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Abstract: The axle box in the bogie system of subway trains is a key component connecting primary
damper and the axle. In order to extract deep features and large-scale fault features for rapid
diagnosis, a novel fault reconstruction characteristics classification method based on deep residual
network with a multi-scale stacked receptive field for rolling bearings of a subway train axle box is
proposed. Firstly, multi-layer stacked convolutional kernels and methods to insert them into ultra-
deep residual networks are developed. Then, the original vibration signals of four fault characteristics
acquired are reconstructed with a Gramian angular summation field and trainable large-scale 2D
time-series images are obtained. In the end, the experimental results show that ResNet-152-MSRF has
a low complexity of network structure, less trainable parameters than general convolutional neural
networks, and no significant increase in network parameters and calculation time after embedding
multi-layer stacked convolutional kernels. Moreover, there is a significant improvement in accuracy
compared to lower depths, and a slight improvement in accuracy compared to networks than
unembedded multi-layer stacked convolutional kernels.

Keywords: subway train; fault diagnosis; data reconstruction; deep learning; residual neural network;
Gramian angular field

1. Introduction

Subway trains are integral to traffic systems, modernization, and urban culture [1–3].
However, because these axle boxes of a subway train support the whole weight of the
subway vehicle and ensure the reliability of a subway train [4,5], and the rolling bearings
are the vitally important component to transfer loads and torque through which are filtered
by an air spring to shaft. Hence, failures unavoidably occur in rolling bearings and result
in economic loss or even human casualties. As a result, fast and accurate fault diagnosis of
axle box bearings can be used to maintain the smooth operation of urban rail transit and
extend service time as well as ensure travel safety.

The fault diagnosis methods used mainly for rolling bearings can be classified into two
categories, vibration-based signal analysis and machine-learning-powered methods [6–10].
In general, vibration-based signal analysis methods detect faults by extracting fault-related
vibration components and characteristic frequency. However, vehicle-mounted sensors
used to extract other irrelevant vibration signals including the shaft and gearbox, etc., when
subway trains operate at high speeds. Hence, in the early stage of faults, bearing-related
fault signals used to be overwhelmed by overstated other components and harmonics or
environment noise. Therefore, it is hard to extract pure fault-related vibration signal by
traditional vibration-based signal analysis.

Machine-leaning-powered fault diagnosis methods detect faults by extracting a series
of statistical parameters (e.g., such as kurtosis, root mean square, energy and entropy.)
to represent bearings’ health states. Meanwhile, these parameters can be used to train
classifiers (e.g., such as a support vector machine (SVM), a deep neural network (DNN),
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or a Bayes network) to classify different fault characteristics. Among them, SVM is a class
of generalized linear classifiers that perform binary classification of data in a supervised
learning manner, neural networks are based on extensions of perceptrons, while DNN
can be understood as neural networks with many hidden layers. Nevertheless, the ex-
tracted statistical parameters cannot ensure the accuracy of distinguishing different faults.
Therefore, finding suitable training parameters to train traditional classifiers is a long-term
challenge for machine-learning-powered fault diagnosis methods [11].

In recent years, deep learning (DL) methods, which take vibration-related signals as
input data, has been applied in various fields [12–16]. For example, S. Roy et al. [12] applied
the successful application of DL in medical imaging to COVID-19 as well as paved the way
to future research on DL for the assisted diagnosis of COVID-19 from medicine imaging
datasets. K.B. Lee et al. and H. S. DIKBAYIR et al. [13–15] detected vehicles in different
complex driving environments based on DL. For fault-related signal features extraction,
traditional machine-learning-powered methods, which rely on fault-related preprocessing,
are the lack of multiple levels of nonlinear transformations [17]. DL cannot only adaptively
extract deep features of fault characteristics from anc input layer but can also ease the
difficulty of parameters optimizations.

