
����������
�������

Citation: Guo, Y.; Jiang, S.; Yang, Y.;

Jin, X.; Wei, Y. Gearbox Fault

Diagnosis Based on Improved

Variational Mode Extraction. Sensors

2022, 22, 1779. https://doi.org/

10.3390/s22051779

Academic Editors: Zahra

Sharif Khodaei, Phong B. Dao,

Lei Qiu and Liang Yu

Received: 29 January 2022

Accepted: 22 February 2022

Published: 24 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Gearbox Fault Diagnosis Based on Improved Variational
Mode Extraction
Yuanjing Guo 1,* , Shaofei Jiang 2, Youdong Yang 1, Xiaohang Jin 2 and Yanding Wei 3

1 Zhijiang College, Zhejiang University of Technology, Shaoxing 312030, China; yydong@zjut.edu.cn
2 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;

jsf75@zjut.edu.cn (S.J.); xhjin@zjut.edu.cn (X.J.)
3 Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical

Engineering, Zhejiang University, Hangzhou 310027, China; weiyd@zju.edu.cn
* Correspondence: guozi@zzjc.edu.cn

Abstract: Gearboxes are widely used in drive systems of rotating machinery. The health status of
gearboxes considerably influences the normal and reliable operation of rotating machinery. When a
gearbox experiences tooth failure, a vibration signal with impulse features is excited. However, these
impulse features tend to be relatively weak and difficult to extract. To solve this problem, a novel
approach for gearbox fault feature extraction and fault diagnosis based on improved variational
mode extraction (VME) is proposed. Since the initial value of the desired mode center frequency and
the value of the penalty parameter in VME must be assigned, a short-time Fourier transform (STFT)
was performed, and a new index, the standard deviation of differential values of envelope maxima
positions (SDE), is proposed. The feasibility and effectiveness of the proposed approach was verified
by a simulation signal and two datasets associated with a gearbox test bench. The results demonstrate
that the VME-based approach outperforms the variational mode decomposition (VMD) approach.

Keywords: gearbox; variational mode extraction; short-time Fourier transform; SDE index; fault
feature extraction

1. Introduction

Gearboxes are widely used in rotating machinery, such as wind turbines, nuclear
power units, high-speed rail, and new energy vehicles, and their performance influences
the normal and reliable operation of rotating machinery. Gearboxes usually operate under
a dynamic load or in overload conditions and are prone to suffer from various kinds of
defects, such as fatigue pitting, wear, tooth spalling, and tooth fracture [1–3]. To evalu-
ate the operating status of rotating machinery and ensure safe production and effective
maintenance, it is important to monitor the gearbox condition and diagnose faults. When
a gearbox experiences tooth failure, the contact stiffness at the damage point changes,
and the meshing movement is not smooth during operation, exciting impulsive vibration.
When rotating machinery operates at a constant speed, impulsive vibration can be demon-
strated by periodic impulse features in the sampled vibration signal [4,5]. The impulse
feature frequency is closely related to the health status of the gearbox, which suggests
that different frequencies indicate different fault states [6]. Therefore, extracting the fault
feature frequency from the sampled vibration signal is a feasible solution for gearbox fault
diagnosis [7]. However, gearboxes usually consist of multiple rotating parts. The vibrations
excited by different parts are coupled to each other. In particular, the transient impulses
caused by the damaged part attenuate along the transmission path from the source to the
sensor, which is usually located on the casing. In addition, the sampled vibration signal
often contains environmental noise [8]. Therefore, extracting the weak impulse features
from vibration signals with heavy noise becomes a challenging task in practice [9–11].
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Essentially, the process of fault feature extraction comprises the elimination of noise
and interference components in vibration signals. An effective approach to solve this
problem is signal decomposition, the variants of which include wavelet decomposition
(WT) [12–14], empirical mode decomposition (EMD) [11,15,16], local mean decomposition
(LMD) [9,10,17,18], and empirical wavelet transform [19–22]. However, WT is not a self-
adaptive signal analysis method because it is restricted by the selection of the wavelet basis
function and number of decomposition levels [17]. Although EMD can self-adaptively
decompose a multimodulated signal into a series of intrinsic mode functions (IMFs), it lacks
a theoretical basis and has some inherent defects, such as sensitivity to noise, end effects,
and mode mixing [4,5,15,16]. Like EMD, LMD adaptively decomposes a multicomponent
signal into several single-component AM–FM signals but encounters several technical
problems, such as end effects and mode mixing [17,18]. EWT decomposes a signal into
several AM–FM monocomponents that have compact support in the Fourier spectrum;
however, the boundaries of the frequency partition are difficult to set, and this aspect may
result in inaccurate and even invalid components [21,22].

In 2014, Dragomiretskiy and Zosso proposed a novel signal processing method known
as variational mode decomposition (VMD) [23]. Based on complete mathematical princi-
ples, VMD decomposes a signal into an ensemble of band-limited subsignals, i.e., modes.
The mode compact around a center frequency is estimated online in a nonrecursive manner.
VMD is highly effective when applied to machinery fault diagnosis [5,24,25]. However, the
actual performance of VMD is critically affected by the mode number and quadratic penalty
parameter. Presetting the two parameters usually requires experience and experimentation.
Moreover, it is difficult to determine optimal preset values. To address these limitations,
many optimization algorithms, such as genetic optimization [26], particle swarm opti-
mization [25,27], grasshopper optimization [24,28], gray wolf optimization [29,30], cuckoo
search algorithm [31], artificial bee colony algorithm [32], and chaotic pigeon-inspired
optimization [33], have been studied and applied to achieve the optimal values for the two
parameters. Many parameter-optimized or -enhanced VMD methods have been proposed.
However, these optimization methods require a large number of iterative operations and
are time-consuming, resulting in a low computational efficiency [1], especially given the
quadratic penalty parameter usually takes a large value, and its optimal value needs to be
searched in a large range. Therefore, the enhanced VMD method combined with several
optimization algorithms must be further studied and discussed to enhance its practicality.

