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Abstract: Channel phase calibration is a crucial issue in high resolution and wide swath (HRWS) im-
agery with azimuth multi-channel synthetic aperture radar (SAR) systems. Precise phase calibration
is definitely required in reconstructing the full Doppler spectrum for precise HRWS imagery without
high-level ambiguities. In this paper, we propose a novel calibration for HRWS SAR imagery by
optimizing the reconstructed unambiguous Doppler spectrum. The sharpness of the reconstructed
Doppler spectrum is applied as the metric to measure the unambiguity quality, which is maximized
to retrieve the element phase error caused by channel imbalance. Real data experiments demonstrate
the performance of the proposed calibration for ambiguity suppression in HRWS SAR imagery.

Keywords: synthetic aperture radar (SAR); high resolution and wide swath (HRSW); phase calibration;
maximum sharpness optimization

1. Introduction

Synthetic aperture radar (SAR) techniques require generating imagery with simulta-
neous high resolution and wide swath (HRWS) capability. However, in order to receive
unambiguous echoes in range or/and Doppler, conventional SAR observed swath should
be restricted by the fundamental trade-off between Doppler ambiguity and spatial resolu-
tion for a single-channel radar system [1]. With the assistance of an azimuth multi-channel
system configuration, this basic restriction can be overcome by digital beamforming (DBF)
techniques [2–4] on multiple receiver channel data. The received signal of each channel is
simultaneously recorded and digitalized. By a Doppler spectrum reconstruction with DBF
processing, the unambiguous and full Doppler spectrum can be retrieved to generate the
HRWS SAR imagery, which systematically breaks the fundamental trade-off of azimuth
resolution and range swath in a single channel SAR system. In general, these multi-channel
HRWS SAR systems [5–7] can be sorted into multiple antenna systems and distributed
systems. Several novel DBF algorithms have also been proposed for resolving Doppler
ambiguity in the spatial domain [8–15] for these systems. Azimuth multi-channel SAR with
DBF is naturally an effective approach to obtain unambiguous HRWS imagery in practice.
However, unavoidable channel errors would significantly degrade the performance of
ambiguity suppression, especially for an observing scene with strong targets, such as a
strong ship under ocean circumstances. Channel mismatch calibration is crucial for HRWS
imagery in azimuth multi-channel SAR systems.

Due to unexpected systematic and circumstance factors, such as mismatched trans-
mitting and receiving channel characteristics. Channel imbalance brings additional phase
errors between multiple channels; these errors degrade the DBF Doppler spectrum re-
construction performance dramatically. Before applying the receiving beamforming tech-
nique for Doppler spectrum reconstruction, the multi-channel SAR system should be well
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calibrated by compensating for the phase and amplitude imbalance between channels.
In particular, the phase errors cause unexpected spectrum folding and mismatch in the
DBF process, leaving serious ambiguities in the SAR imagery. Their presence will deterio-
rate the azimuth ambiguity-to-signal ratio (AASR) [16] of the HRWS imagery. In general,
the imbalance phase errors are expected to be well compensated by calibration techniques.
Recently, a series of innovative calibration algorithms [17–23] have been developed, which
are roughly classified into two sorts, including inner calibration and data-driven calibra-
tion. In the inner calibration methods, the azimuth channel imbalance is expected to be
compensated by an extra antenna measurement system [18,23], which would limit its real
applications due to increased system complexity. On the other hand, data-driven calibration
algorithms try to estimate the channel imbalance from data itself in an adaptive manner
without any increase in system complexity. In this paper, we focus only on data-driven
calibration for HRWS SAR imagery. Among the data-driven calibration algorithms, sub-
space projection algorithms [16,17,20,21] have been well investigated in many works. They
generally estimate the channel phase errors for multi-channel SAR HRWS imagery with the
same basic principle. The covariance matrix in the range-Doppler domain was expected to
be estimated from the data itself. Then, eigenvalue decomposition on the covariance matrix
was followed to separate the signal subspace and noise subspace. The signal subspace
was spanned by the signal steering vectors with phase errors, which are orthogonal to
the noise subspace. By minimizing the projection of the estimated steering vectors on
the noise subspace, the imbalance phase errors are obtained. Typically, in reference [16],
an auto-calibration algorithm developed on the virtual-source calibration was presented to
estimate the channel errors for the distributed multi-receive radar configuration. The multi-
channel data in the azimuth time domain is transferred into the Doppler domain via Fourier
transform, and signal elements corresponding to different directions within each Doppler
bin are regarded as the correction virtual sources. In subspace projection kind algorithms,
by an iterative optimization projection into the noise subspaces, the element phase errors
are expected to be obtained. Subspace projection-based channel calibrations are very pop-
ular in HRWS imaging with multi-channel SAR systems. In these works, the imbalance
phase errors are usually assumed to be spatial-invariant. However, the extension to the
azimuth- and range-dependent imbalance calibration is not hard by introducing the local
invariant assumption and using local covariance matrix decomposition processing in the
range-Doppler domain. It is necessary to emphasize that, in the subspace channel cali-
brations, an additional spatial degree of freedom is required, which means the channel
number should be larger than that of the ambiguity. This requirement constrains both the
azimuth multi-channel system design and HRWS maximum performance, which motivates
our work in this paper.