Among the DL theoretical methods, diagnostic models with classical convolutional
neural network (CNN) structure are the most widely used, such as Alex Net, VGG, etc.
However, because of the big data with large volume, vary modalities, fast generation and
large value but low density, these network models have no choice but to improve the depth
to parse the massive data, so it will cause huge training parameters and overfitting. By
contrast, deep residual networks (ResNets) are an effective variant of CNNs, which can
use identity shortcuts to ease the difficulty of parameters optimization [18–21]. ResNets
and their variants have applied for fault diagnosis in a few papers [22–28]. For instance,
C. Zhou et al. [24] analyzed the COVID-19 chest X-raay images based on image regrouping
and ResNet-SVM. As a consequence, this method can reach 93% accuracy on a relatively
small dataset. M. Zhao et al. [27] proposed deep residual shrinkage network (DRSN),
which is an evolution of ResNets. Compared with structure of ResNets, DRSN has a
shrinkage block (soft threshold function) and show that the method is effective for high
noise fault diagnosis.

The developed residual neural networks can adapt to large-scale data and have good
nonlinear expression capability, but a large number of research is based on 1D fault vibration
signals, which makes full use of the self-extraction capability of DL but also limits the
diagnostic accuracy. This article develops a fault reconstruction characteristics classification
method using ResNet-152 inserted with multi-layers convolutional kernels. The data is
structured by convolutional units with multi-layer stacked convolutional kernels to enhance
the nonlinear representation. One-dimensional vibration signals processed by Gramian
angular summation field (GASF) are easier to manipulate by convolutional layers. The
main contributions of this paper are as follows:

(1) Three-layers stacked convolutional kernels are inserted into ultra-deep ResNets to
replace large-size or less-layers convolutional kernels to improve the nonlinear repre-
sentation of feature images;

(2) The fault datasets are reconstructed to increase the data scale and retain the temporal
features in the fault data, while reducing the difficulty of the convolution process;

(3) Research on axle box bearings for subway trains to improve the efficiency and accuracy
of diagnosis of this component.

Additionally, this study verifies the role of superimposed convolution kernels in
specific objects for the first time on the basis of the theory; another novelty is the training
of deep learning networks using reconstructed fault feature signals, as researchers have
overlooked the importance of modest feature engineering while focusing too much on the
powerful learning ability of deep learning.

This paper is organized as follows: in Section 2, ResNets-related methods are intro-
duced. In Section 3, details of the design of fundamental architectures for ResNet-152-MSRF,
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data reconstruction methods, experimental protocols and complete experimental results
are presented. In Section 4, the experimental results are summarized, and the advantages
and disadvantages of each model are sorted out.

2. Basic Components
2.1. Basic Structure of Residual Neural Networks

ResNets share many of the same components as traditional CNNs, such as convolution
layers, rectifier linear unit (ReLU), activation function, batch normalization (BN), loss
function and pooling layers et al. In the fact, the pooling layer, which downsamples
fault-related features to submit to the next block, can be used or not in many deep neural
networks. The theories of these basic components are described as follows.

The convolution operation in a CNN is the key component of the entire network and
is the essential difference from a fully connected (FC) neural network. The convolutional
layer in a CNN can effectively reduce the amount of the trainable parameters, so that
the training speed of the model is greatly improved. In a neural network, the fewer the
trainable parameters, the less likely the network will be over-fitted. The formula for the
convolution operation can be expressed as follows:

z(l)u,v =
∞

∑
i=−∞

∞

∑
j=−∞

x(l−1)
i+u,j+v · krot

(l)
i,j · X(i, j) + b(l) (1)

where x(l−1)
i+u,j+v is the (l − 1)th channel of the input feature map, k(l)roti,j is the lth correspond-

ing convolution kernel, X(i, j) is the activation function of the corresponding layer, b(l) is
the corresponding bias term, i, j are the relative positions during feature mapping, z(l)u,v is
the lth channel of output feature map. The convolution operation can be repeated several
times to obtain a large number of feature maps.

