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Abstract: This work aims to evaluate the purity of chromatographic peaks by a two-dimensional
correlation (2D-corr) analysis. Such an analysis leads to two contour plots: synchronous and asyn-
chronous. The synchronous contour plot provides information on the number of peaks present in the
chromatogram. The asynchronous contour plot reveals the presence of overlapping species on each
peak. The utility of 2D-corr analysis was demonstrated by the chromatographic analysis of Capsicum
chili extracts obtained by HPLC coupled with a coulometric array of sixteen detectors. Thanks
to 16 electrochemical sensors, each poised at increasing potentials, the resulting 2D-corr analysis
revealed the presence of at least three species on the peak located at a retention time of 0.93 min.
Mass spectrometry (MS) analysis was used to analyze the coeluting species, which were identified
as: quinic acid (3.593 min), ascorbic acid (3.943 min), and phenylalanine (4.229 min). Overall, this
work supports the use of 2D-corr analysis to reveal the presence of overlapping compounds and,
thus, verify the signal purity of chromatographic peaks.

Keywords: coulometric sensor; electrochemical sensor; 2D correlation analysis; food sensors; liquid
chromatography; mass spectrometry

1. Introduction

Analytical interferences occur in chromatography when the signal of a substance
is coeluting with the signal of the analyte of interest. The presence of interferences is a
common source of errors during analytical quantification [1]. Such errors are especially
critical for governmental authorities that, through their analysis, must guarantee the quality
and safety of foods, i.e., protecting consumers against adulterations and contaminations [2].
One clear example is the contamination of Habanero peppers by mycotoxins, pesticides, or
heavy metals, as well as their adulteration with dyes and foreign matter [3]. In such cases,
the effect of concomitant species in the analytical signal causes a systematic error on the
analytical result, i.e., compromising the accuracy of the final outcome.

To verify the presence of interferences in chromatographic peaks, it is generally recom-
mended to proceed with a series of preliminary checks. One is certainly the injection of
the diluent blank [4]. Afterwards, it is possible to test blank samples spiked with known
impurities and check their retention times [4]. Finally, when real samples are analyzed,
a simple visual analysis of the resulting peak shapes may reveal a problem of symmetry
or tailing, which may be associated with interference problems. In the case of the PDA
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detector, the most common method to analyze peak purity is comparing spectra within a
peak—a pure peak has matching spectra throughout the chromatogram [5]. However, the
final decision seems rather subjective and time-consuming. Recent attempts to identify the
presence of interferences have been proposed by the application of principal component
analysis (PCA), which has been applied in chromatographic purity analysis to monitor
subtle changes in the chromatographic pattern [6]. Although PCA was proven to be a
robust and reliable tool to evaluate the purity of the peaks, it showed the disadvantage of
not being able to automatize the analysis. The PCA analysis requires qualified personnel
with chemometric knowledge to verify the presence of interferences [6,7]. This has led to
the search for alternatives, such as 2D-corr analysis.

Recently, 2D-corr analysis has been applied mainly in spectroscopy to analyze the
changes occurring in spectral signals (e.g., IR, UV) under a specific physical perturbation
(e.g., electrical, chemical, thermal, mechanical, optical) [8].

The analysis is based on the Fourier transform of the original dynamic spectra, lead-
ing to real and imaginary cross-correlation functions, which are called, respectively, syn-
chronous or asynchronous correlation spectra maps [9]. Synchronous 2D-corr spectra
correspond to the real part of the cross-correlation function and represent simultaneous
changes of the measured spectral intensity variations induced by a perturbation [10]. This
map (Figure 1a) is confirmed by auto-peaks located along the main diagonal and cross-
peaks located at the off-diagonal positions. Cross-peaks with coordinates A and C have
negative signs. This indicates that the intensity in one band is increasing, while the other is
decreasing. On the other hand, cross-peaks with coordinates B and D have a positive sign,
where both bands decrease or increase together.

