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Abstract: Automatic systems are increasingly being applied in the automotive industry to improve
driving safety and passenger comfort, reduce traffic and increase energy efficiency. The objective of
this work is focused on improving the automatic brake assistance systems of motor vehicles trying to
imitate human behaviour but correcting possible human errors such as distractions, lack of visibility
or time reaction. The proposed system can optimise the intensity of the braking according to the
available distance to carry out the manoeuvre and the vehicle speed to be as less aggressive as
possible, thus giving priority to the comfort of the driver. A series of tests are carried out in this work
with a vehicle instrumented with sensors that provide real-time information about the braking system.
The data obtained experimentally during the dynamic tests are used to design an estimator using
the Artificial Neural Network (ANN) technique. This information makes it possible to characterise
all braking situations based on the pressure of the brake circuit, the type of manoeuvre and the test
speed. Thanks to this ANN, it is possible to estimate the requirements of the braking system in real
driving situations and carry out the manoeuvres automatically. Experiments and simulations verified
the proposed method for the estimation of braking pressure in real deceleration scenarios.

Keywords: pressure sensor; artificial neural network; types of braking; brake pressure estimation

1. Introduction

Over the last decades, there have been major advances in automotive safety systems,
both active and passive. Since the appearance of the Anti-lock Braking System (ABS) in
the early 1970s, which was the first driver assistance system, new means have emerged
to help reduce the likelihood of an accident or to reduce its consequences in case of an
accident. The most important active safety equipment in vehicles is the braking system,
which is a fundamental aspect of vehicle dynamics. The introduction of ABS was a major
breakthrough for the automotive industry and a great improvement in safety as it assists
vehicle braking in low-grip conditions.

The current breakthrough in the automotive industry is due, in terms of safety, to
the continuous improvement of intelligent driver assistance systems. This boom is the
result of manufacturers’ awareness and their aim to build ever safer vehicles to reduce
the number of road fatalities. The latest are Advanced Driver Assistance Systems (ADAS),
which aid the driver while on the road and thus improve the driving experience [1–3].
These systems interact with the driver to help him practice safer driving, taking control
of the vehicle if necessary [4–6]. ADAS systems manage simple tasks, such as reducing
the vehicle’s fuel consumption [7–11], and more critical manoeuvres too, like avoiding
risky situations and collisions on the road by directly acting on others vehicle systems
such as steering or brakes [12–14]. Among the most frequent road accidents is the head-on
collision. This type of accident is caused by late and untimely driver intervention, as
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well as insufficient braking torque in emergency situations. Since many of these accidents
are due to driver inattention and human error, progress in these assistance techniques
enhances passenger safety and comfort. These assistance mechanisms include stability
control, automatic braking, adaptive cruise control, hill descent control and traction systems.
All these examples require onboard sensors, procedures for estimating variables, control
algorithms and components that act according to the output of the sensors, so that the tasks
for which they are intended can be carried out.