BN is an important technique for normalizing feature data as a trainable process to be
inserted into the deep learning architecture [29,30]. Deep networks training is a complex
process, whenever a small change occurs in the first few layers of the network, then the
later layers will be cumulatively amplified down. Hence, the purpose of BN is to reduce
the internal covariate shift, in which updates of the front layer training parameters will
lead to changes in the distribution of the back layer input data. As a matter of fact, BN
force the distribution of the input value of any neuron in each layer of the neural network
back to a standard normal distribution with a mean of zero and a variance of one, so that
the activation input value falls in the region where the nonlinear function is more sensitive
to the input. BN operation is expressed as follows:

µβ = 1
m

m
∑

i=1
xi

σ2
β = 1

m

m
∑

i=1
(xi − µβ)

2

x̂i =
xi−µβ√

σ2
β+ε

yi = γx̂i + β→ BNγ,β(xi)

(2)

where xi and yi represent the input and output feature of the ith observation in a mini-batch.
γ and β are two trainable parameters to adjust the distribution. ε is a constant that tends
to zero.

Loss function is used to measure the quality of a set of parameters by comparing the
difference between the expected output and the true output. In multi-category tasks, the
cross-entropy error used to be the objected function to be minimized. Compared with other
traditional error functions, cross-entropy can promise a higher training efficiency. Apart
from that, in order to strengthen the feature, cross-entropy is usually used with the softmax



Sensors 2022, 22, 1705 4 of 14

function to map the output from zero to one. Then softmax function can be expressed
as follows:

p(y|x) = e(Wy .x)

∑C
c=1 eWc .x ←Wy.x =

d
∑

i=1
Wyi.xi = fy

⇓
p(y|x) = e( fy)

∑C
c=1 e( fc)

→ so f tmax( f )y

(3)

the first step is to take the yth row of W and multiply that row with x as well as compute for
all fc for c = 1, . . . , C, and then apply the softmax function to get a normalized probability.
Cross-entropy is expressed as follows:

H(p, q) = −
n

∑
i=1

p(xi) log q(xi) (4)

where p(xi) is the ith actual probability of observation. After calculating the cross-entropy
error, the gradient descent algorithm is used to optimize the parameters, and then the
network is fully trained after several iterations.

2.2. Insertion of Multi-Scale Superimposed Receptive Field

In this section, the motivation for fault characteristics reconstruction and multi-scale
superimposed receptive field that insert into the architecture of deep residual network
are introduced.

Receptive field is the convolutional kernel which realize the local perception of the
corresponding input, the implementation is a weighted summation over a local region of
the input. The size of the convolution kernel must be larger than 1 to have the effect of
enhancing the perceptual field, so that the most commonly used convolutional kernel for
feature extraction cannot be 1. Convolution kernels of even size cannot guarantee that the
input feature map size and output feature map size remain unchanged even if padding is
added symmetrically (e.g., if the input is 4 × 4 and the convolution kernel size is 2 × 2 and
padding is 1 on each side, there will be a total of 5 outputs after sliding, which will not
correspond to the input). Compared with bigger convolution kernels, multi-layer stacked
small-sized convolution kernels have more activation functions, richer features and greater
discernment. Convolution operation is accompanied by an activation function, and the use
of more convolution kernels can make the decision function more discriminative.

Multi-layer stacked convolutional kernel replacement for large size convolution kernel
involves parameter calculation. Table 1 shows the comparison of whether stacked convolu-
tion is used or not for different kinds of networks or for the same kind of networks with
different depths, including VGG-16, VGG-19, ResNet-50, ResNet-152. As shown in Table 1,
multi-layer stacked convolutional kernels have a larger number of parameters compared
to large size convolutional kernels and few-layer convolutional kernels, but parameters
growth rates are all stable at less than 1%, the replacement of 7 × 7 convolutional kernels
with 3 × 3 + 3 × 3 + 3 × 3 stacked convolutional kernels in the VGG-19 network has
the smallest parameter growth rate of 0.06%, and the replacement of 5 × 5 convolutional
kernels with 3 × 3 + 3 × 3 stacked convolutional kernels in the ResNet-152 network has
the largest parameter growth rate of 0.9%.