Figure 1. Schematic contour map of: (a) synchronous 2D-corr spectrum, (b) asynchronous 2D-corr
spectrum. Auto-peaks located along the main diagonal. Peaks with a positive sign. Peaks
with a negative sign.

In contrast, asynchronous 2D-corr spectra represent sequential or successive changes
of spectral intensities induced by perturbations [11]. This map (Figure 1b) consists of only
cross-peaks located at the off-diagonal positions. In this example, correlation band pairs
are observed: A–B, A–D, B–C, and C–D, which conform to four correlation squares [11].
A cross-peak only appears in an asynchronous map when the intensities of two spectral
features change out of phase with each other, which makes them asymmetric with respect
to the diagonal line [11].

Two-dimensional correlation analysis (synchronous and asynchronous) has been
successfully applied to evaluate the data obtained by several analytical techniques, such as
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IR, Raman, NMR, UV/VIS spectroscopy, and mass spectrometry [12–16]. Previous research
has showed that the information obtained by 2D-corr analysis can be used to analyze
overlapped peaks, which cannot be separated with a one-dimensional (1D) signal [17].
From the interpretation of synchronous and asynchronous spectra, it is possible to obtain
valuable information that could be applied to the analysis of chromatographic signals.
However, to the best of our knowledge, no studies have shown the application of 2D-corr
for analyzing the signal of the coulometric array detector (CoulArray).

For this reason, the main aim of this work is to apply 2D-corr analysis to detect
impurities in peaks obtained with a CoulArray detector. This detector consists of serial cell
blocks containing porous graphite working electrodes, each poised at different working
potentials versus a common palladium reference electrode, offering sensitivity substantially
higher than UV or fluorescence detectors [18,19]. To demonstrate the applicability of 2D-
corr analysis, an extract of Habanero chili pepper (Capsicum chinense Jacq.) was used as a
sample, since this food product has been widely studied by CoulArray sensors coupled
with liquid chromatography [20,21]. In this extract, three characteristic peaks have been
observed in all chromatograms, of which two correspond to capsaicin and dihydrocapsaicin
(compounds that give the characteristic spiciness), while the composition of the other
peak is not reported. Overall, the novelty of this work is providing a new tool based on
chemometric analysis that allows a more reliable and faster evaluation of the purity of
chromatographic peaks by CoulArray detectors. In addition, the practical importance of
the study is that the chemometric tool can be in the future incorporated into commercial
quality-control software packages, helping to improve quality control in the food industry.

2. Materials and Methods
2.1. Raw Material Source

The powders were obtained from Habanero peppers grown in a greenhouse in Sierra
Papacal, Yucatán, Mexico (CIATEJ, Unidad Sureste). To obtain the powders, the peppers
were dried in an oven at 65 ◦C for 72 h, milled with a mortar and pestle, then finally passed
through a sieve with a mesh size of 500 µm.

2.2. Extraction of Chili Powder

About 500 mg of chili powder was mixed with 5 mL of solvent (80% MeOH, 20% H2O)
in a falcon tube. The mixture was sonicated for 30 min at 25 ◦C and then centrifuged at
4700 rpm for 30 min. The supernatant was collected and filtered through a 45 µm PTFE
filter and diluted 1:50 with mobile phase for analyzing by HPLC–ECD.

2.3. Chili Extract Analysis by HPLC–ECD

The chili extract analysis by HPLC–ECD was made with an Ultimate 3000 HPLC
(Thermo Fischer Scientific, Waltham, MA, USA) system equipped with a membrane de-
gasser, two peristaltic pumps, a sampling loop of 20 µL, and thermostat column compart-
ment. The coulometric array detector (Thermo Fisher Scientific, Waltham, MA, USA) consisted
of 16 porous graphite-working electrodes, poised at growing potentials from +100 to +850 mV.
The chromatographic conditions were the same as in a previous work by Morozova et al. [20],
specifically, the isocratic mobile phase containing water (55%) with 50 mM ammonium acetate
at pH 4.4 with acetic acid and acetonitrile (45%) at a flow rate of 1 mL min−1.