In the braking system of a standard motor vehicle, the braking torque is generated by
the hydraulic pressure applied in the brake cylinder. Therefore, the precise measurement
of the braking pressure by means of a pressure sensor and the estimation of this pressure is
very important to characterise the braking performance of a vehicle. There is a multitude of
research based on braking pressure observation methods [15–19]. In Reference [20], a recur-
sive least square algorithm for brake cylinder pressure estimation was proposed to provide
useful information to ABS. In Reference [21], an algorithm for estimation of the pressure
in the wheel cylinder based on the extended Kalman filter was developed, considering
the hydraulic model and tyre dynamics. In Reference [22], a hydraulic model and inverse
model were developed based on the characteristics obtained from the simulation of the
active pressure system. The active pressure system included the control valves, eccentric
rotary plunger pump, brake pipe/hose and throttles. The models can be used to the inline
estimation with Electronic Stability Program (ESP) and obtain the wheel brake pressure. In
Reference [23], a brake pressure estimation algorithm for ABS was proposed considering the
hydraulic fluid characteristics. In Reference [24], the braking pressure estimation algorithm
was carried out by calculating the volume of fluid flowing through each hydraulic valve. In
Reference [25], a braking system architecture based on the use of proportional servovalves
for continuous brake pressure control was proposed. The optimum pressure to be applied
to each wheel was obtained from a fuzzy logic control block. In Reference [26], a proba-
bilistic estimation method of brake pressure was developed for electrified vehicles based
on multilayer artificial neural networks with Levenberg–Marquardt backpropagation. In
Reference [27] an integrated time series model based on multivariate deep recurrent neural
networks with long short-term memory units was developed for the dynamic estimation
of the brake pressure of electrified vehicles. In Reference [28], an adaptive sliding mode
hydraulic pressure controller based on a hydraulic pressure estimator to track desired
hydraulic pressure for “sensorless” electrohydraulic brake system was proposed. In Refer-
ence [29], a double closed-loop cascade control architecture with interconnected pressure
estimation for a pressure-sensor-unequipped integrated electrohydraulic brake system was
presented. In Reference [30] an algorithm based on vehicle information considering the
evolution of the brake lining’s coefficient of friction was proposed for the estimation of the
master cylinder pressure of the electrohydraulic brake system.

In vehicle behaviour prediction, Long Short-Term Memory (LSTM) are the most widely
used deep models [31]. To predict the intention of vehicles, LSTM is used in References [32–34]
as a sequence classifier. However, in Reference [35], it is shown that, in some driving sce-
narios, feed-forward neural networks can have competitive results with faster processing
time compared to LSTMs. The large processing time of LSTMs is due to the fact that they are
sequential and cannot be parallelised. In addition, LSTMs are vulnerable to parameter tuning
and need task-specific engineering, such as gradient clipping. These drawbacks do not appear
in feed-forward networks. Feed-forward neural networks are computational models capable
of learning, storing and retrieving information based on a training dataset. ANNs are useful
for solving many engineering problems that are difficult to tackle using conventional methods.
They are very flexible and can be used generally to learn a map from inputs to outputs. ANN
are suitable for classification prediction problems where inputs are assigned a class or label
and for regression prediction problems where a value is predicted given a set of inputs.

The problem presented in this study, the estimation of vehicle braking, does not
have long dependencies, and the input data does not form a sequence. For this reason, a
feed-forward network has been chosen instead of LSTM.
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Motivated by the previous review, this article provides an innovative design of an
estimator of the pressure in the hydraulic circuit of the braking system and the type of
braking manoeuvre: maintained, progressive or emergency.

The contributions of this work with respect to the existing approaches are:

1. The proposal of a novel methodology for the analysis of the data acquired by the sen-
sors during the experiments. New indicators were defined in order to characterise the
braking manoeuvre of a vehicle, providing information on type of braking, intensity
or evolution over time.

2. The development of an ANN-based estimation algorithm to estimate the pressure
in the brake circuit and the type of braking. The system was implemented with the
experimental data obtained from the sensors during the experiments. Therefore, the
system will brake by imitating human behaviour.

3. The proposed braking system automatically decides how to apply the brake when
faced with the risk of a collision. It achieves this by using the information obtained
by the sensors about the obstacle. Depending on the position of the obstacle and the
speed of the vehicle, the actions on the braking system to reduce the speed will be to
perform (1) maintained, (2) progressive and (3) emergency braking. In other words,
the automatic braking offers safe and comfortable brake control, without braking too
early or too late.

The manuscript is organised as follows: Section 2 explains the vehicle instrumentation
and the methodology employed to carry out the experiments. Section 3 shows the mea-
surement of the sensors and describes the methodology applied for the analysis of the data
obtained in the experimental tests. Section 4 presents the different ANN architectures that
have been designed, and the results of the simulations and their validation are included in
Sections 5 and 6, respectively; the results are discussed in Section 7, and Section 8 concludes
the paper.