In gearbox fault-diagnosis applications, the fault feature information is usually in-
cluded in a certain frequency band of the sampled vibration signal. Therefore, among the
obtained modes of VMD, only one invaluable target mode exists, and the other modes may
not be as important. Selection of the target mode is challenging because some experience
and knowledge of fault diagnosis is required, or several indicators, such as kurtosis [26],
weighted kurtosis index [24,29,32], Shannon entropy [34], and sample entropy [35], must
be considered.

In 2017, Nazari and Sakhaei proposed a new efficient method known as variational
mode extraction (VME) to derive respiratory signals from ECG [36]. VME, which is based
on a similar principle as that of VMD, directly decomposes a signal into two modes, i.e., the
desired mode and residual signal. Therefore, VME resolves the difficulty of determining
the mode number and selecting the target mode associated with VMD. Nevertheless, the
application of VME necessitates the consideration of two key aspects. First, the initial
center frequency of the desired mode must be correctly preset according to the analyzed
signal. Otherwise, the desired mode may not contain valuable fault-related information.
Second, the penalty parameter must be set to an appropriate value. If the penalty parameter
value is excessively small, considerable noise and interference may remain in the desired
mode. Moreover, the penalty parameter value must not be excessively large; otherwise, the
desired mode may lose useful information.

Considering these aspects, this paper proposes an improved VME method, in which
the initial value of the desired mode center frequency is selected by the STFT spectrum, and
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the optimal value of the penalty parameter is determined using a novel index: the standard
deviation of differential values of envelope maxima positions (SDE). The subsequent
sections of this paper are organized as follows. The VME method is briefly introduced
in Section 2. Section 3 describes the effect of the initial value of the desired mode center
frequency and the penalty parameter value on the performance of VME, as well as the
methods to determine these parameters. The improved VME method for gearbox fault
diagnosis is summarized in Section 4. Two cases of gearbox fault vibration signal analysis
based on the improved VME method are described in Section 5. Concluding remarks are
presented in Section 6.

2. Variational Mode Extraction
2.1. Basic Theory

The basic principle of VME is similar to that of VMD; however, VME explicitly decom-
poses an original signal, x(t), into two modes: the desired mode, ud(t), and residual signal,
xr(t), as indicated in Equation (1):

x(t) = ud(t) + xr(t) (1)

where ud(t) is a compact function around the center frequency, ωd. In the application of
rotating machinery fault diagnosis, ud(t) denotes the fault feature component. To extract
ud(t) from x(t), the spectral overlap between the two components must be minimized. In
other words, xr(t) has the minimal energy in the frequency band of ud(t), particularly zero
energy in the center frequency, ωd of ud(t). Moreover, the sum of ud(t) and xr(t) must
completely reconstruct the original signal, x(t). Therefore, the mathematical model of the
VME method can be expressed by the constrained minimization problem in Equation (2):

min
ud,ωd, fr

{
α
∥∥∥∂t

[(
δ(t) + j

πt

)
∗ ud(t)

]
e−jωdt

∥∥∥2

2
+ ‖β(t) ∗ xr(t)‖2

2

}
s.t. ud(t) + xr(t) = x(t)

(2)

where ∂t denotes the partial derivative with time, t; δ(t) is the Dirac delta distribution; and
* is the convolution operator. β(t) represents the impulse response of the filter, which is
used to filter the frequencies in xr(t) overlapping with ud(t) and can be described as in
Equation (3):

β̂(ω) =
1

α(ω−ωd)
2 (3)

Combining Equations (2) and (3), it can be observed that the penalty parameter, α,
plays a critical role in controlling the balance between the compactness of ud(t) and spectral
overlap between ud(t) and xr(t).

To solve the constrained minimization problem, the Lagrangian multiplier, λ(t), is
introduced. Hence, the constrained minimization problem defined in Equation (2) can be
converted into an unconstrained optimization problem, as expressed in Equation (4):

L(ud, ωd, λ) = α
∥∥∥∂t

[(
δ(t) + j

πt

)
∗ ud(t)

]
e−jωdt

∥∥∥2

2
+ ‖β(t) ∗ xr(t)‖2

2

+‖x(t)− (ud(t) + xr(t))‖2
2 + 〈λ(t), x(t)− (ud(t) + xr(t))〉

(4)

According to Parseval’s theorem, the optimization problem presented in Equation (4)
can be rewritten in the frequency domain as in Equation (5):

L(ud, ωd, λ) = α‖j(ω−ωd)[(1 + sgn(ω)) · ûd(ω)]‖2
2 +

∥∥β̂(ω) · x̂r(ω)
∥∥2

2
+‖x̂(ω)− (ûd(ω) + x̂r(ω))‖2

2 +
〈
λ̂(ω), x̂(ω)− (ûd(ω) + x̂r(ω))

〉 (5)

The alternating direction method of multipliers (ADMM) is adopted to solve Equa-
tion (5) to identify the saddle point of the augmented Lagrangian expression. As the
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optimization problem is converted into a series of iterative suboptimization problems
solved by ADMM, the updating equations, in terms of ûd, ωd, and λ̂ are expressed as
Equations (6)–(8), respectively:

ûn+1
d (ω) =

x̂(ω) + α2(ω−ωn+1
d )

4 · ûn
d(ω) + λ̂(ω)/2[

1 + α2(ω−ωn+1
d )

4][
1 + 2α(ω−ωn

d)
2
] (6)

ωn+1
d =

∫ ∞
0 ω

∣∣∣ûn+1
d (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
d (ω)

∣∣∣2dω

(7)

λ̂n+1 = λ̂n + τ ·

 x̂(ω)− ûn+1
d (ω)

1 + α2(ω−ωn+1
d )

4

 (8)

where ûn
d(ω) is the obtained desired mode in the nth iteration with the center frequency

ωn
d, x̂(ω) represents the original signal Fourier transforms, n is the number of iterations,

and τ is the iteration step length. The steps involved in VME are as follows [36].
Step 1: initialize û1

d, ω1
d, λ̂1, and n = 1.