2.4. Two-Dimensional Correlation Analysis

The two-dimensional correlation (2D-corr) analysis was conducted by using the soft-
ware RStudio (version 1.4. 1717). The synchronous Φ(v1, v2) and asynchronous Ψ(v1, v2)
correlation chromatograms were calculated according to Noda’s theory [22]:

Φ(v1, v2) =
1

m− 1
ATA
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Ψ(v1, v2) =
1

m− 1
ATNA

where v1 and v2 represent the time variable of the chromatogram. T refers to the usual
matrix transpose operation. N is the Hilbert–Noda transformation matrix [22]:

Njk

{
0
1

π(k−j)

j = k
j 6= k

In the present study, matrix A contains 16 chromatograms in rows (m = 16). Each row
is a chromatogram at a specific potential (from +100 to +850 mV with a step of 50 mV).

2.5. Conditions for Chromatographic Separation of the First Peak

The chromatographic separation was made with an Ultimate 3000 HPLC system
(Thermo Fischer Scientific) equipped with a column Accucore C18 (100 × 4.6 mm, 2.6 µm).
The mobile phase consisted of: (A) water with ammonium acetate (50 mM) adjusted at pH
4.4 with acetic acid, and (B) acetonitrile 100%. The gradient used is presented in Table 1.
To separate the compounds in the peak, the gradient began with a high percentage of
the aqueous phase and a low flow; as time passed, the percentage of organic proportion
increased along with the flow of the mobile phase.

Table 1. Gradient used for chromatographic separation of the first peak.

Time (Minutes) Phase A (%) Phase B (%) Flow (mL min−1)

0 95 5 0.2
5 95 5 0.3
6 0 100 0.6
20 0 100 0.6
22 95 5 0.2
35 95 5 0.2

2.6. Characterization of the Chromatographic Signals by HPLC–MS

The characterization of the chromatographic signals by HPLC–MS was made with an
Ultimate 3000 HPLC system coupled with a high-resolution mass spectrometer Q Exactive
Orbitrap. For full MS analysis, the ionization was made by electrospray ionization (ESI)
in negative mode between a mass range of 50 to 750 m/z using the following conditions:
sheath gas at 20, auxiliary gas at 10, auxiliary temperature 50 ◦C, spray voltage at +3.5 kV,
capillary temperature at 320 ◦C, and RF S-lens at 65%. The ddMS2 measurements of the
selected ions were performed with a resolution of 17,500 and AGC target at 5 × 105. The
peaks were analyzed with the software Compound Discover 3.1.0.305 (Thermo Fischer
Scientific, Milano, Italy) to identify the chemical compounds.

3. Results and Discussion
3.1. Analysis by HPLC–ECD

Figure 2 shows a representative chromatogram of a methanolic extract of Habanero
chili pepper obtained from HPLC coupled with the CoulArray detector. The detector
consists of an array of 16 independent electrochemical sensors, each poised at different and
increasing potentials (from +100 to +850 mV vs. Pd/Pd+ pseudo-reference electrode, with a
step of 50 mV). The chromatogram shows three main peaks: peaks 2 and 3 with a retention
time of 5.17 and 7.74 min, respectively, were previously identified by Morozova et al. [20]
and Oney et al. [21] as capsaicin and dihydrocapsaicin. However, peak 1, with a reten-
tion time of approximately 0.93 min, was not identified in the previous works and was
considered an impurity. Therefore, these three peaks were further investigated using
2D-corr analysis.
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Figure 2. Current signal of the Habanero pepper extract from the 16 CoulArray channels poised at poten-
tials from +100 to +850 mV with a step of 50 mV: (1) unknown peak; (2) capsaicin; (3) dihydrocapsaicin.