2. Materials and Methods

Figure 1 shows schematically the flow diagram for the development of the research
presented in this paper. A vehicle was instrumented with different sensors and a series
of braking tests were carried out. The real results collected by the sensors during the
experiments allowed the design of an ANN-based estimation system that simulates these
results in order to characterise braking of any nature and enables it to be used in real traffic
conditions.

The instrumentation used in this study is explained in Section 2.1, and the methodology
that has been carried out for the proper development of the experimental phase is detailed
in Section 2.2.

2.1. Instrumented Vehicle

For the experiments, a Peugeot 207 1.6 HDI 16v was instrumented with two pressure
sensors incorporated in the independent hydraulic circuits of the front wheels, a load cell
installed in the brake pedal, a thermocouple in the front right brake disc and a Global
Positioning System (GPS) receiver, as shown in Figure 2. The sensors are described in detail
in the next subsections.
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2.1.1. Pressure Sensors

The vehicle’s braking system was equipped with strain gauge pressure transducers in
both of the front hydraulic circuits in order to know the instantaneous pressure during the
tests. The control of the pressure in the brake circuit is an indicator to determine when to
limit the pressure in the circuit as a means of altering the braking capacity of the vehicle.
These sensors convert the pressure into an electrical signal by deforming the four strain
gauges in the diaphragm inside the sensor. The pressure applied to the sensor causes
a deflection of the diaphragm, which flexes the gauges, causing a measurable voltage
difference proportional to the pressure at the point of study. The pressure sensors were
installed between the brake calliper inlet and the last section of the hydraulic brake circuit,
as shown in Figure 3a. The sensors are of the DRUCK LIMITED brand, type PDCR 911 and
with an operating range from 0 to 135 bar.
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2.1.2. Thermocouple

The brake disc was instrumented with a K-type thermocouple to measure the tem-
perature reached during the tests (see Figure 3a). The brand of the thermocouple is TC
DIRECT, with mineral insulation of 0.5 mm in diameter. The temperature range is from 0
to 850 ◦C, and the time constant is 0.03 s.

2.1.3. Load Cell

A load cell was fixed on the braking pedal to determine exactly when the driver starts
the braking manoeuvre. The beginning of measurement of this sensor was the trigger for
the data collection of the different sensors instrumented in the vehicle. The device is the
HKM PK 2.0 (see Figure 3b) with an operating range from 0 to 1500 N.

2.1.4. Data Acquisition System

The data acquisition equipment used in the experimental phase was the VBOX 3i
data logger with Dual Antenna. The data logger uses a GPS/GLONASS receiver. The
most relevant characteristics that were considered when selecting this equipment are: the
sampling frequency (up to 100 Hz), the ease of assembly and transport, the ability to accept
both analogue and digital inputs and outputs, the visualization of results in real time on a
computer thanks to a USB or Bluetooth connection and its low power consumption.
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Two antennas on the vehicle roof in line with the direction of motion (see Figure 4a)
were connected to the VBOX 3i and provided time, speed and position values.
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Figure 4. (a) Twin antennas located longitudinally on the roof of the vehicle and (b) vehicle dashboard
data acquisition equipment.

The Mini Input Module (RLVBMIM01) was used to measure the sensor signals. The
temperature sensor is connected to one of the K-type thermocouple inputs and the pres-
sure sensors and the load cell to the analogue inputs. To condition the signal from the
two pressure transducers, it was necessary to install Racelogic’s Strain Gauge Amplifier
(RLVBSGA01), which is designed for full Wheatstone bridge operation. Figure 4b shows
the data acquisition equipment on the vehicle dashboard.

The VBOX 3i equipment has its own software (VBOX Tools) that allows to control all
the modules involved in the measurements, manage the tests carried out in real time and
store the obtained data.

