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Abstract: Forecasting the values of essential climate variables like land surface temperature and
soil moisture can play a paramount role in understanding and predicting the impact of climate
change. This work concerns the development of a deep learning model for analyzing and predicting
spatial time series, considering both satellite derived and model-based data assimilation processes.
To that end, we propose the Embedded Temporal Convolutional Network (E-TCN) architecture,
which integrates three different networks, namely an encoder network, a temporal convolutional
network, and a decoder network. The model accepts as input satellite or assimilation model derived
values, such as land surface temperature and soil moisture, with monthly periodicity, going back
more than fifteen years. We use our model and compare its results with the state-of-the-art model for
spatiotemporal data, the ConvLSTM model. To quantify performance, we explore different cases of
spatial resolution, spatial region extension, number of training examples and prediction windows,
among others. The proposed approach achieves better performance in terms of prediction accuracy,
while using a smaller number of parameters compared to the ConvLSTM model. Although we
focus on two specific environmental variables, the method can be readily applied to other variables
of interest.

Keywords: deep learning; time-series forecasting; remote sensing; climate variables; surface temperature;
soil moisture

1. Introduction

Climate change is one of the biggest challenges of modern civilization, manifested by
phenomena like extreme weather events, sea level rise, shrinking of ice sheets, warming
of the oceans, and more [1]. These changes have been observed since the middle of the
20th century, however, in the past twenty years, the dramatic increase in the number and
capabilities of Earth Observation platforms have facilitated a much deeper understanding
of the involved processes [2]. To that end, a list of critical environmental parameters has
been identified as Essential Climate Variables (ECV) [3], and include soil moisture, land
surface temperature, above-ground biomass, sea-level, etc.

Estimation of these variables typically relies on numerical simulation models running
on high-performance computing systems [4]. In recent years, however, the dramatic in-
crease in computational capabilities offered by novel hardware platforms like graphical
processing units, have allowed cutting edge machine learning algorithms to be introduced
to the analysis of Earth observations, contributing to the prediction, recognition and mit-
igation of climate change [5]. The success of machine learning methods on the analysis
of remote sensing observation has been primarily focused on either the classification of
static observations [6,7], the enhancement of low quality observations [8,9] or the retrieval
of bio/geophysical parameters [10,11].
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While significant effort has been allocated to the analysis of the instantaneous values
of ECVs, aspects related to understanding the dynamic nature of the observations mandate
novel functionalities, like the ability to perform accurate and timely forecast of critical
geophysical parameters. In this work, we propose the Embedded Temporal Convolutional
Network (E-TCN), a novel deep learning framework for encoding and forecasting ECV and
more specifically surface soil moisture and surface temperature. The main contributions of
this work are summarized as follows:

• We propose a novel deep learning architecture for forecasting future values which
gracefully handles the high-dimensionality of observations.

• We introduce novel datasets of satellite derived geophysical parameters, namely land
surface temperature and surface soil moisture, obtained on monthly periodicity over
17.5 years.

• We performed a detailed analysis of both state-of-the-art and proposed deep learning
models for the problem of climate variables prediction.

This paper presents related research in Section 2, the Embedded Temporal Convolu-
tional Network in Section 3.1 and the datasets in Section 3.2. In Section 4, we explain the
experimental procedure, we show the results of our model and we perform a comparison
with the ConvLSTM model. A discussion is presented in Section 5 and the paper concludes
in Section 6.

2. Related Work

The analysis of spatiotemporal data, i.e., sequences of spatial observations, is attracting
a lot of attention lately in Earth Observation due to the numerous applications which can
benefit from such data including water, carbon and biochemical cycles. In the deep learning
community, problems with sequential dependence are usually approached with Recurrent
Neural Networks (RNNs) and Long Short Term Memory networks (LSTMs) [12] due to
their capability to capture temporal dependencies in sequential data. There are many
variants of these networks that appear in the literature [13,14] and are applied on a wide
range of sequential problems such as time series prediction [15], speech recognition [16]
and machine translation [17] among others.

For the case of remote sensing, the majority of effort has been allocated to the introduc-
tion of deep learning models for supervised classification problems like scene categoriza-
tion [7], land cover classification [18], and building extraction [19] amongst many others.
For the problem of geophysical parameters value retrieval from current observations, more
limited effort has been given to specific cases like soil moisture [20], land surface tempera-
ture [21], and chlorophyll-a concentration [10], among others. More recently, the analysis
of spatio-temporal observation was considered in [22] for the problem of precipitation
nowcasting. The goal in this case is to predict the future radar maps by giving as input a
past radar echo sequence. Thus, the input and the target output are both spatiotemporal
sequences. To that end, the paper proposes the ConvLSTM model, a LSTM architecture
which employs convolutions instead of matrix multiplications in the input-to-state and
state-to-state transitions. ConvLSTM has been widely used in recent years for similar
problems [23,24].

