In Croatian)
42. IML Laboratory. Dynamics and Control; University Illinois at Urbana-Champaign Grainger College of Engineering:

Urbana, IL, USA, 2022.
43. Available online: https://create.arduino.cc/projecthub/muhammad-aqib/arduino-pwm-tutorial-ae9d71 (accessed on 8 December 2021).
44. Available online: https://www.rccorner.ae/towerpro-mg995-digi-hi-speed-servo (accessed on 4 December 2021).
45. Available online: https://help.solidworks.com/2020/english/SolidWorks/cworks/c_Background_on_Meshing.htm (accessed

on 9 December 2021).
46. Available online: https://www.createeducation.com/software/cura/ (accessed on 10 December 2021).
47. Tropčić, T. Application of Computer Vision in Mechatronic. Bachelor’s Thesis, Karlovac University of Applied Sciences,

Karlovac, Croatia, 10 September 2020. Available online: https://urn.nsk.hr/urn:nbn:hr:128:892674 (accessed on 16 December 2021).
48. Available online: https://docs.opencv.org/4.x/da/d97/tutorial_threshold_inRange.html (accessed on 16 December 2021).
49. Available online: https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html (accessed on 16 December 2021).
50. Available online: https://www.youtube.com/watch?v=LADO4qKQaGc (accessed on 15 December 2021).

http://doi.org/10.3390/s20030781
http://doi.org/10.24425/119079
http://doi.org/10.24425/acs.2020.134674
http://doi.org/10.3390/act10030043
http://doi.org/10.1007/s11071-019-04859-0
http://doi.org/10.3390/s21041531
http://doi.org/10.3390/app11188786
http://doi.org/10.3390/s21082737
http://www.ncbi.nlm.nih.gov/pubmed/33924495
http://doi.org/10.3390/s21123959
http://doi.org/10.1016/j.compchemeng.2020.107065
http://doi.org/10.1109/TII.2019.2893122
http://doi.org/10.1016/j.isatra.2010.10.002
http://doi.org/10.3934/dcdsb.2015.20.2291
http://doi.org/10.1109/TFUZZ.2003.814861
http://doi.org/10.1109/CDC.1995.478542
http://doi.org/10.1049/iet-cta.2013.0275
http://doi.org/10.1109/TAC.2013.2241472
https://docs.python.org/3/
https://create.arduino.cc/projecthub/muhammad-aqib/arduino-pwm-tutorial-ae9d71
https://www.rccorner.ae/towerpro-mg995-digi-hi-speed-servo
https://help.solidworks.com/2020/english/SolidWorks/cworks/c_Background_on_Meshing.htm
https://www.createeducation.com/software/cura/
https://urn.nsk.hr/urn:nbn:hr:128:892674
https://docs.opencv.org/4.x/da/d97/tutorial_threshold_inRange.html
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html
https://www.youtube.com/watch?v=LADO4qKQaGc

	Introduction
	Methodology
	BPS Computer Design and Fabrication
	Fabrication and Mounting
	General BPS Design

	Python Script
	Computer Vision Issues
	Image Converting Technicques
	List of Python Ready-Made Functions
	Python Control Script Design
	Advanced Block Diagram of PID Controller
	CLC Error Value Calculation

	Dynamics and PID Control Issues Overview
	BPS Visualization and Control
	Application “Ball Tracking”

	Experimental Results
	Conclusions
	References