2.2. Methodology of the Experimental Phase

In order to gather the necessary data to train the feed-forward neural networks, tests
were carried out with the instrumented vehicle. These were performed thanks to the
participation of fourteen drivers. The volunteers were men between the ages of 22 and
30. The scenarios consisted of reproducing a series of braking manoeuvres at different
speeds on a flat track following a straight path. The tests distinguish between three types
of manoeuvres with the aim of reproducing all the types of braking that can occur while
driving a vehicle: maintained, progressive and emergency braking. These manoeuvres are
explained in detail in Section 2.2.1. The test speeds were 20, 30, 40, 40, 50, 60, 60, 70 and
80 km/h. The driver drove the vehicle forward until the test speed was reached, and once
the test speed was constant, the braking process was initiated until the vehicle stopped.
Combining the type of braking and the test speed, each driver performed 21 experiments.
Therefore, a database of almost 300 experiments was available for the study presented here.
Table 1 shows the tests performed by each driver.

All tests were performed on a 300 × 250-m asphalt track on the facilities of the Instituto
Nacional de Técnica Aeroespacial (INTA).

A sampling frequency of 100 Hz was set up for all data acquisition. This frequency can
register with enough data resolution the signal from the different onboard sensors without
losing information. All data collected during tests were stored to be analysed later.



Sensors 2022, 22, 1644 7 of 30

Table 1. Tests carried out by different drivers.

Test Speed (km/h) Type of Braking

20
Maintained braking
Progressive braking
Emergency braking

30
Maintained braking
Progressive braking
Emergency braking

40
Maintained braking
Progressive braking
Emergency braking

50
Maintained braking
Progressive braking
Emergency braking

60
Maintained braking
Progressive braking
Emergency braking

70
Maintained braking
Progressive braking
Emergency braking

80
Maintained braking
Progressive braking
Emergency braking

2.2.1. Types of Braking Performed in the Experimental Tests

As discussed previously, a driver can perform three types of braking to slow or stop
the vehicle. Therefore, the following types of braking are defined in this study:

• Maintained braking

This type of braking is achieved by lightly pressing the brake pedal and holding it on
this position until the vehicle stops. This behaviour can occur when the braking manoeuvre
is predictable and the braking distance is long.

• Progressive braking

In order to achieve progressive braking, the driver has to progressively press the brake
pedal until the vehicle stops. The braking force increase linearly over time. This type of
manoeuvre is the most common in a real driving scenario.

• Emergency braking

Emergency braking occurs when the braking distance is reduced, and the manoeuvre
is not expected. The driver must depress the brake pedal quickly to the end of its travel
to stop the vehicle in the smallest possible distance. This type of braking corresponds to
emergency cases.

Figure 5 shows how the driver presses the brake pedal for each of the three types
of braking.

2.2.2. Variables Analysed in the Experimental Tests

The variables measured during the experimental tests are described below:

1. Braking time

When the driver presses the brake pedal, the installed load cell determines the start of
braking as a “trigger”. The braking time ends when the GPS determines that the vehicle
speed is equal to zero.

2. Braking distance
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Thanks to the positioning of the GPS signal, it is possible to determine the distance
travelled by the vehicle during the braking time.

3. Pressure in the brake circuit

Pressure sensors located near the brake calliper system measure the pressure in the
hydraulic brake circuit.
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2.2.3. Test Conditions

The following boundary conditions were considered during the tests to ensure their
repeatability:

• Tyre pressure should be within the manufacturer’s recommended range for the vehi-
cle’s load.

• The temperature range allowed on the brake disc before each braking manoeuvre
must be between 18 and 31 ◦C.

• There shall always be a second person in the co-driver’s seat in charge of controlling
the acquisition system. No other persons are allowed in the vehicle.

• The clutch must be disengaged to avoid the influence of engine retention in braking
capacity.

3. Data Collected by Sensors

The results obtained in the experimental tests are analysed in this section. The data
are evaluated according to the type of braking proposed and the different test speeds. The
results are structured in three sections. Section 3.1 provides the measurement data of the
pressure sensors during the experiments. Section 3.2 contains a statistical study of all the
recorded data. Section 3.3 explains the methodology for analysing the data collected by the
pressure sensors.