In addition to variants of RNN/LSTM, in recent years the Temporal Convolutional
Networks (TCNs), an adapted convolutional neural network model for time-series data,
are gaining ground for sequence modeling tasks. Typically, Temporal Convolutional
Networks refer to a family of 1D-CNN architectures. Their name was first introduced to
the literature in the work of [25]. They proposed two types of temporal convolutional
models, the Encoder-Decoder TCN and the Dilated TCN, for purposes of fine-grained
action segmentation or detection. Their Dilated TCN was an adaptation of the Wavenet
model [26]. Wavenet, which was proposed by Google DeepMind, achieved state-of-the-art
speech synthesis. It uses a 1D convolutional structure with dilated causal convolutions
and includes residual connections, gated activations, skip connections, context stacking
and conditioning. In addition, a state-of-the-art performance on character-level language



Sensors 2022, 22, 1851 3 of 19

modeling and on English to German translation tasks was also achieved from Google
DeepMind ([27]) by using a 1D convolutional network with dilated convolutions and
residual blocks, surpassing the performance of recurrent neural networks.

A simple TCN architecture that contains dilated causal convolutions and residual
blocks was proposed in [28]. The authors focused on comparing their proposed model to
recurrent architectures (LSTM, GRU, and vanilla RNN) in tasks that are commonly used to
benchmark RNNs, such as the adding problem, the copy memory task, the JSB Chorales
and Nottingham datasets ([29]) and the LAMBADA dataset ([30]) among others. Keeping
their TCN and RNN models simple, they conclude that TCNs outperform LSTMs, GRUs
and vanilla RNNs. One should note, however, that this is not always the case. For example,
in [31], the authors demonstrated that LSTM and CNN achieved better performance
compared to TCN day-ahead electricity price forecasting in the Spanish electricity market.

3. Materials and Methods
3.1. The E-TCN Framework

Formally, the objective in this work is to build a model that receives as input a fixed
number of images from a spatial time series and estimates the same number of images
shifted by one time step into the future, effectively performing a one-step look ahead
prediction. The constant number of the input and output images is a hyperparameter called
timesteps. Thus, the input data have to be of size timesteps (N) × width (M) × height (M)
× number of channels (c), while the output data had to be of size timesteps (N) × width
(M) × height (M) × number of filters ( f ).

A typical approach when dealing with temporal data, i.e., timeseries, is to employ
Long Short Term Memory (LSTM) networks. The inability of typical LSTM networks to
take spatial correlations into account was the inspiration for the ConvLSTM model. It
was explicitly designed in order to capture both the spatial and temporal dependencies
of the dataset. Thus, at the LSTM equations ([32]), matrix multiplications are replaced by
convolution operations in the input-to-state and state-to-state transitions. Then, ConvLSTM
equations result as below, where ∗ represents the convolution operator and ◦ represents
the Hadamard, i.e., element-wise, product:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi) (1)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f ) (2)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (3)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo) (4)

Ht = ot ◦ tanh(Ct). (5)

In this work, in order to encode information from both spatial and temporal di-
mensions, we propose the E-TCN, a deep learning model that combines three different
networks, an encoder network, a Temporal Convolutional Network inspired from [28]
and a decoder network. A high-level visualization of the proposed E-TCN is presented in
Figure 1. Formally, the encoder network receives as input a single image, thus its input
data is 3-dimensional, M×M× c. To insert multiple images, corresponding to different
time-instance, into the model, i.e., to add the dimension of timesteps to the input data, the
Time Distributed layer of the deep learning framework Tensorflow was wrapped around
the encoder network. Figure 1 shows that each of the model’s input images 1, 2, . . . , N
at time t− N + 1, t− N + 2, . . . , t, respectively, where N represents the hyperparameter
timesteps, passed through an encoder network. To that end, the encoder network consists of
three blocks, each block consisting of a 2D convolutional layer followed by a max pooling
layer. The role of the max pooling layers is to return the maximum value from a 2× 2 pixels
image region. The encoder network output N 3D vectors. Each of these N 3D vectors is
passed through a flatten layer which converted them to a set of N 1D vectors, preserving
the time dimension.
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Figure 1. The proposed Embedded Temporal Convolutional Network. The square block at the left
shows the inner structure of the used residual block.