Table 1. Comparison of the number of computational parameters by multi-layer stacked convolu-
tional kernels inserted into different networks.

3 × 3 + 3 × 3 5 × 5 3 × 3 + 3 × 3 + 3 × 3 7 × 7

VGG-16 18,952,131 18,310,787 19,137,027 19,102,595
VGG-19 53,595,203 53,544,835 53,779,715 53,746,051

ResNet-50 762,691 714,703 1,234,093 1,197,084
ResNet-152 2,419,171 2,397,061 6,679,779 6,434,577
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The superiority of the residual network can also be seen in Table 1, where the number
of trainable parameters of the ResNet with a depth of 152 layers is less than 20% of that of
the VGG network with only 16 or 19 layers, so that ResNets are well suited for embedding
stacked convolutional kernels, which stabilize the number of parameters while keeping the
network lightweight.

3. Design of Fundamental Architectures for ResNet-152-MSRF

In this section, the architecture of ResNet-152-MSRF are elaborated.
The core part of the developed ResNet-152-MSRF is shown in Figure 1, the convolution

process is achieved by stacked convolutional kernels. The input image is output to the
next stage with tensor data with deep nonlinear features by the action of a three-layer
stacked convolution kernel. Neural networks gradually lose local features at each layer
through pooling as the depth increases, which is fatal for fault diagnosis. ResNets, on the
other hand, lead to ultra-deep network structures. ResNet-152-MSRF has 152 convolutional
layers, and each convolutional layer performs 3 nonlinear transformations because of
the embedded 3-layer stacked convolutional kernel, and then average pooling is used
between each layer as well as the number of feature channels increases and the feature size
decreases. In Figure 2 is the overall architecture of ResNet-152-MSRF. The input features of
the previous convolutional layer are added to the output features by identity shortcutting,
prerequisite is to ensure the same shape (e.g., the input shape of the previous layer is
64 × 64 × 16, then the output feature shape is the same). Dropout(0.5) function is used
between each convolutional layer to randomly reduce the number of neurons to prevent
overfitting, 0.5 represents the random neuron discard rate. Finally, the fully connected layer
is connected, and the number of output nodes is the same as the number of categories.
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The advantage of using this architecture is that it can train large datasets well, and the
network is deep enough to make sufficient nonlinear transformations to allow the computer
to discriminate features.
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4. Experiment Results
4.1. Data Collection and Processing

The drive-train dynamic simulator used for this experimental data acquisition is
shown in Figure 3. The entire device consists of a motor, an acceleration sensor, a magnetic
brake and a subway train axle box. The load and speed conditions of the bearings in
the axle box are determined by the motor, and the sampling frequency is determined by
the acceleration sensor. The acceleration sensor is installed between the motor and the
axle box (i.e., the input of torque) of the axle box, raw vibration data were collected for
4 health conditions with a sampling frequency of 12,000 Hz. As shown in Table 2, the
four health conditions are summarized, including one healthy condition and three faults.
The bearings under each health condition are subjected to different loads of 36 KN and
72 KN, respectively.
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Table 2. Health conditions of bearings in the subway train axle box.

Category Health Conditions Sampling Points
(per Series) Series Total Sampling

Points
Rotation

Speed (rpm) Loads (KN)

1 Roller fault 122,581 16 1,961,296 1752 36/72
2 Inner raceway fault 125,049 16 2,000,784 1751 36/72
3 Outer raceway fault 122,514 16 1,960,224 1751 36/72
4 Normal 122,500 16 1,960,000 1750 36/72
5 Total - 64 7,882,304 - 36/72

The data processing after the raw signal acquisition is shown in Figure 4. The raw
vibration signal collected by the acceleration sensor is sampled to more than 120,000 points
per series, The number of sampling points per series for each of the four health conditions
is shown in Table 2. By data splitting, the normalized vibration signal is split into several
signal fragments, here the size of each segment is set to 800, which can effectively ensure
the sparsity of the features and the size of the dataset, and then repeat the operation to
complete the splitting of all the data, import the completed splitting data into the GASF for
data reconstruction as well as divide the obtained 2D time-series graph into training set
and test set, the specific number of samples and testing set samples are shown in Table 3.