3.1. Output Signal of the Pressure Sensors Installed for the Driving Braking Tests

This section shows some examples of the data obtained during the different braking
tests by the pressure sensors. Thanks to this data, it is possible to analyse the influence of
the type of braking and the test speed. These data are expressed in volts (V) and are not
processed.

The Figure 6 shows a comparison of the pressure curves obtained during maintained
braking for the different test speeds.
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3.2. Statistical Study of the Driver Set

The following tables show information of the 14 drivers in every test speed (maxi-
mum, minimum, average and standard deviation of the variables measured during the
experiments). The data related to maintained braking is shown in Table 2, the data related
to progressive braking in Table 3 and, finally, the data related to emergency braking in
Table 4.

Tables 2–4 show how the average of all signals increases as the test speed increases.
This happens for the three proposed types of braking. For the same test speed, the highest
values recorded by the pressure sensors are given for emergency braking, followed by
progressive braking and the lowest values correspond to the maintained braking. Emer-
gency braking is the fastest, followed by progressive braking and maintained braking is
the slowest. This data is directly related to the braking distance required for each of the
braking types.

Table 2. Data from variables analysed for each test speed for maintained braking.

Speed (km/h) Sensor Maximum Minimum Average Standard Deviation

20

Right pressure (V) 0.618 0.206 0.410 0.153

Left pressure (V) 0.573 0.184 0.377 0.145

Braking time (s) 3.53 1.25 2.118 0.697

Braking distance (m) 10.949 4.031 6.629 2.105

30

Right pressure (V) 0.792 0.264 0.458 0.173

Left pressure (V) 0.734 0.220 0.419 0.163

Braking time (s) 3.73 1.7 2.901 0.612

Braking distance (m) 19.215 8.581 14.292 3.092

40

Right pressure (V) 0.799 0.328 0.549 0.164

Left pressure (V) 0.740 0.293 0.507 0.156

Braking time (s) 4.71 1.98 3.3 0.699

Braking distance (m) 31.757 12.136 21.376 4.967

50

Right pressure (V) 1.165 0.411 0.643 0.225

Left pressure (V) 1.082 0.375 0.594 0.211

Braking time (s) 5.44 2.45 3.847 0.884

Braking distance (m) 40.604 17.194 29.967 7.311

60

Right pressure (V) 1.530 0.519 0.774 0.351

Left pressure (V) 1.388 0.478 0.709 0.317

Braking time (s) 5.5 2.75 3.917 0.751

Braking distance (m) 49.273 24.040 37.255 6.631

70

Right pressure (V) 1.586 0.584 0.803 0.279

Left pressure (V) 1.481 0.536 0.739 0.262

Braking time (s) 5.93 2.34 4.259 0.885

Braking distance (m) 61.163 26.138 45.701 9.021

80

Right pressure (V) 1.679 0.652 0.942 0.374

Left pressure (V) 1.596 0.595 0.868 0.353

Braking time (s) 6.23 3 4.426 0.869

Braking distance (m) 76.692 38.014 54.596 10.266
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Table 3. Data from variables analysed for each test speed for progressive braking.