To help in the exposition of the core ideas of the E-TCN, assume that the input is
single-channel images of M×M pixels, the dimensions of the 2D convolutional kernels
is k × k, and the number of filters in the 2D convolutional layers are A, B and C, for
the first, second and third block, respectively. The dimensions of the encoder’s input is
N×M×M× 1. Thus, the dimensions of the output of the first convolutional layer becomes
N×M− (k− 1)×M− (k− 1)× A (for valid padding). The output of the first max pooling
layer is thus N × [M− (k− 1)]/2× [M− (k− 1)]/2× A. If needed, the number of pixels
is rounded down to the smallest integer. The output of the second convolutional layer is
N × [[M− (k− 1)]/2]− (k− 1)× [[M− (k− 1)]/2]− (k− 1)× B and the output of the
second max pooling layer is N × [[[M− (k− 1)]/2]− (k− 1)]/2× [[[M− (k− 1)]/2]−
(k − 1)]/2× B. The output of the third convolutional layer is N × [[[M − (k − 1)]/2]−
(k− 1)]/2− (k− 1)× [[[M− (k− 1)]/2]− (k− 1)]/2− (k− 1)× C, which is also the final
output of the encoder network.

The encoder network is followed by a Temporal Convolutional Network (TCN) archi-
tecture that replaces 1D convolutional layers with residual blocks. The internal structure of
the residual block (left block of Figure 1), which was proposed in [28], consists of two 1D
convolutional layers of the same kernel size and number of output filters. Each of them
is followed by a rectified linear unit activation and a dropout layer. Furthermore, weight
normalization ([33]) is applied to the filters of the convolutions. In general, when we use a
1D convolutional layer, its input is a sequence of timesteps vectors. Thus, the N 1D vectors
which are generated by the flatten layer act as the input of the first residual block of the
TCN and subsequently propagated through the different layers. The dimension of each
input vector is equal to the number of input channels at the first 1D convolutional layer
inside the TCN. The essential point of a residual block is that its input is added invariably to
its output. This sum goes through an activation, in our case a rectified linear unit activation,
giving the final output of the residual block. The E-TCN that is shown in Figure 1 consists
of a single residual block, however, in general may consist of multiple layers.

Unlike typical convolutional networks, the E-TCN uses only causal convolutions, i.e.,
convolution operations that depend only on past and current information, therefore forcing
the prediction at time t, yt, to depend only on the model’s inputs xo, x1, . . . , xt. The predicted
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image at time t therefore only depends on the images at times t−N + 1, t−N + 1, . . . , t− 1.
This is reflected in Figure 1, where the kernel is represented with purple lines between the
2 convolutional layers. As in [28], we also used dilated convolutions. The given input xi of
a dilated convolution operation F on a component s of a layer contains defined gaps of size
d between its elements. The normal convolution is applied for d = 1. The relationship that
describes this operation is given by:

F(s) =
k−1

∑
i=0

f (i) · xs−d·i, (6)

where k is the filter size and f (i) is the i element of the applied filter. As it is widely used,
the dilation size grew exponentially by 2 at each residual block added to the network.
The outputs of the TCN model were N 1D vectors at t− N + 2, t− N + 3, . . . , t + 1. The
dimension of each output vector is equal with the number of output filters of the last
residual block of the TCN model. We used a reshape layer to turn these 1D vectors to a set
of N 3D vectors and then a decoder network to turn the 3D vectors to our predicted images.

The decoder network followed the reverse process of the one in the encoder network.
It consists of 3 2D transposed convolutional layers between which there were 2 batch
normalization layers. The last layer of the decoder network is a 2D convolutional layer
with 1 filter, because in this work we only used 1-channel images. The Time Distributed
layer is wrapped around the decoder network as before.

We return to our previous example. We suppose that the size of the 2D convolutional
kernels at the transposed convolutional layers and the convolutional layer is k× k and the
number of filters at the three 2D transposed convolutional layers is C, B and A, respectively.
In order to predict images of size N × M× M× 1 using the above-mentioned structure
of the decoder, the output of the reshape layer must be equal to N × M/4× M/4× 1.
Thus, the output of the TCN is N × (M/4)2, where (M/4)2 is the number of output
filters of the last residual block of the TCN model and is set by us. The output of the
first transposed convolutional layer is N × M/2× M/2× C. The output of the second
transposed convolutional layer is N ×M×M× B and the output of the third transposed
convolutional layer is N ×M×M× A. The output of the final 2D convolutional layer is of
size N ×M×M× 1.

3.2. Analysis Ready Dataset

We quantify the performance of the proposed scheme by measuring the accuracy in
the estimation of essential climate variables. Specifically, the proposed (E-TCN) and the
state-of-the-art method (ConvLSTM) are trained using time series of historical observations
and learn to predict future values of Land Surface Temperature and Surface Soil Moisture,
derived by compositing and averaging the daily values from the corresponding month. The
datasets considered in this work were created from single channel satellite derived products
obtained from the NASA worldview application (https://worldview.earthdata.nasa.gov/,
accessed on 1 June 2021).