Step 2: update ûd and ωd according to Equations (6) and (7), respectively.
Step 3: update λ̂ according to Equation (8).
Step 4: n = n + 1; repeat Steps 2–3 until the iteration termination condition,∥∥∥ûn+1

d − ûn
d

∥∥∥2

2∥∥ûn
d

∥∥2
2

< ε, (9)

is satisfied.
Step 5: obtain the desire mode, ud(t).

2.2. Analysis of Parameter Influence

In the implementation of VME, the update step size, τ, is often set as zero to ensure
that the algorithm converges effectively [36]. The value of the convergence tolerance, ε, de-
termines the reconstruction accuracy of the VME decomposition; therefore, this parameter
is usually set as an extremely small positive value (e.g., 1 × 10−6 in our experiments). The
performance of VME is significantly dependent on the decomposition parameters, such as
the initial center frequency, ωd, of the desired mode and penalty parameter α, which should
be preset in a restrained manner. The effects of these parameters on VME performance are
analyzed below.

(1) Initial center frequency, ωd, of the desired mode. The frequency band position of the
desired mode extracted from the original signal is determined by the initial value of
ωd. If the initial value of ωd is inappropriately initialized, the desired mode likely
does not contain valuable information. Although VME is not highly sensitive to the
initial ωd value, which can be preset in a wide range [36], the approximate range of
the initial ωd value must be reasonably determined.

(2) Penalty parameter α. As this parameter controls the compactness of the desired
mode, it also determines the degree of spectral overlap between the desired mode
and residual signal. When α is extremely small, the bandwidth of the desired mode is
extremely large; therefore, lots of interference components or additional noise may
be included in the desired mode, which can hinder the identification of valuable
information. Normally, parameter α is necessarily set to a large value to ensure that
the detected center frequency is closely related to the desired mode [36]. However,
when α is set to an extremely large value, the bandwidth of the desired mode is
extremely small, and part of the useful information may be lost, especially when the
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center frequency, ωd, is not appropriately set. Consequently, the penalty parameter, α,
must be preset to an appropriate value.

3. Simulation Analysis and Discussion
3.1. Simulation Signal Construction

This section describes the construction of a simulation vibration signal to evaluate the
effects of the initial center frequency, ωd, and penalty parameter, α, on the fault feature
extraction performance of VME. Considering these effects, methods to determine the two
parameters are established.

Consider a pair of engaged gears, in which one of the gears is assumed to have a local
damage fault. When the gears are operating smoothly, the fault vibration signal, s(t), can
be considered to be composed of three main components, including the multiple AM–FM
components, sm(t), induced by gear meshing and shaft rotation; a periodic impulsive
component, sp(t), excited by gear local damage; and additive noise, sn(t). The mathematical
model of the fault vibration signal, s(t), can be presented as:

s(t) = sm(t) + sp(t) + sn(t) (10)

sm(t) =
N

∑
n=1

X(n)[1 + an(t)] cos[2πnZ frt + ϕn + bn(t)] (11)

sp(t) =
K

∑
k=1

P(k)e−ζ(t−kT) cos[2πZ fr(t− kT)] (12)

where Z and f r are the number of teeth and rotation frequency of the damaged gear,
respectively; Z·f r denotes the meshing frequency of the gears, represented by f m, i.e.,
f m = Z·f r; N is the number of AM–FM components; X(n), ϕn, an(t), and bn(t) denote the
amplitude, initial phase, amplitude-modulation function, and phase-modulation function
of the nth AM-FM component, respectively; and K, ζ, and T denote the number, amplitude-
damping coefficient, and period of impulses, respectively. When the damage gear rotates
once, the fault impulse feature is triggered once; thus, T = 1/f r, and the fault feature
frequency, f 3f = f r. P(k) is the amplitude of the kth impulse. Furthermore, the modulation
functions, an(t) and bn(t), can be described as:{

an(t) = An cos(2πn frt + αn)
bn(t) = Bn cos(2πn frt + βn)

(13)

where An and αn denote the amplitude and phase of the amplitude-modulation function,
respectively, and Bn and βn denote the amplitude and phase of the phase-modulation
function, respectively. The fault vibration signal of this pair of gears can be simulated by
setting the appropriate values for the relevant parameters. The values of all parameters in
the simulated signal are listed in Table 1.

Table 1. Parameters of the simulation signal model.

Z f r f m N X(n) ϕn An αn Bn βn ς T

25 20 Hz 500 Hz 1 2 π 0.25 π 0.5 π 60π 0.05 s

The sampling frequency, f s, is set as 10 k Hz, and the sampling time, ts, is set as 0.4 s.
Therefore, the number of sampling points is 4000. In the sampling period, the first impulse
feature is assumed to appear at t1 = 0.025 s, and the number of impulses is K = b(ts − t1)·f rc,
where b·c denotes the floor function. The amplitude sequences, P(k) (k=1,2, . . . , 8), for
the impulses are obtained from a Gaussian distribution with a mean of 1.3 and standard
deviation of 0.2. White Gaussian noise is introduced such that the signal-to-noise ratio
(SNR) of the simulated signal is −8 dB. The time-domain waveform of the simulation
signal, s(t), is shown in Figure 1a. As the impulsive component is almost buried in the
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strong background noise, it is difficult to detect the fault by observing the amplitude of the
simulation signal. The square envelope spectrum (SES) [37] of the simulation signal, s(t), is
shown in Figure 1b, in which the Y-axis is the normalized amplitude obtained by dividing
each amplitude by the maximum amplitude. From the SES, the fault feature frequency
can be extracted, although it is easily disturbed by other frequency contents with large
amplitudes. VME is applied to extract the weak fault features from the simulation signal,
and further analysis is performed.

Figure 1. The simulation signal: (a) time–domain waveform and (b) SES.