Although deep learning is well developed for computer vision, it is difficult to build
predictive models when encountering time series. For different raw input data such as 1D
vibration signal data, it is necessary to reconstruct the signals of 1D time series into the
form of 2D images, thus the advantages of computer vision can be fully exploited. The
2D timing diagrams of the four health conditions converted from 1D vibration signals by
GASF are shown in Figure 5.
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Table 3. Dataset size for each kind of health condition.

Fault Category Roller Fault Inner Raceway Fault Outer Raceway Fault Normal Total

Sample size 5620 5742 5505 4245 21,112
Image size 128 × 128 128 × 128 128 × 128 128 × 128 128 × 128

Number of feature
pixel points 92,078,080 94,076,928 90,193,920 69,550,080 345,899,008
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4.2. Hyperparameters Setup

The four neural networks covered in this paper, including the two residual networks
with embedded stacked convolutional kernels, are all implemented based on the tensor-
flow2.0 framework. Experiments were conducted on a thinkstation with an Intel Xeon
W-2223 CPU and an NVIDIA Quadro P220 GPU. In this section, the initialization and
setting of hyperparameters are described in detail.

Because there is no clear consensus on the hyperparameter settings for classical CNNs
and ResNets [27]. The genetic algorithm (GA) is advanced and outstanding; however,
there are hyperparametric results of the optimization of the algorithm itself, which need
to be verified experimentally in the next stage, so it is not intuitive. Hence, in this paper,
the hyperparameters are set according to the experiment results shown in Figure 6. The
experiments are conducted based on the representative VGG-16 and ResNet-152 built in
this paper and have shown that when the activation function of the convolution layer is
set to ReLU, it converges faster and with higher accuracy than tanh. Moreover, when the
loss function is set to mean square error (MSE), the diagnostic accuracy is significantly
inferior to that of cross entropy. The effect of the Adam optimizer is similar to RMSprop, so
this paper chooses the more commonly used Adam optimizer. In addition, other relevant
parameters are shown in Table 4. The input data shape set to 128 × 128 and the depth
to three. The meaning of Conv_2 in Table 4 is the number of 2D convolutional layers,
activation function_1 refers to the activation function used in the convolutional layer, the
ReLU function ensures the sparsity of the network and reduces the interdependence of the
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parameters, alleviating the overfitting. RBU refers to whether identity shortcut mapping is
used in the network structure, where 1 means used and 0 means not used.
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Table 4. Architecture-related hyperparameters of the VGG-16, VGG-19, ResNet-50, ResNet-152,
ResNet-50-MSRF, and ResNet-152-MSRF in the experiment.

Components VGG-16 VGG-19 ResNet-50 ResNet-152 ResNet-50-MSRF ResNet-152-MSRF

Input 128 × 128 × 3 128 × 128 × 3 128 × 128 × 3 128 × 128 × 3 128 × 128 × 3 128 × 128 × 3
Conv_2 13 16 50 152 50 152

Conv_kernel (3 × 3, 1) (3 × 3, 1) (3 × 3, 2) (3 × 3, 2) (3 × 3 × 3, 2) (3 × 3 × 3, 2)
Strides 1 1 1 1 1 1

BN 15 18 48 150 48 150
Activation
function_1 ReLU ReLU ReLU ReLU ReLU ReLU

RBU 0 0 1 1 1 1
Activation
function_2 softmax softmax softmax softmax softmax softmax

FC 3 3 2 2 2 2
Loss function Category_crossentropy Category_crossentropy Category_crossentropy Category_crossentropy Category_crossentropy Category_crossentropy

output 4 4 4 4 4 4
Optimizer Adam Adam Adam Adam Adam Adam

Lr 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Dropout 0.5 0.5 0.5 0.5 0.5 0.5

Activation function_2 represents the FC activation function. Softmax function is
suitable for multi-classification tasks. The learning rate is also uniformly set to 0.0001,
which is kept as the same as classical ResNets [18]. The use of the FC loss function has been
explained in Equation (3) and the number of output nodes in the FC is set to 4, which is the
same as the number of health conditions and contains one normal condition and 3 fault
states. The batch size has been set to 20.