The land surface temperature values correspond to level 3 (L3) products extracted from
the MODIS Terra satellite. Specifically, the Land Surface Temperature/Emissivity layer encodes
monthly averages of daytime land surface temperature in Kelvin (K) (Land Surface Temperature
layer, https://worldview.earthdata.nasa.gov/?v=-152.8838071329185,-16.82356580605071,50.2
0782633321695,82.73893419394929&l=MODIS_Terra_L3_Land_Surface_Temp_Monthly_Day&
lg=true&t=2021-09-22-T18, accessed on 1 June 2021). These estimations are provided by the
day/night algorithm which considers several TIR bands [34]. For the soil moisture, we
consider the NLDAS estimated soul moisture derived by the North America Land Data
Assimilation System Phase 2 Mosaic Land Surface Model. The NLDAS Soil Moisture
monthly data are generated through temporal averaging of the hourly data and represents
the 0–10 cm depth-averaged amount of water.

https://worldview.earthdata.nasa.gov/
https://worldview.earthdata.nasa.gov/?v=-152.8838071329185,-16.82356580605071,50.20782633321695,82.73893419394929&l=MODIS_Terra_L3_Land_Surface_Temp_Monthly_Day&lg=true&t=2021-09-22-T18
https://worldview.earthdata.nasa.gov/?v=-152.8838071329185,-16.82356580605071,50.20782633321695,82.73893419394929&l=MODIS_Terra_L3_Land_Surface_Temp_Monthly_Day&lg=true&t=2021-09-22-T18
https://worldview.earthdata.nasa.gov/?v=-152.8838071329185,-16.82356580605071,50.20782633321695,82.73893419394929&l=MODIS_Terra_L3_Land_Surface_Temp_Monthly_Day&lg=true&t=2021-09-22-T18
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For each experiment, we split the full dataset into two separate sets, the training
and the test dataset. These dataset consists of images representing values of daytime land
surface temperature from January 2003 to May 2020 and for soil moisture from April 2015 to
May 2020, respectively. For both cases, the objective is the prediction of the corresponding
values for June of 2020. We compiled four datasets to test the ability of the models to predict
land surface temperature values, each consisted of 210 examples, and more specifically:

• A set of 28× 28 pixel images with per pixel resolution equal to 5 km. These images
were acquired from the region in Idaho shown in Figure 2.

Figure 2. The square shows the area in Sweden from which we obtained land surface temperature in
images of 28× 28 pixels, with a resolution (per pixel) of 1 km.

• A set of 28× 28 pixel images with per pixel resolution equal to 5 km. These images
were acquired from the region in Sweden shown in Figure 3.

Figure 3. The square shows the area in Sweden from which we land surface temperature in images
of 28× 28 pixels, with a resolution (per pixel) of 5 km.

• A set of 60× 60 pixel images with per pixel resolution equal to 1 km. These images
were acquired from the region in Sweden shown in Figure 4.
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Figure 4. The square shows the area in Sweden from which we obtained land surface temperature in
images of 60× 60 pixels, with resolution (per pixel) of 1 km.

• A set of 140× 140 pixel images with per pixel resolution equal to 1 km. These images
were acquired from the region in USA shown in Figure 5.

Figure 5. The square shows the area in USA from which we obtained our images of 140× 140 pixels,
with resolution (per pixel) of 1 km.

Additionally, we used two datasets to test the ability of the two models to predict
values of the soil moisture. Each of them consisted of 15 a set of 28× 28 pixel images
with per pixel resolution equal to 5 km encoding surface soil moisture. These images were
acquired from two regions in USA, Idaho and Arkansas shown in Figure 6.

Figure 6. Cont.
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Figure 6. The squares shows the area in Idaho (top) and Arkansas (bottom) from which we obtained
soil moisture values, with resolution of 5 km per pixel.