The cumulative peak areas of each current signal as a function of the applied potential
were evaluated on the three peaks. The resulting hydrodynamic voltammograms (Figure 3)
define the characteristic redox behavior of the compounds associated with these three
peaks. In particular, Figure 3a shows that the current signal increased with higher applied
potentials, without showing any specific plateau value. The current started to raise at about
+400 mV and continued to increase exponentially. Only a small shoulder was detected
at about +650 mV. Although the absence of a well-defined plateau might indicate the
presence of more than one molecule with a different potential of oxidation, the results from
HPLC are not conclusive. For comparison, the hydrodynamic voltammograms of peaks 2
(Figure 3b) and 3 (Figure 3c) show a well-defined sigmoidal trend, with redox potentials of
+350 and +550 mV, respectively. These results show that peaks 2 and 3 are formed only by a
single molecule (or by more molecules with similar structure and redox potential behavior),
i.e., capsaicin and dihydrocapsaicin, in agreement with previous findings [23,24].

Figure 3. Corresponding hydrodynamic voltammograms of: (a) the first peak (unknown),
(b) capsaicin, and (c) dihydrocapsaicin. Each point plotted in the graph corresponds to one area
under the peak of one channel of the CoulArray detector.

In the next section, the purity of these peaks was verified by applying 2D-corr analysis.

3.2. Two-Dimensional Correlation Analysis

Figure 4 shows the results of the 2D-corr analysis of the chili extract with 16 coulometric
sensors. In detail, Figure 4a,c,e show the result of the synchronous 2D-corr analysis of the
first three peaks highlighted in Figure 2. Although these graphs do not give information on
the composition of the peaks, they can provide a way to combine the information contained
by the 16 signals in a single comprehensive chromatogram. This is the first important result,
which solves the common challenge of displaying the results of several chromatograms
in a simpler way. This achievement is mainly due to the capacity of synchronous maps to
represent only the similarities or differences between the chromatographic peaks occurring
during the elution of the peaks.
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Figure 4. 2D-corr analysis: (a) synchronous plot of peak 1, (b) asynchronous plot of peak 1,
(c) synchronous plot of peak 2, (d) asynchronous plot of peak 2, (e) synchronous plot of peak 3, and
(f) asynchronous plot of peak 3.

Similarly, Figure 4b,d,f show the resulting asynchronous 2D-corr analysis—the first
three peaks highlighted in Figure 2, respectively. In detail, Figure 4b shows six cross-peaks:
three of them are positive and the others negative. These peaks are asymmetric considering
the main diagonal line, which is crossing the graph. The number of asymmetric peaks
expresses the number of components that behave differently according to the changes in
potential. Accordingly, these six signals (three on each side of the diagonal line) indicate
that peak 1 of Figure 2 is composed of at least three independent antioxidant species, each
having a different redox behavior. Overall, the different redox ability of these compounds
allows us to detect their presence despite having the same retention time.

On the other hand, Figure 4d,f correspond, respectively, to peak 2 (capsaicin) and 3
(dihydrocapsaicin). These maps do not reveal multiple signals but support the hypothesis
that only one single compound is represented by these peaks. This confirms the result
observed at the hydrodynamic voltammograms and previous analysis.

Overall, the 2D-corr analysis revealed that peak 1 was not a single substance but could
be a mixture of more than one analytical species, whereas peaks 2 and 3 correspond only
to one single compound, i.e., capsaicin and dihydrocapsaicin, respectively, as reported
previously [23,24].
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The next section will verify the presence of other compounds in peak 1 by using high-
performance liquid chromatography coupled with a high-resolution mass spectrometer.

3.3. Identification of Peaks by HPLC–MS

Peak 1, with a retention time of 0.93 min, was separated from the conditions previously
mentioned in the methodology and the gradient described in Table 1. This was possible
mainly to the change of the mobile phase conditions. The modified gradient started with
95% water with ammonium acetate 50 mM (phase A, pH 4.4) and resulted in a higher
retention of the molecules with the stationary phase and increased the performance of the
column. The initial condition was maintained for 5 min, then mobile phase B (acetonitrile)
was increased to 100% for the elution of the compounds that have a higher retention time
(capsaicinoids). These conditions were maintained for 14 min, with a final return to the
initial conditions. With an improved gradient due to the decrease in the eluting force of the
mobile phase, it was possible to observe in the chromatogram three separate peaks with
the retention times corresponding to 3.6, 3.9, and 4.2 min (Appendix A). The separation of
the peak into three different compounds (Figure 5) confirmed the result obtained by the
2D-corr analysis, demonstrating the possibility of the presence of three species in peak 1.