In this paper, we developed a sharpness optimization-based phase calibration for
HRWS SAR imagery with azimuth multi-channel configuration. In the algorithm, the imbal-
ance phase error is assumed to be spatial-invariant. Based on the fact that the reconstruction
of the full Doppler spectrum depends on the channel phase errors, the signal energy of the
reconstructed Doppler spectrum will not separate into different ambiguous bins presenting
sharp formation in the full Doppler domain. In the azimuth phase calibration, the estima-
tion of the channel phase errors turns into maximizing the sharpness of the reconstruction
full Doppler spectrum by correcting phase errors within ambiguity resolving, which sim-
plifies the problem of calibration due to no need for additional spatial freedom degrees.
In contrast to the former approaches, this method proposed in this paper calibrates phase
imbalance in a robust manner by using all range bins as calibration sources. In addition,
we can obtain the global optimal solution efficiently by accelerating the optimization with
some useful skills. Detailed analysis of its performance is presented by utilizing a real
SAR dataset.

This paper is organized as follows. In Section 2, the Doppler ambiguity signal model
and the inverse filtering for ambiguity removal are constructed. Section 3 extends to the
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proposed channel phase calibration. Section 4 evaluates the comparison performance of
the approach. Finally, some conclusions are drawn.

2. HRWS Imaging with Azimuth Multi-Channel SAR Configuration

In this section, we introduce the azimuth multi-channel SAR for HRWS imagery
generation and the Doppler ambiguity resolving with inverse-filtering processing.

2.1. Azimuth Multi-Channel SAR Mathematical Model

The azimuth multi-channel SAR geometry is shown in Figure 1. The reference equiva-
lent phase center (EPC) is at the origin of the Cartesian coordinate. The platform moves
along the x-axis at velocity vs. Usually, the system uses a reference antenna to transmit
a wide-beam signal, and all antennas receive returns simultaneously. The data can be
converted into the equivalent self-transmitting and self-receiving data by compensating a
constant phase with respect to the reference channel [9]. In the ideal model, the channels
are supposed to be calibrated and the baseline between equivalent phase centers is constant
during the coherent processing interval (CPI). Assume that m = 1, 2, . . . , M and M is the
number of equivalent phase centers. The mth equivalent phase center is (xm, 0, 0) at the
time t = 0 and (xm + vst, 0, H) at time t. Referring to [17], the echo received at the mth EPC
at time t can be written as follows:

sc,m(τ, t) =
x

σ(x, y) · h
[

τ − 2rc,m(x, y, t)
c

]
· g
(

t− x− xm

vs

)
· exp

[
−j4π

rc,m(x, y, t)
λ

]
dxdy

(1)

where
R(x, y, t) =

√
(x− xm − vst)2 + R2

b (2)

h(τ) = a(τ) · exp
(
−jπατ2

)
(3)

and α is the chirp rate; t and τ denote the azimuth slow-time and range fast-time re-
spectively; R2

b =
√

y2 + H2; c is the propagation velocity; σ(x, y) is the clutter complex
reflectivity of scatter (x, y) on ground; g(t) represents the antenna pattern and other slow
time-variant characters.