4. Results
4.1. Performance Evaluation Metrics

To quantify prediction accuracy, we employ a number of metrics, including the corre-
lation and reconstruction error. Formally, let yi and xi represent the pixels of the predicted
and the real values, respectively, x̄ and ȳ are the mean values and n represents the to-
tal number of pixels. The Pearson correlation coefficient (PCC) is used for comparative
purposes, which is given by the equation:

PCC =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

. (7)

The PCC takes values between−1 and 1 and indicates the extent to which two datasets
are linearly related. PCC = 1 indicated that the pixels between the predicted and the ground
truth images are total positive linear correlated, while if PCC = −1 the pixels between these
two images are total negative linear correlated. In addition to PCC, three more indexes
encoding pixel-level errors were selected to measure the performance of the two different
models, the mean square error (MSE), the mean absolute error (MAE) and the unbiased
root mean squared error (ubRMSE), which are defined as follows:

MSE =
1
n

n

∑
i=1

(xi − yi)
2, (8)

MAE =
1
n

n

∑
i=1
|(xi − yi)|, (9)

and

ubRMSE =

√
(

1
n

n

∑
i=1

(xi − yi)2 − 1
n

n

∑
i=1

(
1
n

n

∑
i=1

xi −
1
n

n

∑
i=1

yi)2). (10)

For the three cases of pixel-level errors, values closer to zero indicated better perfor-
mance.

4.2. Ablation Study

In order to understand the influence of the different design choices, an ablation study
is performed by changing the hyperparameters that structured the E-TCN. These are the
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timesteps, the number of filters in each of the three 2D convolutional layers at the encoder
part, the kernel size of the 1D and 2D convolutional layers, the dropout rate, the number of
the residual blocks and the number of their filters. We present the results of the ablation
study on the daytime land surface temperature (Figure 2) which was acquired from a region
in Sweden and consisted of 28× 28 pixels satellite images at 1km resolution.

Figure 7(top left) presents the PCC as a function of the receptive field. The receptive
field of a TCN with n residual blocks, fixed kernel size, k, and exponentially increasing
dilations, is given by:

1 + 2× (k− 1)× (2n − 1) (11)

at the final block. Thus, in order to test the dependence of the PCC from the receptive
field, we were changing the kernel size and the number of the residual blocks. Results
indicate that the relationship between receptive field size and performance is relatively
stable (above 0.9), however, it is not monotonic but characterized by specific “optimal”
configurations. Figure 7(top right) also reports the PCC as a function of the number of
filters in each of the three 2D convolutional layers at the encoder part. Results in this case
indicate that “extreme” configurations, either very small or very large architectures suffer a
dramatic loss in performance. Last, in Figure 7(bottom) we investigate the impact of the
timesteps hyperparameter which relates to the amount of historical information needed for
forecasting. Results indicate that, at first, increasing the number of previous observations
leads to higher performance, while from some onward, performance is reduced, presumably
because the networks start to overfit to specific conditions.

Figure 7. PCC as a function of the receptive field (top left), the number of filters in each of the 2D
convolutional layers at the encoder part (top right), and the hyperparameter timesteps (bottom).

A similar process was followed for each experiment and the final model was chosen
as the one that consisted of the hyperparameters which resulted the highest PCC between
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the ground truth and the predicted values. The set of hyperparameters employed for each
scenario are encoded in Table 1.

Table 1. Table to show the hyperparameters that were chosen for the E-TCN for each of the experi-
ments. W represents the hyperparameter timesteps and Drop., the dropout rate. The third column
shows the number of filters at the three 2D convolutional layers in the encoder network.

Case W Encoder’s Filters 2D Conv Kernel 1D Conv Kernel TCN Drop

1 12 32, 64 & 64 (4, 4) 3 3 residual blocks of 64, 49 & 49 filters 0.3

2 8 48, 48 & 96 (4, 4) 2 3 residual blocks of 96, 49 & 49 filters 0.3

3 12 8, 16 & 16 (6, 6) 2 3 residual blocks of 225, 225 & 225 filters 0.3

4 10 32, 64 & 64 (4, 4) 4 3 residual blocks of 64, 49 & 49 filters 0.3

5 18 32, 64 & 64 (4, 4) 4 3 residual blocks of 64, 64 & 49 filters 0.4

4.3. Prediction of Land Surface Temperature at Various Resolutions

In this subsection, we employ the proposed E-TCN and the state-of-the-art ConvLSTM
for the prediction of the daytime land surface temperature in June 2020 and explore two
scenarios by changing the spatial resolution. In the first case, the spatial resolution is equal
to 1 km (Figure 2) , while for the second it is 5 km (Figure 3). The objective is to explore the
model’s response over different size areas while keeping the number of pixels (unknowns)
constant. We extracted data from the same, although enlarged, area in Sweden. Thus, the
climate characteristics in the two experiments are expected to be similar. In this way, we
were able to assert if the performance of the deep learning models is dependent on the
spatial resolution.

In Section 4.2, we asserted that the best model for the dataset with spatial resolution
1km is shown in Table 1 (Case 1). Repeating the same process, the hyperparameters that
were used in the E-TCN for the dataset with spatial resolution 5 km are shown in Table 1
(Case 2).