3.2. Initial Value Estimation of ωd

As mentioned, the fault feature extraction effect of VME is highly dependent on the
initial value of the desired mode center frequency, ωd. An appropriate initial value of ωd
can help ensure that the desired mode contains complete and relatively pure fault features.
In this study, the initial value of ωd is selected using a short-time Fourier transform (STFT).

STFT is a classical method for joint time–frequency analysis that is suitable for not only
stationary signals but also time-varying, nonstationary signals. The basic idea of STFT is to
multiply the original signal by a fixed-length window function, assuming that the signal
section in the short time interval of the analysis window is stationary, and to implement a
Fourier transform (FT) for the signal section to obtain a local spectrum. By translating the
analysis window along the entire time horizon, the original signal is analyzed by FT in a
section-by-section manner, and a set of local spectra is obtained during each time interval.
Therefore, the basic calculation formula of STFT can be expressed as:

STFT{x(t)}(t, f ) =
∫ +∞

−∞
x(τ)g(τ − t)e−j2π f τdτ (14)

where x(t) is the original signal, t and τ denote the time, f denotes the frequency, and
g(τ − t) is a window function with the center at time t. For a given time, t, STFT(t, f ) can be
considered to be the FT spectrum. In particular, when the window function is set as 1, the
STFT degenerates into the traditional FT.

To obtain relatively optimal localization performance, the type and width of the
window function must be selected appropriately according to the signal characteristics.
In this study, considering the exponential attenuation tendency of the transient impulse
feature, the Gaussian window function is applied, and its length is set as 65 for a high
time resolution. The time–frequency spectrum of the simulated signal by STFT is shown
in Figure 2. Because of the heavy noise, the morphology and periodicity of the impulses
undergo considerable interference. Nevertheless, it can be seen that the impulses repeatedly
appear in a narrow frequency range centered at 500 Hz along the time axis. Therefore,
the initial center frequency, ωd, is set as 2π·500 rad/s, which can also be considered an
optimal value.
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Figure 2. STFT spectrum of the simulation signal.

Because a reliable basis for the selection of the penalty parameter, α, is not available,
the α value is set as 10,000, 80,000 and 150,000. Experimental results indicate that it is
reasonable to set α as 80,000 because the desired mode obtained using this value has
the fewest interference components, and the fault feature frequency can be successfully
extracted. When α is extremely small, the spectral overlap between the desired mode and
residual signal is large; therefore, the desired mode may contain many noise components.
When α is extremely large, the desired mode exhibits a high compactness. Thus, useful
components may be lost, and the signal may degenerate into a harmonic signal with a
frequency of ωd, from which the fault feature frequency cannot be extracted. Thus, an
optimal value must be set for the penalty parameter, α, which requires further study.

3.3. SDE Index

To investigate the effect of parameter settings on VME performance, it is critical to
construct an accurate objective function. The desired mode, ud(t), theoretically obtained
by VME contains a series of fault impulse features with as complete a periodicity as
possible and as little interference or noise as possible. To assess the periodicity and purity
of the desired mode, this paper proposes a new index called the standard deviation of
differential values of envelope maxima positions (SDE), which can be determined using
the following steps.

Step 1: Demodulate the desired mode, ud(t), using the Hilbert transform to obtain the
upper envelope, ued(t).

Step 2: Find the positions of the local maximum points in ued(t) that are greater than a
certain threshold, mth, expressed as:

mth = η · {max[ued(t)]−min[ued(t)]} (15)

where η is the threshold coefficient and, in this paper, all the η values are set as 0.25. These
positions of the target points are denoted by pi, i = 1, 2, . . . , N, where N is the number of
local maximum points.

Step 3: Calculate the differential values, dj, of series pn,

dj = pj+1 − pj, j = 1, 2, · · · , N − 1. (16)

Step 4: Calculate the standard deviation of series dj, i.e., SDE, and use it as the indicator
of the periodic fault impulse features.

SDE =

√√√√ 1
N − 1

N−1

∑
j=1

(
dj − d

)2
(17)
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where d is the mean value of dj.
Ideally, regardless of the amplitude differences between the fault impulses, the posi-

tions of the maximum amplitudes are uniform due to periodicity, and the calculated SDE
index is zero. In practice, the fault impulse features in vibration signals may not have strict
periodicity, causing the position intervals of the fault impulses to fluctuate slightly and
randomly. Nevertheless, the calculated SDE index is expected to be extremely small due to
the randomness of fault impulse occurrence positions. According to the calculation process
described above, in an ideal situation, the value of the SDE index is mainly determined by
the maximum value of each fault impulse feature. Therefore, the SDE index is adaptive
to the periodicity of fault impulse features and can clarify the purity of the fault-related
information in the desired mode obtained by VME.

3.4. Effect of α

To study the effect of the penalty parameter, α, on VME performance and to identify a
way to select an optimal value for α, the initial center frequency, ωd, is set as a fixed value
of 2π·500 rad/s, and the value of α increases gradually from αmin to αmax at a step size of
sα. At the nth step, the value, αn, of the penalty parameter is calculated as:

αn = αmin + (n− 1) · sα, n = 1, 2, · · · , (αmax − αmin)/sα (18)

For the simulation signal, αmin, αmin, and sα are set as 500, 150,000, and 500, respec-
tively. VME is implemented with a fixed ωd value of 2π·500 rad/s and different α values of
αn, n=1, 2, · · · , 299. The SDE index value for each desired mode is calculated. The curve of
the SDE index with different penalty parameter, α, values is shown in Figure 3.

Figure 3. Relationship between the SDE index and penalty parameter α.