4.3. Comparison of Six Target Diagnostic Models

As shown in Table 3, the total sample size reached 21,112, in addition to the number of
feature pixel points which reached 345,899,008. Compared with the original data scale, the
data scale has increased approximately 42.88 times, so experiments were conducted under
a scheme of sixfold cross validation. The total dataset is divided into six subsets, five of
them are used as the training set and one as the test set, and then the average accuracy and
loss are taken as the experimental results after cross validation. In addition, this experiment
is conducted for different classification tasks, and three sets of experiments are conducted
to verify the diagnostic performance of the model under different classification tasks.
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The general operation route of the experiment is shown in Figure 7, including the basic
principles of GASF and architecture of residual building block (RBB), in which RBB-1 maps
the input directly to the output and RBB-2 deals with the input by convolution and BN.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 16 
 

 

4.3. Comparison of Six Target Diagnostic Models 
As shown in Table 3, the total sample size reached 21,112, in addition to the number 

of feature pixel points which reached 345,899,008. Compared with the original data scale, 
the data scale has increased approximately 42.88 times, so experiments were conducted 
under a scheme of sixfold cross validation. The total dataset is divided into six subsets, 
five of them are used as the training set and one as the test set, and then the average accu-
racy and loss are taken as the experimental results after cross validation. In addition, this 
experiment is conducted for different classification tasks, and three sets of experiments 
are conducted to verify the diagnostic performance of the model under different classifi-
cation tasks. 

The general operation route of the experiment is shown in Figure 7, including the 
basic principles of GASF and architecture of residual building block (RBB), in which RBB-
1 maps the input directly to the output and RBB-2 deals with the input by convolution 
and BN. 

Segment of raw fault signal

…

Sample 
Reconstruction

Time Series

Co
nv

RB
B-

2

RB
B-

1
RB

B-
1

RB
B-

2

RB
B-

1
RB

B-
1

RB
B-

2

RB
B-

1
RB

B-
1

FC
So

ftm
ax

ResNet-50 or 152 

Accuracy

ResNets

 
Figure 7. The illustration of research operation route. 

Comparison of the average accuracy of the six neural network models trained and 
validated on four different health condition datasets is shown in Figure 8, and the average 

Figure 7. The illustration of research operation route.

Comparison of the average accuracy of the six neural network models trained and
validated on four different health condition datasets is shown in Figure 8, and the average
accuracies on the validation sets for all cases are given in Table 5. ResNets are significantly
superior to the general CNN in diagnostic performance in terms of network structure
alone. Moreover, for large-scale input data with deep features, residual networks show an
extraordinary learning ability. The residual network achieves good accuracy in the more
difficult quadruple classification task, to over 95%, and is relatively stable in the simpler
quadruple classification task, with fluctuations below 0.5%.
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Figure 8. Comparison of the accuracy of six neural network models trained and validated under
four different datasets, (a–d) represent different dataset contents. (a) A total of 3 classifications
consists of normal, outer raceway fault and inner raceway fault; 2 classification consists of normal
and outer raceway fault, (b) 3 classifications consists of normal, outer raceway fault and roller
fault; 2 classifications consists of normal and inner raceway fault, (c) 3 classifications consists
of normal, inner raceway fault and roller fault; 2 classifications consists of normal and roller fault,
(d) 3 classifications consists of outer raceway fault, inner raceway fault and roller fault; 2 classifications
consists of inner raceway fault and roller fault.

Table 5. Average accuracy of the results in Figure 8 (including the lowest and highest accuracy).