For the case of the ConvLSTM, in each of the two layers, 64 filters were used. The
ConvLSTM model which was used on the dataset with spatial resolution equal to 5 km
consisted of one ConvLSTM layer with 100 filters and a 3D convolutional layer as the
output layer. In both models, the hyperparameter timesteps was equal to 18 and the size of
the convolutional kernels at the ConvLSTM layers was 3× 3 while at the 3D convolutional
layer is 3× 3× 3.

The PCC, the MSE, the MAE, as well as the ubRMSE between the predicted and the
true values of the daytime land surface temperature in June 2020 as they resulted when
each of the two models was used, are presented in Table 2. Comparing the two cases of
one and five km region, results indicate that both methods suffer from a performance drop
where larger areas are considered. In both cases however, the proposed E-TCN model is
able to achieve higher performance across all metrics. This table also includes the number
of the trainable parameters of the selected models, as well as the training time in msec
per epoch. These results indicate that the requirements of the ConvLSTM model are more
demanding compared to the E-TCN which achieves higher PCC with fewer parameters.

In addition to Table 2, Figure 8 illustrates the scatter plots between the true and the
predicted values which emerged from each model for the two scenarios. This results suggest
that especially for the case of 1km spatial resolution, both methods perform poorly, but in
this case, ConvLSTM performs marginally better. For the case of 5km, the proposed E-TCN
predicted values are much closer to the diagonal which indicates the ideal performance,
compared to the ConvLSTM.
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Table 2. Error metrics for the predicted land surface temperature values, number of trainable param-
eters and training time (in msec per step), when the dataset consisted of images of 28× 28 pixels ob-
tained from a region in Sweden. The second column shows the spatial resolution (S.R.) of the dataset.

Model S. R. PCC MSE ubRMSE Parameters Training Time

E-TCN 1 km 0.95 0.00091 0.0053 258,659 50–70
ConvLSTM 1 km 0.90 0.00052 0.0072 446,913 430–450

E-TCN 5 km 0.89 0.00038 0.0053 291,136 40–60
ConvLSTM 5 km 0.82 0.00120 0.0077 366,701 340–360

4.4. Dependence on the Number of Training Examples

In addition to performance as a function of spatial resolution, we also test the depen-
dence on the number of training data by changing the number of training examples. First,
we set them equal to 89 and then equal to 149. As before, we were aiming the prediction
of the daytime land surface temperature in June of 2020. Table 3 shows the resulting PCC
according to the size of the training dataset for both models. The Pearson correlation
coefficient did not change significantly as the number of training images increased when
the E-TCN is used. In contrast, the PCC increased more distinctly as a function of the
number of training images, when the ConvLSTM model is used. The significantly higher
sensitivity of the ConvLSTM model can be attributed to the larger number of parameters
employed in the model, compared to the more robust E-TCN.

Table 3. PCC for different number of training images as resulted by using the E-TCN and the
ConvLSTM model.

Number of Training Images PCC (E-TCN) PCC (ConvLSTM Model)

89 0.94 0.85
149 0.93 0.87
209 0.95 0.90

(a)

Figure 8. Cont.
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(b)

Figure 8. The true values of the daytime land surface temperature in June 2020 as a function of
the predicted values when the dataset consisted of 210 images of 28× 28 obtained from a region in
Sweden with resolution (per pixel) (a) 1 km, (b) 5 km. (a) LST prediction for 1 km spatial resolution.
(b) LST prediction for 5 km spatial resolution.

4.5. Impact of Region Size

In order to study the impact of the region size, i.e. input patch size, two experiments
were performed where the size of the images were 60× 60 pixels and 140× 140 pixels,
respectively. In the first experiment, the dataset consisted of 210 images depicting the
daytime land surface temperature in an area of Sweden (Figure 4). Their resolution (per
pixel) was equal to 1 km. The hyperparameters selected for our model are shown in
Table 1 (Case 3). In addition, we used a ConvLSTM model. It consisted of two layers of
100 filters, the timesteps was set to 8, the kernel’s size at the ConvLSTM layers was set to
3× 3 while at the 3D convolutional layer was set to 3× 3× 3. Table 4 summarizes the
results of the comparison between the two models with respect to performance, number of
parameters and training time. Comparing the two methods, we can once more observe that
the proposed scheme achieves higher prediction quality while having lower processing
requirements. We also note that in comparison with smaller patches, i.e., comparing with
the performance reported in the top two rows in Table 2, performance degrades with larger
patch sizes.

Table 4. Error metrics, number of trainable parameters and training time (msec per step) for the
dataset consisted of images of 60× 60 pixels with 1 km per pixel obtained from a region in Sweden.