In the initial stage of the curve, the SDE index acquires a small value. The main
reason for this is that as the value of α is extremely small, the obtained desired mode still
contains considerable noise, and the position distribution of the desired mode peaks has
strong randomness and uniformity. As the value of α continues to increase, the noise in
the obtained desired mode is gradually suppressed, the randomness and uniformity of
its peak distribution are broken, and the resulted values of the SDE index also increase.
When the noise in the desired mode is eliminated, the SDE index reaches its minimal
value due to the periodicity of fault impulse features. However, if the value of α is further
enhanced, the fault impulse features in the obtained desired mode will be suppressed,
especially those with small amplitudes, and the periodicity of the fault impulse features
will be disturbed, leading to nonuniformity of the peaks in the desired mode and a large
value of the SDE index. Such an analysis shows that when the SDE index reaches the
minimum value of 24.6712, the optimal value of α is obtained, expressed as αopt = 82,000.
VME achieves the optimal effect for fault impulse feature extraction. In other words, the
obtained desired mode exhibits minimal interference with the noise and exhibits the most
significant periodicity. The desired mode, along with its STFT spectrum, and the extracted
fault feature frequency using SES are shown in Figure 4.
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Figure 4. Desired mode obtained by VME with αopt = 82,000: (a) time−domain waveform, (b) STFT
spectrum, and (c) SES.

In addition, Figure 3 shows that the values of the SDE index vary slightly around
αopt. Within this varying interval, some other values of the SDE index are selected, e.g.,
SDE = 27.3522 and SDE = 24.8577, corresponding to α = 52,000 and α = 68,500, respectively.
The numerical experimental results show that the effects of α = 52,000 and α = 68,500 on
the VME performance are basically identical to those of αopt = 82,000. Therefore, although
there exists an optimal value for α, the performance of VME is not highly sensitive to α as
long as the α value is selected within a reasonable range, which can be easily estimated
using the α–SDE index curve.

3.5. Effect of Initial ωd

The influence of the penalty parameter, α, on VME performance is examined with
the initial center frequency ωd set as 2π·500 rad/s, as obtained using the STFT. Moreover,
the optimal value of α is αopt = 82,000. Thus, α is set as a fixed value of 82,000, and ωd
increases from ωdmin to ωdmax, with a step size of sω. At the nth step, the value of ωdn is
calculated as:

ωdn = ωdmin + (n− 1) · sω, n = 1, 2, · · · , (ωdmax −ωdmin)/sα (19)

As shown in Figure 2, periodic fault impulse features appear in a frequency band with
the center frequency, f d = 500 Hz. To include this frequency band, ωdmin, ωdmax, and sω

are set as 2π·300 rad/s, 2π·700 rad/s, and 2π rad/s, respectively. VME is implemented
with initial center frequency, ωdn (n = 1, 2, . . . , 401), to achieve the desired mode, and
the corresponding SDE index value is calculated. The curve of the SDE index with ωdn is
shown in Figure 5.

Figure 5. Relationship between the initial center frequency, ωd, and SDE index.
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The SDE index is minimized in the ωd range of 2π·425 to 2π·598 rad/s. In this range
of ωd, VME exhibits the same performance for periodic fault impulse feature extraction.
In other words, as long as the ωd value is estimated within an appropriate range, the
performance of VME is not sensitive to ωd. In practice, the targeted value range of ωd
can be clarified using the STFT spectrum, and a reasonable or optimal ωd value can be
easily obtained.

3.6. Comparative Study between the SDE Index and Other Indices

Many indicators have been proposed for impulse detection and fault feature extraction
from rotating machinery vibration signals. Examples of widely used indicators are kurto-
sis [1]; the weighted kurtosis index (also known as KCI) [24,29,32,38]; envelope kurtosis
(EK) [39]; the Gini index (GI) [40]; and entropy-class indices, such as information entropy
(IE, also known as Shannon entropy) [26,34], sample entropy (SE) [35,41], permutation
entropy (PE) [15], power spectral entropy (PSE) [42], envelope entropy (EE) [30], and
envelope spectrum entropy (ESE) [43]. To verify the superiority of the proposed SDE
index, the values of these 10 indices are calculated for the desired modes obtained by VME
with different penalty parameters, αn (n = 1, 2, . . . , 300). The relationship between these
10 indices and penalty parameter α are shown in Figure 6.

Figure 6. Relationship between different indices and penalty parameter α.

VME is equivalent to the implementation of a bandpass filter around the center
frequency, ωd, and the penalty parameter, α, determines the passband width of the filter.
Theoretically, when α is small, considerable noise and other interference components remain
in the desired mode. As α increases and the compactness of the desired mode intensifies,
the noise and interference components are gradually depressed. When α increases to a
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certain value, the optimal fault impulse features are obtained. As α further increases, the
fault-related features are damped accordingly, and the desired mode tends to be a single-
component signal in which the fault-related information may be completely lost. Therefore,
an effective index must achieve a significant extremum or sudden change in the search range
of α to ensure that it can indicate the possible optimal value of α. Considering this aspect,
the indices of kurtosis, KCI, GI, PE, PSE, and ESE cannot indicate the possible optimal α
value due to their monotonic changes, as shown in Figure 6a,c,d,g,h,j. Nevertheless, in the
search range of α, the EK index is minimized, as shown in Figure 6b, and the corresponding
value of α is 21,500. In contrast, the IE and EE indices are maximized, as shown in Figure 6e,i,
and the corresponding values of α are 32,500 and 9000, respectively. In addition, Figure 6f
shows that the SE index obtains a local maximum value, which indicates α to be 14,000.
Therefore, the optimal values of α are respectively assumed to be 9000 and 32,500, and the
obtained desired modes, together with their corresponding square envelope spectra, are
shown in Figures 7 and 8, respectively. Comparing Figures 8 and 9 with Figure 5, although
the differences between the performances of VME with different optimal α values are not
significant, the desired mode obtained through VME with the proposed SDE index has
fewer interference components. This outcome verifies the robustness of VME in response
to penalty parameter α and the superiority of the SDE index compared to other indices in
this application.

Figure 7. Desired mode obtained by VME with α = 9000: (a) time–domain waveform and (b) SES.

Figure 8. Desired mode obtained by VME with α = 32,500: (a) time–domain waveform and (b) SES.