After transforming (1) into the two-dimension (2D) frequency domain via a 2D Fourier
transform (FT), we can obtain the following equation by using the concept of instantaneous
wavenumber:

Sc,m(Kr, fd) = s(Kr, fd) · exp
(
−j2π

xm

vs
fd

)
(4)

where
s(Kr, fd) =

s
σ(x, y) · H(Kr) · G( fd)

· exp
(
−jRb

√
K2

r − (2π fd)
2/v2

s

)
· exp

(
−j2π fd

x
vs

)
dxdy

(5)

and H(Kr) = FT[h(τ)]. As a result, there is only one linear phase difference exp
(
−j2π xm

vs
fd

)
between the mth and the reference EPC for the same Doppler bin output. In the Doppler
domain, for a single Doppler bin containing all clutter echoes from the same azimuth angle
θ. The relation between the Doppler frequency fd and the corresponding azimuth angle θ
is given by

fd =
2vs sin θ

λ
(6)

This linear relationship between fd and sin θ can be represented in the spatial-time
spectrum, as Figure 2 shows.
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Figure 1. Geometry of azimuth multi-channel SAR. 
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In the HRWS SAR imaging, the pulse repetition frequency (PRF) fr is usually much
lower than the instantaneous Doppler bandwidth. Thus, the Doppler spectrum is ambigu-
ous, as shown in Figure 2b, where the dots represent signal components from different
directions within the identical Doppler bin. We rewrite (4) as follows:

Sc,m(Kr, fd) =
N

∑
i=−N+1

s(Kr, fd + i · fr) · exp
[
−j2π

xm

vs
( fd + i · fr)

]
(7)

where the total summation term 2N representing the Doppler ambiguity number, should
not be more than the number of EPC, which is a basic constraint for all Doppler resolving
algorithms, and − fr/2 ≤ fd ≤ + fr/2. For expression simplicity, we define the ambiguity
number as an even number, which does not affect handling ambiguity resolving for odd
cases. Therefore, the array steering matrix for the Doppler bin fd is given by

A( fd) =
[

a−N+1, · · · ai, · · · aN
]

(8)

The array steering vector for the Doppler component fd + i · fr is
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ai =
[

1, · · · exp
(
−j2π xm

vs
( fd + i · fr)

)
, · · · exp

(
−j2π xM

vs
( fd + i · fr)

) ]T
(9)

where [·]T denotes the vector transpose operator. The array output of the Doppler bin can
be written as follows:

Sc( fd) =
[

Sc,1(Kr, fd), · · · Sc,m(Kr, fd), · · · Sc,M(Kr, fd)
]T

Sc( fd) = A( fd)s( fd) + e( fd)
(10)

where s( fd) =
[

s(Kr, fd + (−N + 1) · fr), · · · s(Kr, fd + i · fr), · · · s(Kr, fd + N · fr)
]T is

the signal vector, and e( fd) denotes the additive noise vector, which is assumed to be
independent and white noise. The problem now is to unfold the spatial-time spectrum and
reconstruct the full Doppler bandwidth spectrum.

2.2. Unambiguous Doppler Spectrum Reconstruction with Inverse-Filtering

In this subsection, we introduce non-adaptive beamforming for Doppler ambiguity
resolving [10], which is seamless with the following channel calibration we proposed in
this paper. The Doppler spectrum of (7) is divided into many short bins, and each bin
corresponds to 2N Doppler components from corresponding azimuth angles. The non-
adaptive beamforming approach first extracts these spectrum components from each
Doppler bin by means of spatial filtering. By rearranging the extracted Doppler components
in order, the full Doppler spectrum can be reconstructed. Considering no phase error
involved, the spatial filtering process for Doppler ambiguity resolving is given by the
following equations [16].

