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Abstract: The Internet of Things consists of “things” made up of small sensors and actuators capable
of interacting with the environment. The combination of devices with sensor networks and Internet
access enables the communication between the physical world and cyberspace, enabling the develop-
ment of solutions to many real-world problems. However, most existing applications are dedicated
to solving a specific problem using only private sensor networks, which limits the actual capacity
of the Internet of Things. In addition, these applications are concerned with the quality of service
offered by the sensor network or the correct analysis method that can lead to inaccurate or irrelevant
conclusions, which can cause significant harm for decision makers. In this context, we propose two
systematic methods to analyze spatially distributed data Internet of Things. We show with the results
that geostatistics and spatial statistics are more appropriate than classical statistics to do this analysis.

Keywords: Internet of Things; quality of data; data analyze; geostatistics; spatial statistics

1. Introduction

Nowadays, it is possible to easily access services and data through the Internet from
any place and at any moment. It can be observed from recent decades that computational re-
sources are becoming increasingly accessible and more powerful. Furthermore, the number
of devices connected at the Internet has increased exponentially increase and is projected
to amount to 75.44 billion worldwide by 2025 (https://www.statista.com/statistics/47
1264/iot-number-of-connected-devices-worldwide/ (23 November 2020)). According to
Cisco Annual Internet Report (2018–2023) (https://www.cisco.com/c/en/us/solutions/
collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html),
the number of devices connected to Internet Protocol (IP) networks will be more than
three times the global population by 2023. However, these numbers only refer to devices
such as computers, smartphones, and tablets; if considered other devices such as sensors,
this number would be double easily. With many connections, devices communicating with
humans and other devices have enabled the development of a paradigm called the Internet
of Things (IoT) [1].

IoT involves anything with network access, for instance, sensors to advise on localized
fertilizer amounts or targeted pesticide use, self-monitoring health systems, air quality,
and traffic routing [2,3]. These sensors have the ability to transfer data over a network
with or without requiring humans, and these data can be provided in many forms, such as
streaming and discrete data, images, and social media, among others. The combination of
sensors network with the Internet enables the communication between the virtual and the
real world, allowing the decision-making without human intervention.
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According to economic analysis from Cisco, “IoT will generate $8 trillion worldwide
in Value at Stake over the next decade. This will come from five primary drivers: innova-
tion and revenue ($2.1 trillion); asset utilization ($2.1 trillion); supply chain and logistics
($1.9 trillion); employee productivity improvements ($1.2 trillion); and enhanced customer
and citizen experience ($700 billion)” (https://newsroom.cisco.com/press-release-content?
articleId=1621819). By not considering many factors that involve quality of service or even
a correct data analysis, it can probably cause financial losses to organizations. Some real
cases can be cited, such as the following: (1) Gartner has an annual cost because of poor
data in 2014 on average of $13.3 million dollars [4]; (2) The US Postal Service has finance
losses over $1.5 billion due to mail with wrong data [5]. The US economy has finance losses
of over $3 trillion a year [6].

The problem of data quality becomes complex and controversial with technology
evolution. With significant financial losses caused by weak data, these problems have
become the focus of much research from many perspectives. However, most of these works
are dedicated to solving a specific problem in a particular environment. With close flow,
it is difficult to consider the real capacity of IoT, since there is no sharing of information.
Furthermore, another problem is the accuracy of data quality in decision-making.

The data quality and data accuracy are also related to the data analysis [7–9]; i.e., an
incorrect data visualization or wrong method analysis could lead to misinterpretations
or wrong decision making, even if the data are collected correctly. In this context, this
article puts forward a systematic approach to support the data analysis by considering
the sensor spatiality factor and geographic aspects. To validate this approach, we applied
the methods on an extensive real-world database from the United States Environmental
Protection Agency (US EPA), specifically involving air quality data; we describe the dataset
in Section 4. The main contributions of the paper are as follows:

• A data analysis approach for outdoor sensors based on geostatistic data: a non-classic
statistical approach to IoT data analysis, which it is not used on the majority works,
due to the data limitation, the scenario space of the analysis, and the fact that the data
are not from the real world;

• A data analysis approach for outdoor sensors based on spatial statistics: like the above-
mentioned approach, however, here we analyze data in a discrete space (delimited by
a boundary), and in geostatistic data, it considers a continuous geographic area;

• A structuring of several methods from geostatistics and spatial statistics aggregated
with a multicriteria analysis to compose a systematic data analysis on outdoor sensors:
this is our main contribution, where we structured an outdoor sensors’ data analysis
approach considering the geographic data dispersion and conflicted indicators;

• An assessment of the proposed method and comparing other works that apply classi-
cal statistics.

The rest of the paper is organized as follows. In Section 2, is works related to IoT
data quality and data analysis. Section 3 introduces essential concepts to the method.
The proposed method analysis is described in Section 4. A case study to apply the methods
is presented in Section 5. The application and comparison with the existing techniques are
described in Section 6. Finally, Section 7 discusses the outcomes and recommendations for
further work.