Figure 9. Target mode obtained by VMD: (a) time–domain waveform and (b) SES.

3.7. Comparative Study between VME and VMD

To further evaluate the superiority of VME, the simulation vibration signal is decom-
posed using VMD. To ensure a fair comparison, the value of penalty parameter αd in VMD
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is the same as the previously obtained optimal value of penalty parameter α in VME, i.e.,
αd = 82,000. After several trials, the number of modes in VMD is determinately set as 8. In
the VMD results, the target mode that contains fault impulse features is the second mode,
as shown in Figure 9a. The SES of the target mode is shown in Figure 9b. Comparison of
Figures 4c and 9b shows that the desired mode obtained by VME is similar to the target
mode obtained by VMD, although the fault feature frequency can be successfully extracted
from either of the two modes. However, compared with VME, the VMD method exhibits
several deficiencies:

(1) The exact number of modes is not easy to determine, and the selection of the target
mode with valuable fault-related information is challenging to perform simultane-
ously. These two issues can be solved through trials or an optimization method;
however, the execution efficiency of VMD may decrease.

(2) Considerable noise is present in the target mode of VMD, and less noise is present in
the desired mode of VME. This phenomenon likely occurs because there exist certain
overlaps between the target mode and its previous and latter modes. Therefore, a
small amount of noise associated with the previous and latter modes remains in the
target mode.

As VME decomposes a signal into two layers, i.e., the desired mode and residual
signal, the problems of decomposed mode number determination and target mode selection
associated with VMD can be avoided. In addition, the penalty parameter, α, in VME only
adjusts the spectrum overlap degree between the desired mode and residual signal. In
contrast, the penalty parameter, αd, in VMD must balance the spectrum overlap between
all adjacent modes. Therefore, typically, the desired mode obtained by VME is purer than
the target mode obtained by VMD.

4. Improved VME Method for Gearbox Fault Diagnosis

Based on the previous analysis, this paper proposes an improved VME method to
extract the fault-related features from vibration signals for gearbox fault diagnosis. The
fault diagnosis process is shown in Figure 10. The main implementation steps are described
as follows.

Step 1: The time–frequency spectrum of the vibration signal sampled from the gearbox
is obtained using STFT to detect the approximate frequency band location of fault-related
features. Accordingly, the initial value of the center frequency, ωd, is selected and consid-
ered the optimal value.

Step 2: The value range of penalty parameter α is set as [αmin, αmax], and the increasing
step size is set as sα. Subsequently, α is increased from αmin. In the nth step, the α value is
expressed as αn.

Step 3: VME is implemented with parameter group [ωd, αn] in each step for the
original vibration signal to obtain the desired mode. The corresponding SDE index value
is calculated.

Step 4: Once α increases to αmax and the last SDE value is calculated, the α–SDE curve
is plotted. Using this curve, the optimal α value is selected as αopt, corresponding to the
minimal SDE index value.

Step 5: VME is implemented with the optimal parameter group [ωd, αopt] for the
original vibration signal to obtain the optimal desired mode.

Step 6: SES analysis is performed for the optimal desired mode to extract the fault
feature frequency and diagnose gearbox faults.
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Figure 10. Process flow of gearbox fault diagnosis based on improved VME.

5. Experimental Evaluation

As described in this section, two vibration datasets of gearboxes obtained using a
wind turbine gearbox simulation test bench are sampled and considered to verify the
effectiveness and feasibility of the improved VME method for gearbox fault diagnosis.

5.1. Gearbox Test Bench

The gearbox test bench is constructed to simulate the function of the wind turbine gear-
box and evaluate the gearbox fault diagnosis methods, shown in Figure 11. The mechanical
components in the test bench include the driving motor, cycloidal-pin planetary gear speed
reducer, double-row conic roller bearing, two-stage speed-increase planetary gearbox, one-
stage speed-increase parallel shaft gearbox, torque and speed sensors (±30 Nm torque
measurement range, 1024 line incremental encoder, and ±6000 rpm standard speed mea-
surement range), and load motor. The combination of the driving motor and cycloidal-pin
planetary gear speed reducer produces a low speed to simulate the wind turbine main shaft
speed. The combination of a two-stage speed-increase planetary gearbox and a one-stage
speed-increase parallel shaft gearbox is used to imitate the wind turbine gearbox with the
widely used configuration involving two-stage planetary and one-stage parallel shaft gear
transmission. In this study, the test object is the parallel shaft gearbox, which simulates the
high-speed stage prone to failure in a wind turbine gearbox. The gear ratio, gear modulus,
number of gear teeth, and number of pinion teeth of the parallel shaft gearbox are 2.45, 2,
54, and 22, respectively.
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Figure 11. Gearbox test bench.

Two types of gear damages, i.e., pinion-tooth partial fracture and gear-tooth fracture,
are manually induced in the experimental gearbox, as shown in Figure 12. Subsequently,
operational tests are conducted over the test bench for each fault state. In each test, the
load motor is set to operate in the power-generation state and output a torque of 3 Nm. An
IEPE (integrated-electronics piezoelectric) accelerometer (±50 g full scale range, 100 mV/g
sensitivity, and 0.2–5000 Hz frequency range) is mounted on the experimental gearbox
top cover using a suitable magnetic mount to acquire the vibration signal. The sampling
frequency of vibration signal is set as 5.12 kHz.

Figure 12. (a) Pinion-tooth partial fracture fault and (b) gear-tooth fracture fault.

5.2. Pinion Fault Vibration Dataset Analysis

In the fault state of the pinion-tooth partial fracture, the driving motor rotation speed
is set as 700 rpm. The experimental gearbox output rotation speed is 1347 rpm, as mea-
sured by the sensor. Therefore, the theoretical fault feature frequency of the pinion in the
experimental gearbox is calculated as f p = 22.45 Hz. The vibration dataset with 4000 points
sampled from the experimental gearbox is shown in Figure 13.