ŝ( fd) = WH( fd) · Sc( fd)
≈WH( fd)A( fd)s( fd)

(11)

where ŝ( fd) is the reconstructed Doppler spectrum, [·]H denotes the conjugation transpose
operator, and the spatial filtering for the 2N Doppler components is given by

WH( fd) = H ·A−1( fd)

= [w( fd + (−N + 1) · fr), · · · , w( fd + i · fr), w( fd + N · fr)]
H
M×2N

(12)

H = diag{1, 1, · · · , 1}2N×2N (13)

It can be noted that beamforming filtering requires the inverse matrix of the steering
matrix A( fd), which means the channel number M should be not smaller than the number
of ambiguity Doppler components 2N. After all the spectrum components are extracted,
we rearrange them and obtain the unambiguous full spectrum. Then, conventional SAR
imaging approaches can be used to focus the wide-swath image with high resolution. It is
necessary to emphasize that the adaptive beamforming technique [18] usually provides
better performance under non-uniform sampling than the non-adaptive beamforming
Doppler ambiguity resolving in (11), in the circumstances of no imbalance phase errors
involved. The adaptive beamforming filter can automatically match the interference sub-
spaces even with the phase imbalance to generate optimal matches by using the coherence
matrix decomposition. Herein, we use the non-adaptive beamforming filter to implement
the phase error estimation in the following section. It is noted that the non-adaptive filter is
fixed and independent of the imbalance phase errors. Non-adaptive filtering is sensitive to
the phase imbalance, which can provide ideal Doppler spectrum reconstruction only when
the phase imbalance is accurately corrected. This sensitivity would be helpful to develop
the sharpness optimization to retrieval the channel phase errors. In real applications, after
phase calibration, adaptive beamforming can be adapted to achieve optimal performance.

Now, we introduce the imbalance phase error into the signal model to pave the way for
developing the following calibration optimization. As this work only focuses on the imbal-
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ance phase errors between azimuth multi-channels, by introducing the phase error matrix
Γe(ε), the multi-channel signal model in (10) can be rewritten by the following equation:

S̃c( fd; ε) = Γe(ε)A( fd)s( fd) + e( fd) (14)

where the phase error matrix is a diagonal matrix represented as

Γe(ε) = diag[exp(jε)]
= diag[exp(jε1), exp(jε2), · · · , exp(jεM)]

(15)

where Γe(ε) denotes the imbalance phase error matrix with ε = [εi], (i = 1, 2, · · · , M) as
the phase error vector.

Taking the imbalance phase errors into Doppler ambiguity resolving with the non-
adaptive filtering in (11), the reconstructed Doppler signal depends on the phase error
given by

ŝ( fd; ε) = WH( fd) ·
^
Γ

−1

e · S̃c( fd; ε)

≈WH( fd) ·
^
Γ

−1

e · Γe ·A( fd)s( fd)

(16)

It is notable from (14)–(16) that, in the presence of imbalance phase errors, Doppler
ambiguity removal with spatial filtering would fail. The serious mismatch between the
ideal and real steering vectors will induce not only signal loss but also significant ambiguity
residue. In the next section, the phase calibration to estimate Γe(ε) will be introduced
in detail.

3. Channel Phase Calibration with Maximum Sharpness Optimization

By optimizing the pattern design of the SAR system, the unambiguous Doppler
spectrum has relative focused intensity around the Doppler centroid, while the intensity
decreases away from the centroid. Due to the presence of channel phase errors, the distri-
bution of the multi-channel reconstructed azimuth Doppler spectrum is unfocused due
to the Doppler ambiguous components folding and smearing. Compared with the ideal
multi-channel reconstructed Doppler spectrum, the reconstructed Doppler distribution
contaminated by channel phase errors will be spread flat. Therefore, channel phase errors
will lead to the broadening of the reconstructed Doppler spectrum after ambiguity removal
filtering. This intrinsic phenomenon paves the way for estimating the phase errors by
measuring the reconstructed Doppler spectrum distribution. At first, the reconstructed
Doppler spectrum intensity is defined as follows.

I( fd; ε) = |ŝ( fd; ε)|2
= ŝ( fd; ε) · ŝ∗( fd; ε)

(17)

To sum up all reconstructed Doppler components, the sharpness function [24,25] of the
reconstructed Doppler spectrum intensity is introduced as the metric of the reconstruction
with the phase error as its variable.