2. Related Works

The Internet of Things is a highly scalable environment in which the data generated
are tremendous. Thus, the quality of information is becoming an issue of great interest
in both the academic and the industrial worlds. In this section, we discuss some of the
works related to data quality in IoT. Moreover, we also discuss the practices related to the
application domain of this paper and the related works to the methods that we proposed
as a solution to make the best data analysis with spatially distributed data.

https://newsroom.cisco.com/press-release-content?articleId=1621819
https://newsroom.cisco.com/press-release-content?articleId=1621819
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2.1. Data Quality in Internet of Things

There are many works in the literature that address quality of service and data ma-
nipulation in IoT. For instance, some works apply a publish–subscribe methodology to
simplify the integration between sensors and the cloud [10–12]. However, these solutions
do not assess the accuracy of the data or the analysis.

Other works try to apply particular solutions, such as a model-driven framework, to
data quality management [13], and a Blockchain-based approach was attempted in [14].
These solutions aim to improve IoT data quality and false data detection. On the other
hand, the solutions are applied in specific architectures and do not present a robust analysis
of the generated data.

There are some authors who propose solutions on ontology-based [15,16], where they
had a focus on identifying missing data or using the quality of information as an indicator
of IoT trust [15]. Although these solutions even present a math solution model, they do
not present an assessment or application evaluation of the real-world environment or even
real data.

In [17], the authors propose an attractive solution for data cleaning by an incorrect
data detection method based on an improved local outlier factor. Although the proposed
method was used to detect inaccurate data from offline data, the solution achieved excellent
performance to identify poor data. However, this solution identifies the incorrect data only
from the collection point and does not consider the visualization or analysis method.

Another work with a similar proposal is [18], where the authors developed a data
quality analysis and cleaning strategy for wireless sensor networks. For this, the authors
studied the impact of the relationship between different indicators on the quality assessment
during data cleaning. Although the authors performed some simulations, they did not
evaluate the solution in a real-world environment; moreover, just like the previous work,
they considered only the data from the sensor’s point.

There are also several other works related to the quality of data originating from the
sensors [19–21]. In [19], the authors designed a prototypical implementation of a distributed
IoT middleware layer to manage heterogeneous data sources. In [20], the authors propose
an altruistic approach to data quality assessment for sensor data. Furthermore, in [21],
the authors present a framework to evaluate and control data quality aspects when dealing
with social and sensor data. However, all of these works address only the data quality in
the collection point and specific scenarios; our proposal aims to show how to visualize and
build a correct analysis with IoT spatially distributed data.

The authors of [7], specifically disucss the state of the art of the data quality of the
Internet of Things. According to [7], the data generated in global scale deployment are
tremendous, and there are many open challenges related to data quality. The authors also
presented a detailed survey about quality features and the significance of a robust and
accurate data analysis. In this paper, we apply geostatistics and spatial statistics to make a
precise data analysis in IoT on the environmental context.

2.2. Environment and Pollution Context in IoT

To evaluate our proposal, we applied the methods on an extensive real-world IoT
database from the United States Environmental Protection Agency (USEPA), which we
described in Section 4. Notably, the environment subject is also a relevant research topic.
For this reason, we also researched in the literature on how the data are analyzed in
this field.

Exciting work in this field analyzed the impact of COVID-19 on people’s lives and
the natural environment [22]. For this purposed, the authors investigate the spatial and
temporal characteristics of the Air Quality Index (AQI) before and during the pandemic in
mainland China. The authors present several analyses with respect to this theme; however,
all of them apply classical statistical analysis. In this paper, we show that IoT spatially
distributed data request a different interpretation.
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There also other works that utilized the USEPA dataset to analyze the environmental
context [23,24]. In [23], the authors conducted a comparative study of AQI based on factor
analysis and USEPA methods for an urban environment. Furthermore, in [23], the authors
did not use the USEPA but used the same recommended method for health risk assessment
in a similar dataset in China. In both works, the authors used traditional statistics to analyze
specific points, which could not show the real context of the region.

In the same field, there is a project being conducted at the Alan Turin Institute called
London Air Quality (https://www.turing.ac.uk/research/research-projects/london-air-
quality). This project utilizes city-wide air quality sensors to develop solutions to un-
derstand and improve air quality over London. This group’s research has achieved im-
pressive results by applying machine learning algorithms and proposing data science
platforms [25–30]. In this paper, we propose a different solution by spatial autocorrelation
analysis, focusing on data analysis and data visualization.

2.3. Spatial Autocorrelation

Spatial autocorrelation is an association indicator from Geographic Information Science
(GIScience) [31,32]; we discuss this in Section III. This theme has been subject of many
studies [33]. In [34], the authors discuss the big spatiotemporal data analytics as a research
and innovation frontier, and one of the fields that is considered promising is the IoT.