Figure 13. Sampled vibration dataset in the pinion fault state.

Because the fault impulse features exhibit significant periodicity in the time-domain
waveform, analysis of this dataset may not be fruitful. To more effectively reflect the
superiority of the proposed method, white Gaussian noise is added to the dataset to
ensure that the signal-to-noise ratio (SNR) is −7 dB. The obtained dataset with heavy noise
is shown in Figure 14a. Due to the low SNR, it is challenging to identify the impulse
features in the time-domain waveform. Figure 14b shows the SES of the obtained dataset.
Although a feature frequency of 21.76 Hz can be extracted using the SES, many interference
components and noise are included in the SES. The STFT spectrum of the noisy dataset is
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shown in Figure 14c. It is challenging to identify the impulse features in the waveform.
In the STFT spectrum, a few impulse features can be observed, but these features do not
exhibit any regularity. Nevertheless, the strongest impulse feature appears at a position
of approximately [0.4715 s, 1490 Hz], as shown in the red box of Figure 14c. Hence, the
initial center frequency, ωd, of the desired mode is accordingly selected as 2π·1490 rad/s.
The penalty parameter, α, is set to increase from 100 to 30,000, with a step size of 100.
Subsequently, in each step, VME is implemented with a fixed ωd value of 2π·1490 rad/s
and an increased α value pertaining to the current step. Moreover, the corresponding
SDE index value of the desired mode is calculated. The relationship between the penalty
parameter, α, and SDE index is represented as a curve in Figure 15.

Figure 14. Vibration dataset with additional noise: (a) time–domain waveform, (b) SES, and
(c) STFT spectrum.

Figure 15. Relationship between the penalty parameter, α, and SDE index.

Notably, the α value of 100 corresponding to the SDE index minimum value of 13.22 is
not the desired value for VME, as such a small SDE value is caused by strong random noise
in the obtained desired mode. In this scenario, the optimal α value must be considered
the value associated with the minimum SDE index value of 27.1316; hence, αopt = 12,400.
Accordingly, VME is implemented with an initial ωd value of 2π·1490 Hz and an opti-
mal α value of 12,400. The obtained desired mode and its STFT spectrum are shown in
Figure 16a,b, respectively. The noise in the desired mode is substantially eliminated, and
regular impulse features can be clearly observed. The SES of the desired mode is shown in
Figure 16c. The feature frequency of 21.76 Hz is successfully extracted, consistent with the
pinion fault feature frequency, f p.
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Figure 16. Desired mode obtained by VME with the optimal parameters: (a) time–domain waveform,
(b) STFT spectrum, and (c) SES.

Furthermore, the penalty parameter, α, is set as the fixed value of αopt = 12,400. Sub-
sequently, the initial center frequency, ωd, is set to gradually increase from 2π·1200 rad/s
to 2π·1600 rad/s in step sizes of 2π rad/s. The SDE index value of the desired mode in
each step is calculated. Based on these values, the relationship curve between ωd and the
SDE index is obtained, as shown in Figure 17. The findings indicate that the initial ωd
value, 2π·1490 rad/s, selected from the STFT spectrum is the optimal value that results in a
minimum SDE index value 27.1316. Notably, there exist more than one optimal initial ωd
value that minimizes the SDE index in the case of αopt = 12,400. Moreover, the ωd values
that minimize the SDE index are not continuous. Between the ωd values that minimize
the SDE index, there are some other ωd values that lead to large SDE index values. These
values are also the optimal initial ωd values, although their corresponding optimal α values
must be adjusted. For instance, we set the ωd value as 2π·1493 rad/s, leading to an SDE
index value 65.7457, and the obtained optimal α value is an arbitrary value in the range
of 12,600 to 13,000, rather than 12,400. In fact, as long as the selected ωd value lies in the
range of 2π·1474 to 2π·1521 rad/s that can be estimated by the STFT spectrum, it can be
considered the optimal ωd value. Nevertheless, its corresponding optimal α values may be
adjusted. Therefore, there exist numerous optimal values for the parameter combination
[ωd, α], and the proposed VME method can easily obtain a group of optimal parameters.
This outcome verifies the effectiveness and robustness of the SDE index and the practicality
of the proposed VME method.

Figure 17. Relationship between the initial center frequency, ωd, and SDE index.

To verify the effectiveness of the SDE index, the 10 indices mentioned above, i.e.,
kurtosis, KCI, EK, GI, IE, SE, PE, PSE, EE, and ESE, for the vibration dataset in this case are
calculated. As α increases, noise and interference components are first suppressed. When
α is up to a certain value, i.e., the optimal value, fault features will get the best presentation.
However, if α continues to increase, the fault features will be also suppressed. The rela-
tionship curves between α and the 10 indices are shown in Figure 18. Due to monotonous
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attenuation shown in Figure 18f,g, the SE and PE indices cannot indicate the optimal α
values. However, as shown in Figure 18a–e,h–j, all the other indices exhibit sudden changes
and achieve the maximum, minimum, or local extremum in the α range 10,200–10,800. In
this case, the optimal α values indicated by these indices are not considerably different
from that pertaining to the SDE index. Similarly, for the desired mode and fault feature
frequency extraction, VME with the optimal α value indicated by the SDE index achieves
the same performance as VME with the optimal α values indicated by the above indices.
This finding demonstrates that the performance of VME is robust to the penalty parameter
α. Moreover, this finding shows the effectiveness of the SDE index, although the SDE index
is different from the abovementioned existing indices.

Figure 18. Relationship between different indices and the penalty parameter, α.

To verify the superiority of the improved VME method, the classical VMD method
is applied to analyze the pinion fault vibration dataset. In the implementation of VMD,
the penalty parameter, α, is set as 12,400, similar to the value in the VME method, and the
mode number is set as 8, determined after several trials. By experience, the target mode is
selected as the fourth mode. The time-domain waveform and SES are shown in Figure 19.
Comparison of Figures 16 and 19 shows that, both the improved VME method and classical
VMD method can extract the pinion fault feature frequency from the vibration dataset with
heavy noise. Nevertheless, the implementation of VMD may require several trials and
experience, whereas the application of the improved VME method is more targeted and
thus simpler and more practicable.
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Figure 19. Target mode obtained by VMD: (a) time–domain waveform and (b) SES.