Model PCC MSE ubRMSE Parameters Training Time

E-TCN 0.85 0.000092 0.0078 926,920 100–130
ConvLSTM 0.83 0.0032 0.012 1,087,101 2000

We also studied a larger region of 140× 140 pixels in south-east USA (Figure 5). The
dataset consisted of 210 satellite images with resolution (per pixel) equal to 1 km. We split
the area of 140× 140 pixels in 25 subareas of 28× 28 pixels. Thus, we created 25 datasets
of 210 images. The goal was the prediction of 25 images of 28× 28 pixels depicting the
daytime land surface temperature in June 2020. The E-TCN as well as the ConvLSTM
model were used to predict each of these images, using the same hyperparameters for all of
the 25 times the networks were trained. The hyperparameters of the E-TCN are presented
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in Table 1 (Case 5). The ConvLSTM model consisted of two ConvLSTM layers of 64 filters,
followed by a 3D convolutional layer while the hyperparameter timesteps was equal to
18. The size of the convolutional kernels at the ConvLSTM layers was 3× 3 and at the 3D
convolutional layer was 3× 3× 3. As before, we computed the PCC, the MSE, the MAE,
and the ubRMSE between the predicted values and the ground truth. Table 5 presents the
average of these metrics over the 25 different subareas.

Figures 9 and 10 present the scatter plot between the true and the predicted values
from two different spatial sizes. The figures show the true values of the land surface
temperature (LST) at daytime in June 2020 as a function of the predicted values for datasets
of 60× 60 pixels from a region in Sweden and 140× 140 pixels for a region in Sweden, re-
spectively.

These results showcase the superiority of the proposed E-TCN compared to the ConvL-
STM for the case of daytime LST estimation. The performance gains are substantially better
for the region in Sweden where we observe a very high correlation between predicted and
estimated LST, while the competing ConvLSTM completely fails to capture the dynamics.

Figure 9. LST scatter plot for 60× 60 pixels images.

Figure 10. LST scatter plot for 140× 140 pixels.
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Table 5. The average PCC, MSE and ubRMSE between the predicted values and the ground truth
over the 25 predicted images. This table also illustrates the number of trainable parameters and
the training time in msec per step both for the E-TCN and the ConvLSTM mode when the dataset
consisted of images of 140× 140 pixels.

Model PCC MSE unRMSE Parameters Training Time

E-TCN 0.78 0.0018 0.028 277,190 50–60
ConvLSTM 0.59 0.0026 0.039 446,913 350–390

4.6. Evaluation on Different Time Instances

Up to this point, this work focused on the prediction of values of the daytime land
surface temperature in June 2020. We repeated the process described above to predict the
values of the daytime land surface temperature in April 2020 and May 2020. In each of
these cases, we reduced the number of training images by two and one, respectively. In
Figure 11, the blue dots show the PCC between the predicted and the true values for each
of the three months when the E-TCN was used while the orange dots show the PCC when
the ConvLSTM model was used.

Figure 11. PCC between the predicted values and the ground truth in April, May and June of 2020.

Recall that to predict the values in March 2020, both of our models used timesteps
images and predicted timesteps images shifted by one time step. The last predicted image
represents the values of the daytime land surface temperature in March 2020. Thus, finally,
we used these timesteps predicted images as input to our models in order to predict timesteps
images where the latter represents the values of the daytime land surface temperature in
April 2020. We repeated this process three times in total. The green and red dots in Figure 11
show the PCC resulted following this process when the E-TCN and the ConvLSTM model
is used, respectively, for each of the three months. This process is usually referred to as
“predictions on predictions” method. For each month, the PCC is smaller when we used
the “predictions on predictions” method than when we used the method described in the
above paragraphs. Figure 12 presents the PCC between the timesteps predicted images and
the timesteps true images when the E-TCN is used.

In addition to the previous scenarios where performance is quantified for the predic-
tion of a single month, we also explore the application of the proposed and the state-of-
the-art method in using all available monthly measurements between 2003 and 2019 for
training and predicting each month of 2020 independently.

Figures 13 and 14 present the PCC and MAE between the predicted and the actual
LST values. This case also supports the evidence of significantly better performance of the
proposed E-TCN scheme compared to the ConvLSTM approach. In order to appreciate
the merits of each method, Figure 15 presents the ground-truth, the proposed E-TCN and
state-of-the-art ConvLSTM. Overall, we observe that both methods are able to capture
phenomena like seasonality, while the proposed method’s prediction are closer to the
actual ground-truth.
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Figure 12. PCC for different the timesteps predicted images and the timesteps true images as a function
of the last month of the timesteps predicted images.