Speed (km/h) Sensor Maximum Minimum Average Standard Deviation

20

Right pressure (V) 0.720 0.334 0.502 0.118

Left pressure (V) 0.670 0.312 0.466 0.110

Braking time (s) 2.6 1.58 2.029 0.357

Braking distance (m) 8.075 5.505 6.423 0.841

30

Right pressure (V) 0.929 0.418 0.639 0.150

Left pressure (V) 0.864 0.391 0.595 0.141

Braking time (s) 3.09 1.88 2.323 0.348

Braking distance (m) 15.135 8.688 11.378 1.915

40

Right pressure (V) 1.177 0.540 0.817 0.222

Left pressure (V) 1.066 0.502 0.755 0.200

Braking time (s) 3.3 2.07 2.568 0.398

Braking distance (m) 24.314 12.955 17.186 3.197

50

Right pressure (V) 1.349 0.571 0.959 0.255

Left pressure (V) 1.259 0.526 0.888 0.233

Braking time (s) 4.12 2.27 2.845 0.522

Braking distance (m) 33.805 18.447 23.480 4.075

60

Right pressure (V) 1.597 0.641 1.044 0.342

Left pressure (V) 1.488 0.599 0.966 0.309

Braking time (s) 3.87 2.4 3.196 0.545

Braking distance (m) 41.490 22.292 31.409 5.698

70

Right pressure (V) 1.983 0.731 1.265 0.450

Left pressure (V) 1.701 0.702 1.161 0.391

Braking time (s) 4.5 2.18 3.377 0.714

Braking distance (m) 49.581 23.706 37.905 8.934

80

Right pressure (V) 1.992 0.807 1.379 0.404

Left pressure (V) 1.814 0.748 1.243 0.329

Braking time (s) 4.58 2.52 3.415 0.596

Braking distance (m) 58.596 26.537 43.271 9.542
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Table 4. Data from variables analysed for each test speed for emergency braking.

Speed (km/h) Sensor Maximum Minimum Average Standard Deviation

20

Right pressure (V) 1.871 0.759 1.286 0.479

Left pressure (V) 1.749 0.701 1.197 0.446

Braking time (s) 1.15 0.64 0.952 0.153

Braking distance (m) 4.148 2.321 3.202 0.613

30

Right pressure (V) 1.879 1.01 1.471 0.374

Left pressure (V) 1.786 0.937 1.374 0.321

Braking time (s) 1.5 1 1.266 0.132

Braking distance (m) 8.337 5.004 6.176 0.947

40

Right pressure (V) 1.958 0.997 1.687 0.305

Left pressure (V) 1.894 0.904 1.527 0.278

Braking time (s) 2.01 1.28 1.607 0.218

Braking distance (m) 15.594 8.649 10.494 2.198

50

Right pressure (V) 1.986 1.235 1.737 0.235

Left pressure (V) 1.942 1.122 1.635 0.244

Braking time (s) 2.04 1.71 1.887 0.092

Braking distance (m) 17.149 13.480 14.848 1.159

60

Right pressure (V) 2.014 1.476 1.875 0.149

Left pressure (V) 1.946 1.360 1.709 0.156

Braking time (s) 3.01 1.98 2.4 0.266

Braking distance (m) 28.524 17.495 21.891 3.187

70

Right pressure (V) 2.245 1.768 1.999 0.148

Left pressure (V) 2.055 1.637 1.798 0.122

Braking time (s) 2.67 2.36 2.523 0.098

Braking distance (m) 27.838 24.990 26.264 1.103

80

Right pressure (V) 2.351 1.312 2.001 0.244

Left pressure (V) 2.164 1.155 1.785 0.251

Braking time (s) 2.93 2.51 2.677 0.121

Braking distance (m) 39.404 28.348 32.543 3.523

3.3. Methodology for Analysing Data Collected by Pressure Sensors

An intelligent braking system must be able to obtain information from the different
sensors on board the vehicle, process the data obtained from them and transform them into
useful information for the active control of the vehicle in real time.

In order to study the almost 300 experimental tests that were carried out and to be
able to use the data recorded during these tests in the ANN systems proposed in Section 4,
new concepts have to be defined. These concepts are indicators used to characterise each
of the braking manoeuvres performed. The procedure to define these new indicators is
explained below.
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The first step is to fit to a polynomial the curves representing the time evolution of the
real measurements obtained by the pressure sensors during each braking manoeuvre (see
Figure 9a).
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Knowing the fitted function (see Figure 9b), it is possible to calculate the area under
the curve, “qt”. This indicator defines the integral of the fitted function from the beginning
of the braking (t0) to the end of the braking (t) and provides significant information about
the magnitude of the braking (see Figure 9c), but it is also important to know how the
braking is distributed over time.