There are in the literature some authors who propose applying geostatistics in the IoT
environment in many different ways [35–37]. However, these works do not demonstrate
the application method with concrete results, and they also do not propose a systematic
way to apply the techniques—some of them only discuss the potential.

In a recent study [38], the authors investigated rainfall-related tweets to determine
the areal units that optimize spatial autocorrelation patterns through the combined use of
indicators of global spatial autocorrelation and the variance of local spatial autocorrelation.
In our study, we propose using the same technique to scale the ideal areal units to analyze
the data.

In this paper, we propose a systematic approach to support the data analysis and the
decision makers by considering the sensor spatiality factor and geographic aspects. For this
purpose, we applied methods from the spatial statistics and geostatistic fields.

2.4. Proposal Highlight

To highlight our contribution, we present in Table 1 the main features of the related
works, with the following columns:

• Related work: reference to the related work addressed;
• Environment: the experimental environment, either Real world (e.g., a prototype) or

Simulator (i.e., a simulated experiments in a fictitious environment);
• Spatial: whether the approach considers the spatial dispersion in the analysis;
• QoD: whether the approach considers the QoD attributes in the data analysis;
• Multi-criteria analysis: whether the approach treats the problem as a multi-objective

problem and/or considers any conflicting objectives.

By analyzing Table 1, we can observe that our proposal focuses on accurate analysis.
For this purpose, we use only real-world data to validate our method, geostatistics and
spatial statistics to consider the spatial data dispersion, and a multicriteria analysis to
resolve the conflicting objectives. We present the results below.

https://www.turing.ac.uk/research/research-projects/london-air-quality
https://www.turing.ac.uk/research/research-projects/london-air-quality
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Table 1. Main features of the related works.

Related Work Environment QoD Multi-Criteria Analysis Spatial

Antonic, A. et al. [10] Simulator X X X
Alam, S. and Noll, J. A. [11] Simulator X X X
Kothari, A. et al. [12] Simulator

√
X X

Karkouch, A. et al. [13] Simulator X X X
Xu, X.; Lei, Y.; and Li, Z. [17] Real World

√
X X

Cheng, H. et al. [18] Simulator
√

X X
Liu, Q. [22] Real World X X X
Li, Z. et al. [24] Real World X X X
Habibia, R. [37] Simulator X X

√

de Andrade, S.C. et al. [38] Real World X
√ √

This paper Real world
√ √ √

3. Geographic Information Science

Spatial statistics and geostatistics are methods from the Geographic Information
Science (GIScience) field that encompass a wide array of disciplines, such as geography,
cartography, geodesy, statistics, and computer science. GIScience considers the nature of
geographic information to develop theories and methods for understanding geographic
processes, relationships, and patterns at different geographical scales [31,32]. GIScience
also includes social disciplines that address issues and impacts on society.

3.1. Spatial Data Analysis

In the GIScience field, the spatial data analysis is consider a central topic. It deals
with “a collection of techniques and models that explicitly use the spatial referencing asso-
ciated with each data value or object that is specified within the system under study” [39].
These methods are crucial to assess spatial relationships and assumptions in spatially
distributed data.

There are two fundamental concepts in spatial data analysis: (1) spatial autocorrelation,
which refers to the degree of dependence from similar objects near to others, and (2) spatial
heterogeneity, which is related to structure of these objects [40]. Analyzing these concepts
makes it possible to answer questions such as “how much does the economics of one
neighborhood influence another?” and we also hope to answer the questions “what is the
correct areal unit to analyze a set of sensors?” and “How can spatially distributed data be
analyzed?”

3.2. Spatial Autocorrelation

The geography scale, aggregation, and detail level are essential to construct an appro-
priate representation of the world, i.e., according to the process of handling the aggregation
of delimited the unit spaces, the data could show different values and interpretations [40].
In this context, different measures from the real world can covariate, and understanding
the spatial correlation essence could help to understand the analyzed phenomena better.

Spatial autocorrelation is directly related with the first law of geography or Tobler’s
law, which says “everything is related to everything else, but near things are more related
than distant things” [41]. This law is a fundamental premise for spatial statistics, and could
also be interpreted as a definition for the positive spatial autocorrelation. The opposite of
the law implies a negative spatial autocorrelation when places close to each other have
high spatial heterogeneity.

The interrelation between the features of a location is an essential aspect of the geogra-
phy data, which is crucial for real-world comprehension [42]. However, this interrelation is
a challenge for classic statistics due to the majority method to consider the independence of
the observations without spatial correlation.
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4. Methods

To analyze spatially distributed data in IoT, we propose the use of two methods from
the GIScience field. The first one (statistical spatial) is a framework proposed by [38] based
on Moran’s index [43], and the second one (geostatistic) is an interpolation method for a
correct data visualization [44]. Table 2 describes the main variables used in this work.