Figure 13. Pearson correlation coefficient between proposed and the state-of-the-art method for LST
prediction over different months of 2020.

Figure 14. Mean absolute error between proposed and the state-of-the-art method for LST prediction
over different months of 2020.
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Figure 15. Timeseries of actual and predicted LST over different months of 2020.

4.7. Prediction of Soil Moisture

In the experiments we also considered predicting values of the soil moisture using
a datasets of 150 images of 28× 28 pixels with spatial resolution of 6 km. Our goal was
the prediction of the values of the soil moisture in June 2020. We repeated the experiment
in two different regions in the USA, in one region in Idaho and in one region in Arkansas
in order to capture a large diversity of climate pattern. We consider the proposed E-TCN
and the state-of-the-art ConvLSTM model for the prediction of soil moisture values. The
hyperparameters of the E-TCN are presented in Table 1 (Case 4). The ConvLSTM model
which was applied on data from Sweden consisted of two layers of 60 filters and the
timesteps was set to 18 while the one which was applied on data from Greece consisted of
one layer of 84 filters and the timesteps was set to eight. In both cases, the kernel’s size at
the ConvLSTM layers was set to 3× 3 while at the 3D convolutional layer, it was set to
3× 3× 3. Table 6 summarizes the results of the comparison between the two models in
both regions while Figure 16 shows the scatter plots between the true and the predicted
values.

Table 6. Error metrics for the predicted soil moisture values and number of trainable parameters.

Model PCC MSE ubRMSE Parameters

E-TCN (Idaho) 0.74 0.0062 0.0828 343,814
ConvLSTM (Idaho) 0.71 0.0076 0.0669 446,913
E-TCN (Arkansas) 0.97 0.0431 0.0030 343,814

ConvLSTM (Arkansas) 0.95 0.0738 0.0078 446,913

We observe that the PCC is higher when the E-TCN is used than when the ConvLSTM
model is used, while the mean square error and the mean absolute error were smaller,
regardless of the area from which we obtained our data. However, the three metrics
between the predicted values and the ground truth in the area of Sweden are better than in
the region of Greece. This fact is an indication that the area from which we obtain our data
is important for the performance of the two models.
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(a)

(b)

Figure 16. The true values of the soil moisture in June 2020 as a function of the predicted values when
the dataset consisted of images of 28× 28 at 1 km per pixel resolution, obtained from a region in
(a) Idaho and (b) Oklahoma. (a) Predictions scatter plot for a region in Ihado. (b) Predictions scatter
plot for a region in Oklahoma.

5. Discussion

In the previous section, we performed a thorough investigation of the different aspects
of the proposed scheme and compared the performance to a state-of-the-art method for
forecasting soil moisture and land surface temperature. Overall, experimental results
indicate that both data-driven approaches, namely ConvLSTM and the proposed E-TCN,
are able to predict the values. For both methods, we observed the following behaviour:

• Higher spatial resolution makes the problem more challenging.
• Prediction of large areas leads to better prediction accuracy.

With respect to the performance of the proposed E-TCN, compared to ConvLSTM, we
observed that:

• E-TCN achieved higher overall performance for both soil moisture and surface tem-
perature.

• E-TCN achieved better performance in term of prediction quality with respect to
training set size

• E-TCN are characterized by a smaller number of parameters, and thus less prone to
overfitting.
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• E-TCN is a more compact network (in term of network parameters), making it more
appealing for real-time/large-scale applications.

Lastly, to corroborate the argument that the proposed scheme achieves better perfor-
mance compared to the state-of-the-art, we also considered a statistical test based on a
dependent t-test. For the case of LST at 1 km over Sweden, the p-value is p = 3 × 10−19,
indicating that the null hypothesis, i.e., that the two methods performance (on average) the
same, is not true, while similar results also hold for the other cases.

6. Conclusions

Forecasting of values of ECV given currently available satellite observations can
be critical for predicting the evolution of climate and adopting appropriate strategies.
In this work, we consider the paradigm shifting framework of data-driven prediction,
and explore how deep learning models can support the accurate estimation of critical
variables like surface temperature and soil moisture. Our model essentially offers the high-
dimensional extension of the temporal convolutional neural network architecture through
the introduction of an encoder and a decoder. To quantify the performance, we consider
a wide range of locations and different products. Experimental results demonstrate that
the proposed scheme outperforms the state-of-the-art time-series prediction architectures
(ConvLSTM) in terms of prediction accuracy, while also requiring fewer parameters. Future
work will expand on the number of ECVs and demonstrate the merits of data-driven ECV
forecasting approaches in different problems like olive phenology phase prediction [35].
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