Figure 5. Chromatogram of a chili extract by UV–VIS detector at 280 nm obtained with the optimized
gradient conditions (Table 1).

After the separation of the peaks, three corresponding compounds were identified
using HPLC coupled with a MS detector (Table 2) in ESI negative ionization mode. The
three detected masses corresponded to quinic acid, ascorbic acid, and phenylalanine,
according to their exact measured mass and comparison with the independently measured
standards (Appendix B).

Table 2. Molecules identified in the chili extract by high-resolution mass spectrometry in negative
ionization mode.

Molecule Formula Retention Time
(Minutes)

Molecular
Weight

Theoretical
m/z Measured m/z

Quinic acid C7H12O6 3.593 192.06369 191.05611 191.05646
Ascorbic acid C6H8O6 3.943 176.12410 175.02481 175.02480
Phenylalanine C9H11NO2 4.229 165.07933 164.07170 164.07203
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The three identified compounds are considered metabolites present in different kinds
of peppers [23]. Ascorbic acid is a water-soluble vitamin that has been reported in Habanero
pepper in concentrations of 43 to 247 mg per 100 g of fresh chili, which corresponds to
values between 50 and 100% of the daily requirement [24]. On the other hand, quinic acid
is an organic acid considered to be one of the main organic acids present in chili peppers,
together with citric acid and malic acid [25]. On the other hand, phenylalanine is an amino
acid that has been found in the fruits of Chinese capsicum. It plays an important role as a
precursor in the biosynthesis of capsaicinoids [26]. It has been reported by Castro-Concha
et al. [27] that its concentration in the Habanero pepper is low in the early stages of the
development of the fruit (2.5 nmol g−1) and increases significantly as the fruit ripens,
reaching a concentration of approximately 22 nmol g−1.

4. Conclusions

Two-dimensional correlation analysis using synchronous and asynchronous plots was
applied to determine the peak purity in the analyzed chili extract by HPLC coupled with
a coulometric array detector. The synchronous plot provided information on the number
of complex peaks present in the chromatogram, while the asynchronous plot was useful
to assess the purity of peaks. The asynchronous plot showed the sequential changes of
the signal due to the change of potential during each time period and it was possible to
observe the number of compounds in each chromatographic peak. The application of this
approach to the analysis of an unresolved peak of Capsicum chili extracts demonstrated the
presence of three different compounds. These compounds were consequently separated and
identified by high-resolution MS analysis as phenylalanine, quinic acid, and ascorbic acid.
The results showed the potential of two-dimensional analysis with an array of coulometric
sensors to verify peak purity quickly and reliably. This will help to avoid quality-control
errors and thus ensure that consumers are protected from possible product adulteration
or contaminations. Moreover, 2D-corr analysis should be incorporated into commercial
quality-control and statistical software packages.
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Appendix A

Table A1. Chromatographic parameters associated with the peaks.

Compound tr k′ N H

Quinic acid 3.59 6.98 307 0.33

Ascorbic acid 3.94 7.76 1480 0.07

Phenylalanine 4.23 8.40 1192 0.08
Note: tr: retention time, k′: capacity factor, N: number of theoretical plates, H: theoretical plate height.

Table A2. Chromatographic parameters associated with the separation between the peaks.

Selectivity Factor (α) Resolution Factor (Rs)

Quinic acid–ascorbic acid 1.11 0.57

Ascorbic acid–phenylalanine 1.08 0.64

Appendix B

Figure A1. Fragmentation spectra of (a) quinic acid, (b) ascorbic acid, and (c) phenylalanine obtained
by HRMS.
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