Table 2. List of important notation.

Term Description

wij matrix unit weight
yi the value of interest on location
y the mean of interest on location
n the total observations
I the Moran’s index
Ii the Moran’s LISA for each map unit
X a set of any areal units with different levels of data aggregation
φ objective functions

Z(Si) a known value at the location
λi an unknown weight for the measured value at the location
S0 the location with data unknown to prediction
N the number of measured values

4.1. A Framework to Definition of the Spatial Granularity

To measure the spatial autocorrelation level, it is possible to use an index that may
vary between 1 and −1: 1 for the high positive spatial autocorrelation, −1 for high negative
spatial autocorrelation, and 0 for the absence of spatial autocorrelation [45].

There are two types of indexes for this association: a global and other local. The global
coefficient correlation measures the overall spatial autocorrelation of the data set, with only
one index value. On the other hand, the local indicator of spatial autocorrelation (LISA)
measures different levels of spatial relationships; it depends on the scale defined, such as
district, county, state, country, etc.

The most common global and local indexes are calculated by Moran’s I. The global
Moran’s I is the result of the Equation (1) [46].

I =
n

∑n
i ∑n

j wij
·

∑n
i ∑n

j wij(yi − y)(yj − y)

∑n
i (yi − y)2 (1)

where

wij, is the matrix unit weight, wij = 1 if i and j are neighbors, and wij = 0 otherwise;
yi and y represent the value and the mean of interest on location i;
n is the total observations; and, I is the Moran’s index, a metric used to test the hypothesis
about spatial autocorrelation.

The Moran’s I aims to test the spatial independence (null hypothesis). In this context,
the null hypothesis is true if its value is zero. Positive values, between 0 and 1, point to a
positive autocorrelation, and negative values, between 0 and −1, indicate negative autocor-
relation.

This local indicator utilization together with the global index improves knowledge
about the process from which the spatial dependence originates. The LISA makes a specific
value for each object, which can identify clusters, outliers, and the existence of more than
one spatial pattern.
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According to [46], a LISA should adhere to two objectives: (1) to allow the identification
of significant spatial associate patterns and (2) to be a decomposition from the global spatial
association index. Equation (2) show Moran’s LISA calculation.

Ii =
(yi − y)∑n

j=1 wij(yj − y)
∑n

i=1(yi−y)2

n

(2)

where

wij, is the matrix unit weight, wij = 1 if i and j are neighbors, and wij = 0 otherwise;
yi and y represent the value and the mean of interest on location i;
n is the total observations; and, Ii is the Moran’s LISA for each map unit.

In Equation (2), an Ii > 0 means that i has values very similar to its neighbors (positive
spatial autocorrelation), and Ii < 0 means that i has different values from the neighbors
(negative spatial autocorrelation). Furthermore, analogously to the global indicators,
the Moran’s LISA should be evaluated by the pseudo-significance test.

As demonstrated in [38], the determination of an optimal areal unit for spatial analysis
is a complex task owing to the Modifiable Areal Unit Problem (MAUP) effects, differences in
the fields of application, and uncertainties and conflicts arising from the different potential
spatial indicators to be used. For this reason, it is necessary to select the candidate solution
(optimal areal unit) by a Pareto ranking [47].

To apply Pareto ranking in this framework [38], in order to model a solution, let X be
a set of any areal units with different levels of data aggregation. Each spatial granularity
of aggregation x ∈ X is characterized by different criteria that will be optimized by a set
of objective functions; in this case, the global and local indexes. A vector containing m
objective functions φm can be represented by

Φ(x) = [φ1(x), φ2(x), · · · , φm(x)] ∈ Rm (3)

A Pareto-optimal solution only contains areal units that are not Pareto-dominated by
any other areal unit [38]. In general terms, an areal unit xi ∈ X dominates another xj ∈ X
when it has satisfied the following two constraints:

(i) ∀φ ∈ Φ : φ(xi) � φ(xj), and
(ii) ∃φ ∈ Φ : φ(xi) ≺ φ(xj)

where ≺ and � correspond to the ‘general better’ and ‘better or equal’ relations, depending
on whether the objective function refers to maximization or minimization. It is possible
to obtain more than one Pareto Frontier according to the ranking or even two or more
solutions in the Pareto-optimal areal units; in this case, additional human expertise is
required for the selection of a proper areal unit.

In Algorithm 1, we present a systematic way to use this framework. First, we provide
the input data (line 1); in this paper, we use a pollution data set described in Section 5.
The first step of the method is to model the candidate’s areal unit solution, and here it
defines the size of the areal unit to make the data aggregation (line 3). In the second step
(line 4), it assesses the candidate’s areal unit by the defined criteria; in this case, they are
the global and local autocorrelation index (Global Moran’s I and the coefficient of variation
of Local Moran’s I, respectively). The last step is to select an “optimal” areal unit from the
non-dominated Pareto frontier (line 5).