P(ε) = ∑
fd

I( fd; ε)2 (18)

Herein, the sharpness optimization for phase calibration can be exploited by maxi-
mizing the sharpness of the reconstructed Doppler spectrum. The maximum sharpness
optimization is given by

^
ε = argmax P(ε) (19)

Herein, we have to emphasize that some other metric function can also be introduced
to represent the intensity distribution property of the reconstructed Doppler spectrum,
such as entropy in [26] and contrast in [27]. The reason we select sharpness mainly lies
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in its convenience in deriving a gradient-based solver. Newton’s solver is convenient for
obtaining an optimal estimation with high efficiency [28]. This solver is implemented in an
iterative manner, and we assume in the (k + 1)th iteration, the phase error vector is updated
with the gradient vector, and the Hessian matrix is given by

^
ε(k+1) =

^
ε(k) + ∆εk

=
^
ε(k) +

[
−H−1(ε) · ∂P(ε)

∂ε

] (20)

where H−1(ε) denotes the Hessian inverse of the optimization function with respect to

the phase error vector. We also introduce a variable
^
Γe= diag

{
exp

[
j
^
ε(k)

]}
to denote the

estimated phase error matrix in the last iteration. In addition, the phase compensation

process applies
^
Γ

−1

e on the multi-channel signal via
^
Γ

−1

e · S̃c( fd; ε). The first-order gradient
is expressed by the following derivations:

∂P(ε)
∂ε

= ∑
k,r

2 · I( fd; ε) · ∂I( fd; ε)
∂ε

(21)

∂I( fd; ε)
∂ε

=
∂|ŝ( fd; ε)|2

∂ε
= 2 · Re

{
ŝ∗( fd; ε) · ∂ŝ( fd; ε)

∂ε

}
(22)

where
∂ŝ( fd; ε)

∂ε
=

[
WH( fd) ·

^
Γ

−1

e · S̃c( fd; ε)

]∗
(23)

and the Hessian matrix of the sharpness optimization Hessian can be derived by the
following expressions:

H(ε) =
∂2P(ε)
∂εi∂ε j

= ∑
fd

2 · I( fd; ε) ∂I( fd ;ε)
∂εi

= ∑
fd

2 ·
[

∂I
∂ε j

∂I
∂εi

+ I( fd; ε) · ∂2 I
∂εi∂ε j

] (24)

∂2 I( fd ;ε)
∂εi∂ε j

= ∂2|ŝ( fd ;ε)|2
∂εi∂ε j

= 2 · Re
{(

∂ŝ
∂εi

)∗
∂ŝ
∂εi

+ ŝ∗( fd; ε) ∂2ŝ
∂εi∂ε j

} (25)

where
∂2ŝ

∂εi∂ε j
= −WH( fd) ·

^
Γ

−1

e · S̃c( fd; ε) (26)

In general, only with several iterations can the maximum of sharpness optimization
be achieved. The convergence can be controlled by setting a maximum iteration number
or judging the estimate difference between two sequential iterations. One can note that,
in solving the optimization in (20), we need to calculate the first-order and second-order
partial derivatives in each iteration. The Hessian matrix inverse determining the search step
is calculated for every iteration, which involves the majority of the expensive computational
load. In order to accelerate the solver to the sharpness optimization for the phase error
matrix, we also give an accelerating scheme. By considering the termination condition to
ensure the convergence property, it is possible to achieve a balance between the searching
step accuracy and optimization efficiency. According to the principle of the BFGS (Broyden,
Fletcher, Goldfard and Shanno) [29] algorithm, the Hessian matrix can be calculated ap-
proximately by an updated formula. In this manner, only the first initial direct calculation
of Hessian and its inverse is calculated, and in the following iteration, Hessian can be
obtained by an updating manner. This update can be given by the following equations:
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Hk+1 = Hk −
HksksT

k Hk
sT

k Hksk
+

ykyT
k

yT
k yk

sk =
^
εk+1 −

^
εk

yk = ∂P(ε;k+1)
∂ε − ∂P(ε;k)