5.3. Gear Fault Vibration Dataset Analysis

The driving motor rotation speed is set as 900 rpm, and the experimental gearbox
output rotation speed is 1730 rpm, as measured by the sensor. Hence, the gear fault feature
frequency, f g, in the experimental gearbox is calculated as 11.77 Hz. The vibration dataset
with 4000 points sampled from the experimental gearbox is shown in Figure 20a. Because
of the heavy noise, the regular impulse features cannot be recognized in the time-domain
waveform. In the SES shown in Figure 20b, several fault-related spectrum lines can be
observed. However, the spectrum line at the fault feature frequency cannot be identified.
The STFT spectrum shown in Figure 20c indicates that intermittent but not significant fault
features occur at approximately 1400 Hz along the time axis.

Figure 20. Gear fault vibration dataset: (a) time–domain waveform, (b) SES, and (c) STFT spectrum.

In the implementation of the improved VME method for the gear fault vibration
dataset, the initial value of the center frequency, ωd, is selected as 2π·1400 rad/s. The
optimal value of penalty parameter α is searched in the range from 500 to 100,000, with
an increasing step of 100. The relationship between α and the SDE index is obtained
and represented by the curve shown in Figure 21. The optimal α value indicated by
the minimum SDE index value is αopt = 61,300. VME with the optimal parameter group
[ωd, αopt] is implemented for the vibration dataset. The obtained optimal desired mode
and its STFT spectrum are shown in Figure 22a,b, respectively. The periodic fault impulse
features are completely extracted with little noise. Figure 22c shows the SES of the optimal
desired mode. The extracted feature frequency of 11.52 Hz is the same as the gear fault
feature frequency, f g.
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Figure 21. Relationship between penalty parameter α and the SDE index.

Figure 22. Desired mode obtained by VME with the optimal parameters: (a) time–domain waveform,
(b) STFT spectrum, and (c) SES.

We set the penalty parameter, α, as a fixed value of 61300, and the initial value of the
center frequency, ωd, increases from 2π·1200 rad/s to 2π·1600 rad/s, with a step size of 2π
rad/s. Using the same method as mentioned previously, the relationship curves between
ωd and the SDE index are obtained, as shown in Figure 23. The value of 2π·1400 rad/s,
which minimizes the SDE index, is indeed the optimal value of ωd. In addition, any value
within the range of 2π·1368 rad/s to 2π·1434 rad/s can be considered the optimal initial
value of ωd. This aspect suggests that the performance of VME is highly robust to the
initial ωd value. Moreover, the appropriate initial ωd value can be selected using the STFT
spectrum in gearbox fault feature extraction.

Figure 23. Relationship between the initial center frequency, ωd, and SDE index.

Like in the previous case, the 10 indices, i.e., kurtosis, KCI, EK, GI, IE, SE, PE, PSE, EE,
and ESE for the gear vibration dataset are calculated, and the relationship curves between
α and the 10 indices are obtained. Except for the EK and EE indices which are shown
in Figure 24b,i, all the other indices vary monotonously with increasing α, as shown in
Figure 24a,c–h,j, and no extrema or sudden change values are observed. Therefore, these
indices cannot indicate the optimal values of α in the search range. Figure 24b shows that
the EK index is minimized, and its corresponding α value is 44,100. Figure 24i shows that a
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maximum value exists for the EE index, and the corresponding α value is 31,400. Results
of experiments show that the VME methods with different optimal α values indicated by
the SDE, EK, and EE indices exhibit similar performance for gear fault feature extraction.
However, considering the large differences between the three optimal α values, VME is
highly robust to α, and the optimal α value can be selected within a large range. This aspect
can be verified by the SDE index variation curve shown in Figure 21, in which the SDE
index presents a nearly horizontal varying trend in the α range of 8,300–61,300. As the
other indices do not have such an indicative function, the SDE index is considered superior.

Figure 24. Relationship between different indices and the penalty parameter, α.

Furthermore, VMD is used to analyze the gear fault vibration dataset. In the implemen-
tation of VMD, its penalty parameter is set to the same value as that in the VME method,
i.e., 61,300, and the number of decomposed modes is set as 8, which is an appropriate value
determined by several trials. The target mode containing valuable fault feature information
is the fourth mode. The corresponding time–domain waveform and SES are shown in
Figure 25. Although the gear fault feature frequency can be extracted from the target mode,
comparison of Figure 25 with Figure 22 shows that the desired mode obtained by VME
exhibits a smaller amount of noise and fewer interference components than that in the
target mode obtained by VMD.

Figure 25. Target mode obtained using VMD: (a) time–domain waveform and (b) SES.
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6. Conclusions

VME directly decomposes a signal into the desired mode and residual signal. Com-
pared with VMD, VME is more feasible to implement. The performance of VME is highly
robust to the initial value of the desired mode center frequency and the penalty parameter.
In the application of fault feature extraction and fault diagnosis for gearboxes, a reasonable
initial center frequency value can be easily selected using the STFT spectrum. Moreover, the
proposed SDE index can effectively indicate the optimal value of the penalty parameter and
is superior to the currently widely used kurtosis-class and entropy-class indices. Accord-
ingly, the proposed improved VME approach exhibits powerful anti-noise performance and
can thus extract clear and complete fault impulse features from gearbox vibration signals
with low SNRs. In addition, compared with the target mode extracted by VMD, the desired
mode extracted by the improved VME approach contains fewer noise and interference
components and thus achieves a superior effect for gearbox fault feature extraction. In the
future, we may use the improved VME approach in feature extraction of large-scale data
for gearboxes and develop intelligent fault diagnosis approaches based on deep learning.
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