4.2. Data Interpolation

For a coherent data visualization and correct data measure, we apply a data interpola-
tion method, namely Kriging [44]. This technique is a regression method from geostatistic
to data interpolation, i.e., to estimate values in unknown data points. In Figure 1, we show
an example situation, where we would like to know the temperature from a local that does
not have spatial information available.
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Algorithm 1 Multicriteria for the selection of an optimal areal unit

1: Input data: pollution data at an individual level (the pollution data in our application)
2: for each areal unit on set of criteria, do
3: Modeling of candidate areal unit
4: Evaluation of an candidate areal unit (MCDA)
5: Selection of the optimal areal unit (non-dominated solution)
6: end for
7: return Optimal areal unit

Figure 1. Example of the need to estimate a value that does not have spatial information available.

There are many other data interpolation techniques in the GIScience field [42]. How-
ever, the Kriging method allows for incorporating three factors to improve the estimation
accuracy: (1) local fluctuation, which makes it possible to analyze the spatial autocorrela-
tion during the data interpolation; (2) noise, which makes it possible to identify random
changes space independent, i.e., detect errors in the collected data; and (3) incorporating
general trends as an auxiliary variable, e.g., using a model with similar behavior to help in
the estimation. More details about any of those factors can be found in [42].

Kriging’s technique measures the surrounding values to derive a prediction for a
location with unknown data. The Kriging interpolation formula is formed as a weighted
sum of the data, as described in Equation (4).

Ẑ(S0) =
N

∑
i=1

λiZ(Si) (4)

where

Z(Si) is a known value at the location i,
λi is an unknown weight for the measured value at the location i,
S0 is the location with data unknown to the prediction, and
N is the number of measured values.

In the Kriging method, the λi is dependent on a fitted model to the value locations,
the spatial relationship among the known values that surround the prediction location,
and the distance from the known points to the prediction location. Therefore, it is necessary
to create the variograms and covariance functions to estimate the statistical dependence to
make a fitted model to the measured points. Details about the fitted model features, as well
the variograms and covariance functions, can be found in [42].

We show in Figure 2 the systematic way that apply the Kriging interpolation in
the IoT context. First, we normalize the input data and build a shapefile from the local
area; the map is only for visualization. The second step is to model the variogram (i.e.,
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to construct the fitted model) and then apply the Kriging method. The last step is to make
the map interpolation.

To normalize the data values, we use the bestNormalize (https://cran.r-project.org/
web/packages/bestNormalize/index.html) package from the R language. Furthermore,
we developed all of the systematic methods in R, which are available in https://github.
com/Leonild/SpatialDataAnalysis.

To normalize the
values

To create a map
from the location

To build the fitted
model

To make the map
interpolation

To apply the
Kriging method

Figure 2. A systematic way that we use to apply the Kriging interpolation on the IoT context.

5. Case Study

In recent years, high levels of pollution in specific dry periods of the year have
forced authorities to rethink the organizational strategy of cities and propose drastic
changes in urban centers. According to the World Health Organization (WHO) (https:
//www.who.int/), half of the world’s population lives in urban centers, and the estimate
for 2050 is that 70% of the population will be urban [48]. This means that urban development
will have a direct impact on human health.

Human health is affected by several correlated factors, factors that go beyond the
power of health agencies. These include residences, sanitation, transportation, the energy
system, and parks with green spaces, in addition to decent jobs, education, and healthy
food [49].

With population growth, by 2050, it is estimated that 2.5 billion people will inhabit
cities in addition to those who already inhabit them. This presents a unique opportunity to
plan cities that protect and promote public health through well-structured organization.
In this context, pollution has drawn a great deal of attention, causing irreversible damage to
the planet, as well as global warming, respiratory diseases, and extinction of microbiomes,
among others [50,51].

To assess our approach in this context, we chose an extensive real-world IoT database
to analyze. This database is from the United States Environmental Protection Agency
(US-EPA) (https://www.epa.gov/) (download available at aqs.epa.gov/aqsweb/airdata/
download_files.html), which has millions of records (updated daily with new data) to
four pollutants, Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Carbon Monoxide (CO),
and Ozone (O3). The database contains 28 fields described in Table 3. These data come

https://cran.r-project.org/web/packages/bestNormalize/index.html
https://cran.r-project.org/web/packages/bestNormalize/index.html
https://github.com/Leonild/SpatialDataAnalysis
https://github.com/Leonild/SpatialDataAnalysis
https://www.who.int/
https://www.who.int/
https://www.epa.gov/
aqs.epa.gov/aqsweb/airdata/download_files.html
aqs.epa.gov/aqsweb/airdata/download_files.html
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from sensors around all US countries from the years 2000 until the present. We show in
Figure 3 the position of the sensors in 2020, including information about SO2.