∂ε

(27)

In terms of clarity, the complete calibration flowchart with the proposed maximum
sharpness optimization is shown in Figure 3. One can note that the full processing flow con-
tains three steps. The first pre-processing performs the range and azimuth FFTs on the raw
multi-channel data to transfer it into the two-dimensional frequency domain. The second
step calibrates the imbalance phase together with reconstructing the full Doppler spectrum
without ambiguity. Finally, SAR imaging processing with the conventional range-Doppler
algorithm [30] is accomplished on the reconstructed full Doppler spectrum to achieve
HRWS imagery. Of course, one can also calibrate raw data with the obtained phase errors
and apply adaptive beamforming for ambiguity resolving, which would take advantage
of the adaptive beamformer to achieve improved image performance. The alternation
of beamformers is not the key point of this paper, and in the following experiment, we
perform experiments with the given flowchart. In the above deviations, the imbalance
phase errors are assumed to be spatial-invariant. However, it should be noted that the
extension to the range-variant imbalance calibration is straightforward by dividing the data
into several range blocks and performing independent block calibration with the proposed
algorithm to handle the range-dependence of array imbalance. The complete HRWS SAR
processing flowchart is shown in Figure 3. The flowchart includes three import parts,
namely data preprocessing, calibration phase optimization and SAR imaging processing.
It is clear that the proposed algorithm is contained in the second part.
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4. Experiments and Performance Analysis

In the following experiment, azimuth multi-channel SAR data is generated by using
the real space-borne SAR of Sentinel-1 [30]. The reason for using this dataset to perform the
comparative experiment is that the image contains different scenes of land with different
strong buildings and open ocean areas with several strong ship targets. These ship targets
provide necessary convenience for us to calculate the azimuth ambiguity suppression
ratio quantitatively. The original single channel SAR data is sampled with PRF up to
1676 Hz, which is unambiguous in azimuth. In order to generate ambiguous multi-channel
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data, the data is re-sampled in azimuth time and down-sampled into 419 Hz to simulate
a 4-channel uniform linear array data. According to the above parameters, the array
baseline is about 8.427 m between two adjacent channels, and the equivalent system PRF is
about 419 Hz. It should be emphasized that, in the simulated multi-channel data Doppler
ambiguity number is three with the multi-channel system spatial degree of freedom is
four. By the redundancy of the channel degree, we can perform the subspace projection
algorithm [14] as the comparing rival for channel equalization. In order to verify the
effectiveness of the proposed algorithm, imbalance phase errors between channels are
randomly generated with the scope of [−π, π] and added into the multi-channel SAR data.
Some important parameters of the synthetic multi-channel SAR data are listed in Table 1.

Table 1. System parameters.

Wavelength Pulse
Width

Sample
Rate Bandwidth Azimuth

Points
Range
Points PRF Equivalent

Velocity

0.056 m 41.750 µs 32.3 MHz 30.1 MHz 2048 2048 1257 Hz 7062 m/s

In the experiment, the multi-channel SAR imaging results without calibration and
with phase calibration from both subspace projection algorithm and maximum Doppler
spectrum sharpness algorithm are given in Figure 4a–c. As one can be seen from Figure 4a,
because of the random phase errors present between channels, serious ambiguities and
blurring are left in the imaging results. In the enlarged sub-images, the ambiguous compo-
nents of ship targets are very obvious, which would be regarded as real ship in detection
processing. On the other hand, multi-channel results from both calibrations perform well
in ambiguity suppression with identical spatial filtering in the first experiment with a
high SNR level. The ambiguity components present in Figure 4a are well suppressed in
vision. This experiment demonstrates that when imbalance phase errors occur, calibration
processing is necessary in order to achieve an optimal ambiguity suppression performance.