Method 2 Classification
Accuracy (%)

3 Classification
Accuracy (%)

4 Classification
Accuracy (%)

VGG-16 81.85+1.82
−1.85 73.13+2.91

−3.06 61.79+3.10
−1.53

VGG-19 84.68+2.38
−2.09 71.37+3.64

−1.66 49.09+2.95
−1.88

ResNet-50 93.18+1.75
−1.81 85.14+1.96

−3.40 86.78+1.22
−0.87

ResNet-152 95.30+0.39
−0.30 86.81+3.19

−2.63 87.92+2.71
−1.68

ResNet-50-MSRF 99.15+0.34
−0.22 95.61+1.50

−1.86 94.32+3.09
−2.85

ResNet-152-MSRF 99.77+0.23
−0.70 97.93+0.20

−0.31 96.99+1.13
−1.04

The average calculation time of six different neural network models is shown in
Table 6, where the validation batch is set to 10, and that on the training set is set to 20, as a
result, ResNet-152-MSRF takes more time than others. Obviously, comparing the number
of trainable participants of the network in Table 1, it is clear that it is related to the size of
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the number of parameters. It is worth noting that both ResNet-50 and ResNet-152 with
stacked convolutional kernels embedded (i.e., ResNet-50-MSRF and ResNet-152-MSRF)
saw their computation times rise by only 8.201% and 5.577%, respectively.

Table 6. Average calculation time of six different neural network models.

Method Training/Testing
Batch Size Epochs Total Calculation

Time (s)
Calculation Time

per Step (s)

VGG-16 20/10 100 5019 50.19
VGG-19 20/10 100 6467 64.67

ResNet-50 20/10 100 2536 25.36
ResNet-152 20/10 100 6974 69.74

ResNet-50-MSRF 20/10 100 2744 27.44
ResNet-152-MSRF 20/10 100 7363 73.63

4.4. Comparison between ResNet-152-MSRF and ResNet-50-MSRF

As shown in Table 5, the average diagnostic accuracy of ResNet-152-MSRF is 2.67%
higher than that of ResNet-50-MSRF in the four-classification task, 2.28% higher in the
three-classification task, and 0.62% higher in the two-classification task.

K. He et al. verified that neural networks lead to lower accuracy when the depth is
significantly increased [18]. However, as shown in Figure 9, ResNet-152-MSRF is more
stable than the ResNet-50-MSRF, with no significant fluctuations in diagnostic accuracy
or error. In contrast with Figure 9a,c. ResNet-50-MSRF achieves faster accuracy and error
convergence than ResNet-152-MSRF on the training set, reaching more than 80% training
accuracy after 15 iterations, and then combined with the calculation time comparison in
Table 6.
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5. Conclusions

Rapid diagnosis of bearings inside axle boxes of subway trains is an important task
to accelerate the modular maintenance of the whole train. This article mainly develops a
fault diagnosis method based on ResNet-152-MSRF. In addition, the traditional 1D fault
signal is reconstructed using GASF, so that 2D convolution layers can be built to facilitate
feature extraction.

(1) Evidenced by the experiments, ResNet-50 and ResNet-152 improved by 24.99%,
37.69%, 26.13% and 38.83% relative to VGG-16 and VGG-19, respectively. Additionally,
the result indicates that networks with RBB are more suitable for large-scale deep
feature extraction;

(2) Evidenced by the data reconstruction, the scale of the obtained data is increased by
about 42.88 times compared to the previous 1D time series signal, which is effective
for data enhancement;

(3) By embedding a multi-layered receptive field, the developed ReNet-152-MSRF en-
hances the accuracy by 9.07% compared to ResNet-152, and time cost increases non-
significantly. ResNet-152-MSRF has a 2.67% and 1.87% higher average diagnostic
accuracy, respectively, than ResNet-50-MSRF in different tasks. This suggests that
deeper networks do not necessarily affect accuracy and perform well when trained
on reconstructed fault data.

In the future, the method proposed in this paper will be verified in more real-time
monitoring platform and more accurate models will be obtained.
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