Figure 3. Positions of sensors, which collect information about SO2. Source: epa.gov/outdoor-air-
quality-data/interactive-map-air-quality-monitors.

Table 3. Description of the EPA database 28 fields.

Database Fields

1 Index 15 O3 Unit

2 State Code 16 O3 1st Max Value

3 County Code 17 O3 1st Max Hourn

4 Site Num (Local in a county) 18 O3 AQI

5 Adress (Street, number. . . ) 19 SO2 Units (description)

6 State (name) 20 SO2 Mean

7 County (name) 21 SO2 1st Max Value

8 City (name) 22 SO2 1st Max Hourn

9 Date Local 23 SO2 AQI

10 NO2 Units (description) 24 CO Units (description)

11 NO2 Mean 25 CO Mean

12 NO2 1st Max Value 26 CO 1st Max Value

13 NO2 1st Max Hourn 27 CO 1st Max Hourn

14 NO2 AQI 28 CO AQI

In this study, we use the Air Quality Index (AQI) as the observation variable. The AQI
indicates how harmful the air is to human health. We show in Table 4 the AQI basics for
ozone and particle pollution. In Table 4, the meaning of the colors is as follows: green,
air quality is satisfactory, and air pollution poses little or no risk; yellow, air quality is
acceptable, but there may be a risk for some people, particularly those who are unusually
sensitive to air pollution; orange, members of vulnerable groups may experience health
effects (the general public is less likely to be affected); red, some members of the general
public may experience health effects, and members of sensitive groups may experience
more serious health effects; purple, the risk of health effects is increased for everyone;
maroon, health warning of emergency conditions, everyone is more likely to be affected.

epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors
epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors


Sensors 2022, 22, 1693 11 of 21

Table 4. AQI basics for Ozone and Particle Pollution. Source: www.airnow.gov/aqi/aqi-basics.

AQI Color Levels of Concern Values of Index

Green Good 0 to 50

Yellow Moderate 51 to 100

Orange Unhealthy for Sensitive Groups 101 to 150

Red Unhealthy 151 to 200

Purple Very Unhealthy 201 to 300

Maroon Hazardous 301 and higher

The index for a pollutant is calculated using the mathematical expression of the
Equation (5) [23].

IP =
IHi − ILO

BPHi − BPLO
(CP − BPLO) + ILO (5)

where,

IP is the index value for pollutant, P;
CP is the truncated concentration of pollutant, P;
BPHi is the breakpoint that is ≥CP;
BPLO is the breakpoint that is ≤CP;
IHi is the AQI value corresponding to BPHi;
and, ILO is the AQI value corresponding to BPLO.

In this context, we executed experiments aim to determine the areal units that optimize
spatial autocorrelation patterns through the combined use of indicators of global spatial
autocorrelation and the variance of local spatial autocorrelation. Furthermore, we applied
the Kriging interpolation method for data visualization. Thus, we validate our approach,
and at the same time, we contribute to solving a real-world problem.

Study Areal Description

To evaluate the methods in these data, we chose two areal unit dimensions: a large
one that involves the whole sensors described in Figure 3, and a small one, which includes
the entire sensors in the state of California. We choose California due to the high variability
between sensors’ values and the considerable number and distribution of sensors.

According to United Nations Statistics Division [52], the United States of America
(USA) has a total area of 9,629,091 km2, and California is the third-largest by area at
423,970 km2 (it is also the most populous USA state). The surface in both areal unit
dimensions were partitioned into hexagonal areal units, where each spatial unit aggregated
the AQI’s pollutants. Furthermore, the hexagonal shape reduced the visual field bias when
compared with the square units [53].

6. Computational Results

We implemented the experimental programs in Python (data prepossessing), and we
made the geostatistic and spatial statistical methods in the R language; this made it possible
to find all code and experimental data in our public repository (https://github.com/
Leonild/SpatialDataAnalysis).

To evaluate our approach, first, we applied the framework described on Section 4.1
to determine the areal units that optimize the spatial autocorrelation patterns through the
combined use of indicators of global and local spatial autocorrelation; this returns what
the best areal unit to make data analysis is. Then, we applied the interpolation method
described in Section 4.2, to an accurate data visualization. Furthermore, we compared the
results with the works that use the classical statistics, to provide evidence that the analysis
method could lead to wrong interpretations.

www.airnow.gov/aqi/aqi-basics
https://github.com/Leonild/SpatialDataAnalysis
https://github.com/Leonild/SpatialDataAnalysis
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6.1. Spatial Statistics Analysis

Following Algorithm 1, we modeled the candidates’ areal units by regular hexagon
shape, and we determined the length of the sides in five scales: 100 km, 200 km, 300 km,
400 km, and 500 km. Furthermore, we analyzed for all the pollutants, but here, due to
the number of the images and very similar characteristics, we present results for only one
pollutant (O3).