In order to further show the blur suppression performance of the proposed calibration
algorithm, the multi-channel SAR images of two prominent targets on ocean in Figure 4 is
enlarged in Figure 5a–c correspondingly. It can be seen that the ambiguity components of
ship target 1 and target 2 are greatly suppressed after the calibrations by comparing with
original results in Figure 5a.
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In order to present the azimuth ambiguity suppression performance of different
calibration schemes in the above experiment, the azimuth profile containing two ships
defined as target 1 and target 2 is shown in Figure 6. We can note that the ambiguity
components of both targets are greatly suppressed. The relative ambiguity amplitudes
of targets 1 and 2 are suppressed by the proposed calibration from −9 dB and −27 dB
down to about −35 dB and −50 dB, providing an improvement in the azimuth ambiguity
suppression ratio up to about 28 dB. Similarly, successful calibration is also obtained by the
subspace projection. It is worth noting that the relative ambiguity amplitude of target 1
is suppressed down to −32 dB, which is higher than that from the proposed calibration,
reflecting the improved performance achieved by our work. Additionally, it is notable
that the subspace projection calibration is less robust in the iteration number than the
sharpness optimization. In real applications, the iteration number should be well set to
ensure considerably optimal calibration.
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In this section, we would like to further confirm the robustness of the proposed
sharpness optimization calibration to strong noise. A channel calibration experiment is
carried out by adding different noise into the multi-channel data with phase imbalance.
Datasets with different signal-to-noise ratios (SNR) from −15 dB~20 dB are generated by
adding complex white Gaussian noise to the original multi-channel data implemented by
the AWGN function of MATLAB 2020a software. The experimental results are shown in
Figure 7a–h. As you can see from the picture, in the cases of low SNR, such as SNR down to
0 dB, the AASR of the typical target 1 from subspace projection algorithm is about −15 dB.
On the other hand, with an increase in SNR setting, such as SNR up to 5 dB, the calibration
performance of the subspace projection algorithm is gradually guaranteed, as the AASR
usually reaches up to −20 dB. When SNR = 20 dB, the AASR from the subspace algorithm
is optimal, down to about −35 dB. Clearly, the noise effect on the subspace projection
algorithm for calibration is demonstrated. We can conclude that a considerably high SNR
is the fundamental condition for the success of the subspace projection algorithm. On the
other hand, the sharpness optimization calibration algorithm is generally robust to strong
noise. This is because it makes use of all signals to solve the phase error estimation. Even
in the scenarios under low SNR, ambiguity suppression with Doppler spectrum sharpness
optimization maintains its optimal performance. In the experiment, with varying SNRs,
the AASRs obtained by the proposed algorithm remained stable and optimally maintained
down to −25 dB. For clarity of the comparison, we provide the AASRs with varying SNR
from −15 dB to 20 dB, from which we can note the advantage of the proposed calibration
in handling strong noise over subspace calibration. To illustrate the excellent performance
of the proposed algorithm, the AASRs of different algorithms with different SNRs are
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shown in Figure 8. In the experiment, with varying SNRs, the AASRs obtained by the
proposed algorithm remained stable and optimally maintained down to −25 dB. For clarity
of the comparison, we provide the AASRs with varying SNR from −15 dB to 20 dB, from
which we can note the advantage of the proposed calibration in handling strong noise over
subspace calibration. From these comparing results, one can conclude that the proposed
algorithm has robustness in front of strong noise, which is suitable for calibrating a wide
range of multi-channel SAR imagery applications.
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under SNR = 15 dB, (h) Results under SNR = 20 dB.
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5. Conclusions

Imbalance calibration is an important task for HRWS unambiguous SAR imaging with
multi-channel SAR. In this paper, we proposed a phase calibration method with maximum
sharpening of the reconstructed Doppler spectrum. The sharpness maximization optimiza-
tion was developed to bridge the imbalance phase estimation and solve the optimization
with a gradient-based algorithm. Without requirement on additional spatial freedom de-
grees, the proposed calibration provides reliable phase correction performance in both
precision and efficiency aspects. Synthetic experiments are used to confirm the validity of
the calibration by comparing conventional algorithms, which confirms the superiorities of
the proposed calibration. We have to emphasize that, range- and azimuth-variant channel
imbalance would be present in real HRWS SAR applications, which induces many difficul-
ties for channel calibration with high efficiency and robustness. These interesting problems
are still open in HRWS SAR research and left to future work.
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