Figure 4 shows Global Moran’s I coefficient and the coefficient of variation of Local
Moran’s I for the areal units. Only some of the areal units show an improvement, with
higher Global Moran’s I and lower coefficient of variation of Local Moran’s I. The other
areal units just keep values that represent the absence of spatial autocorrelation and with
high variation of Local Moran’s I. In this experiment, an areal unit of 200 km is linked to a
higher pattern of spatial association and lower spatial heterogeneity than the other areal
units; i.e., the former provides more consistent spatial patterns and is thus likely to reflect
more reliable analytical results.

To analyze the chart from Figure 5, we should remember the conflicting objectives that
we considered; in this case, the ideal solution should have a higher Global Moran’s I (GM)
and a lower coefficient of variation of Local Moran’s I (LM). Let us look at Figure 5. We
have five possible areal units of data aggregated to choose for analyzing: (1) 100 km with
a low LM and less high GM; (2) 300 km in the same context; (3) 500 km, which, however,
has a low LM but also has a low GM; (4) the worst solution, 400 km, with a lower GM
and a higher LM; and (5) the areal unit of 200 km with the higher GM and the lower LM.
Therefore, according to the results of the multicriteria optimization framework in Figure 5,
the Pareto-optimal solution is the areal units of 200 km. These areal units dominate the
other ones because their criteria are better; i.e., they are combined with a higher Global
Moran’s I and a lower coefficient of variation of Local Moran’s I. This means that the data
aggregated inside the 200 km areal unit have a higher correlation than the others.

Figure 4. Trade-off between the global indicator of spatial association (Global Moran’s I) and the
overall degree of structural (in)stability (coefficient of variation of Local Moran’s I normalized by
scaling between the minimum and maximum values of the Global Moran’s I coefficients. Both global
and local spatial statistics were computed for a row-standardized spatial weights matrix based on
first-order rook contiguity.
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Figure 5. Pareto frontier and trade-off between Global Moran’s I and the coefficient of variation of
Local Moran’s I.

Figure 6 shows the spatial patterns of the O3 collected data from the geographic
coordinates data sensors on the maps of the regular hexagons with the side lengths of
200 km, 300 km, 400 km, and 500 km. When we chose an arbitrary areal unit, such as
400 km or 500 km, we obtained different and discordant spatial patterns when compared
with the Pareto-optimal areal units. In practice, this affects the conclusions and may lead to
misunderstandings and mistakes by decision-makers when applying the strategy to the
IoT infrastructure planning.

Figure 6. Comparison of spatial patterns of Pareto-optimal areal units with others arbitrary areal
units. The patterns correspond to the ‘odds ratio measure’ of the frequency of geographic coordinates’
O3 data [54].

To analyze the method in another order of magnitude, we replicated the experiment to
a smaller area, in which we used the same data but considered only the state of California.
In this new experiment, we also modeled the candidates’ areal units by a regular hexagons
shape; however, we determined the length of the sides in scales of 100 km, 90 km, 80 km,
70 km, 60 km, and 50 km.
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Figure 7 shows Global Moran’s I coefficient and the coefficient of variation of Local
Moran’s I for the areal units in the California states. This makes it possible to observe that
all the areal units show different patterns from each other. In this experiment, the areal unit
of 80 km is linked to a higher pattern of spatial association and lower spatial heterogeneity
than the other areal units; i.e., the former provides more consistent spatial patterns and is
thus likely to reflect more reliable analytical results.

Figure 7. Trade-off between the global indicator of spatial association (Global Moran’s I) and the
overall degree of structural (in)stability (coefficient of variation of Local Moran’s I normalized by
scaling between the minimum and maximum values of the Global Moran’s I coefficients) considering
the California states.

To confirm the conclusion above, we present in Figure 8 the results of the multicriteria
optimization framework, where the 80 km areal unit is alone in the first Pareto frontier.
Moreover, it is also possible to observe that the 50 km areal unit is isolated in the last Pareto
frontier; this means the lower pattern of spatial association and higher spatial heterogeneity
than the other areal unit.

Figure 8. Pareto frontier and trade-off between Global Moran’s I and the coefficient of variation of
Local Moran’s I for the O3 pollutant in California state.
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Like Figure 9, Figure 8 shows the spatial patterns of the O3 collected data from the
geographic coordinates data sensors on the maps of the regular hexagons with the side
length of 100 km, 90 km, 80 km, and 50 km. If we chose an arbitrary areal unit, such as
50 km, we obtained different spatial patterns when compared with the Pareto-optimal
areal units. It is essential to highlight that this affects the conclusions and may lead to
misunderstandings and mistakes by decision-makers when applying the strategy to the
IoT infrastructure planning.

Figure 9. Comparison of spatial patterns of Pareto-optimal areal units with other arbitrary areal units
in the state of California. The patterns correspond to the ‘odds ratio measure’ of the frequency of
geographic coordinates O3 data [54].

6.2. Data Interpolation

To compare the results of the data interpolation with works that utilize classical
statistics in the same context, we used data from 2015 related to O3 pollutants. Following
the systematic method presented in Figure 2, first, we normalize the data, and then we
build the fitted model. It is essential to remember that the map from the location is only for
visualization.

We show in Figure 10 the fitted model used to apply the Kriging method. It can be
observed that this variogram represents an exponential model; i.e., the spatial autocorre-
lation disappears entirely only at an infinite distance, which means that the near data are
strongly autocorrelated.
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Figure 10. Variogram from the fitted model to O3 data in the United States in 2015.

This fitted model is the input for Kriging interpolation. Figure 11 shows the result of
Kriging interpolation to O3 data in the United States in 2015, where the gradient color repre-
sents the O3 AQI. If we chose an classical statistics methods to represent the same data (e.g.,
a simple average) like other literature works [23,24], we could obtain a map visualization
like Figure 12; the colors in the map from Figure 12 follow the Table 4 definition.

Figure 11. Kriging method interpolation applied to O3 AQI in the United States (2015).
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Figure 12. O3 AQI peer state in the United States in 2015 using classical statistics (average); the
colors in the map follow the definitions in Table 4, and white means that the area does not have
data information.

It is possible to observe that if we consider only the mean by state (Figure 12), we can
make incorrect interpretations about the data. For example, considering the average by
country, we can conclude that entire state of California has air that could be a risk for some
people, particularly those who are unusually sensitive to air pollution, which is not valid if
we look to the interpolation data (Figure 10).

Another good example is the state of Arizona, which looks like a state with totally
healthy air if we considered the map in Figure 12 (data collected in few points). However,
we see in the interpolation map from Figure 11 that it is entirely incorrect to consider the
Arizona state with entirely healthy air.

With the geostatistics in our proposal (Kriging method), we can also estimate a pre-
diction value; i.e., we can analyze the possibility of a factor that exceeds a predetermined
amount. Figure 13 shows the probability prediction of the O3 pollutant overtaking an AQI
of 50. The estimate floats from 0 (0%) to 1 (100%).

Figure 13. Kriging method indicative applied to O3 AQI in the United States (2015); the probability
prediction that the O3 pollutant overtakes an AQI of 50.

6.3. Discussion

By summarizing our results, we can observe that a classical statistical method is
inadequate for data analysis of outdoor sensors. Furthermore, only a geostatistic or spatial
static analysis may not be enough either. For this reason, we propose structuring several
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methods from geostatistics and spatial statistic aggregated with a multicriteria analysis to
compose a systematic data analysis on outdoor sensors.

Although we present results only for the environmental context, our proposal is
promising for a free contextual application in outdoor sensors’ data analysis. In the next
section, we discuss our proposal’s limitation and future work.

7. Conclusions

The combination of devices with sensor networks and Internet access enables the
communication between the physical world and cyberspace, providing the development of
solutions to many real-world problems through the IoT.

IoT involves anything with network access with or without human interaction re-
quired, and the data from these “things” can be provided in many forms, such as streaming
and discrete data, images, and social media, among others. The combination of the network
of sensors with the Internet enables the communication between the virtual and real world,
allowing the decision making without human intervention. However, a wrong decision
due to poor data quality or erroneous data interpretation can cause significant financial
harm to companies and institutions.

The problem of data quality becomes complex and controversial with the evolution of
technology. The data quality and data accuracy are also related to the data analysis [7–9].
In this context, we presented in this paper a systematic approach to support the data analysis
by considering the sensor spatiality factor and geographic aspects. Moreover, we applied
the methods on an extensive real-world database from the United States Environmental
Protection Agency (US EPA).

First, we determined the areal units that optimize the spatial autocorrelation patterns
through the combined use of indicators of global and local spatial autocorrelation, which
showed what the best areal unit to make data analysis is. Next, we applied the Kriging
interpolation to an accurate data visualization, and we also provided evidence that the
report given only by the classical statistics could lead to wrong interpretations.

Although we validate our proposed method only in the environmental context, we
could apply this analysis in any context, including a free-context method. However,
to validate it as it would be validated with a free-context method, we would need to realize
these specific analyses. Furthermore, it is important to highlight some limitations in the
experiments:

• We only did offline experiments.
• Due to the analysis time, we could not use this method in critical applications without

substantial modifications.
• It is necessary to validate this method in other contexts to ensure that our proposals

have a free context application.

In future work, we intend to perform experiments and analysis in micro-regions with
other study cases, where we hope to evaluate the decision-making as well. Furthermore,
we also aimed to apply the spatial autocorrelation to deduce the correct spatial distributed
sensor dimensions. In another context, we intend to do a performance evaluation to
conclude if it is feasible to use our approach in real-time execution for critical applications.
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