To know how the braking is distributed over time, the total braking time is divided
into a fixed number of divisions. By calculating the area under the fitting curve for each
division made, it is possible to have a representation of how the total measured magnitude
is distributed. This information is stored in a vector called “qv” (see Figure 9d).

If “qt” is divided by the time taken to execute the braking, the indicator called “vfillt”
is obtained (see Figure 10a). This factor is an indicator of the total braking intensity (see
Figure 10b).

As before, if “vfillt” is integrated by divisions as a function of time, the time repre-
sentation of the braking evolution is obtained. This concept is a vector called “vfillv” and
provides information on the braking intensity for each division (see Figure 10c). Each value
of this vector represents the intensity of braking over time.

The following statistical data have been calculated from “qv” vector: average, standard
deviation and quartiles. Figure 11a shows, by way of example, how the vector “qv” obtained
for the same driver evolves at a speed of 80 km/h for the three types of braking. Figure 11b
shows the statistical values obtained from the data represented in Figure 11a. The average
and standard deviation values provide information on the magnitude of the braking. Q1,
Q2, Q3 and Q4 provide information on the evolution of braking over time.
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and (b) statistical data.

These statistical values were used as target data defining desired network output in
training in addition to the indicators: qt, qv, vfillt and vfillv.

4. Feed-Forward Neural Networks

To transform the data collected by the different sensors into useful information for the
vehicle’s active control systems, an ANN-based intelligent control model is proposed in
this study.

ANNs are computational models capable of learning, storing and retrieving infor-
mation based on a training dataset. Through training, a target output is achieved from a
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given input by modifying the weights, which are the values of the connections between the
neurons that form the network. Depending on the problem to be solved, there are different
network structures. In this case, the objective is to obtain the pressure in the brake circuit,
as well as the type of braking (outputs) as a function of speed and braking distance (inputs).
A two-layer feed-forward structure was chosen, as this scheme is quite efficient for function
fitting.

The steps for ANN analysis are (1) pre-processing the database, (2) defining the input
neurons, (3) defining the hidden layer of the feed-forward network and the estimation
layer, (4) defining the loss function, (5) training the model, and (6) validating the model.
Details of the above steps are given in Section 4.1.

4.1. ANN Model

This section justifies the decisions made during the implementation of the ANN
models presented in this study. MATLAB’s Neural Network Toolbox has been used to
model the neural networks.

Pre-processing the input and targets dataset is a common first step in the deep learning
workflow to prepare raw data in a format that the network is able to accept. Therefore,
before submitting the data to the network, they were normalised. In this study, the data have
been normalised to speed up the model convergence process and increase the accuracy of
the final model by using the “mapminmax” function in MATLAB. This function processes
matrices by assigning the minimum and maximum values of the rows to [−1, 1]. The
calculation equation is as follows:

y =
(ymax − ymin)·(x − xmin)

xmax − xmin
+ ymin (1)

where y is the processed data, ymax = 1 and ymin = −1, x corresponds to the original data to
be normalised, and xmax and xmin are the maximum and minimum values of the original
data to be processed, respectively.

To convert the network output into the original units once the network has been
trained with the processed data, the “mapminmax_reverse” function is used.

The Multi-layer Perceptron Neural Network architecture (MLP) with backpropagation
algorithm was chosen because of its ability to interpret and interpolate data, create relation-
ships between input and output parameters and its ease of use and versatility. Choose the
layers in which the neurons are distributed in the architecture of a MLP is a fundamental
aspect. There are three types of layers: input, output and hidden. The characteristics of the
input and output layers depend on the problem to be solved, since the number of neurons
required in each of these layers is determined by the nature of the input and output patterns
to be estimated. The hidden layer contains the neurons responsible for approximating
nonlinear functions, thus linking the input and output layers. The number of hidden layers
and neurons in each layer affect the capacity of the model for generalization and have to be
empirically determined.

In this study, the input layer is composed of two neurons that correspond to the input
variables of the designed system: longitudinal speed and braking distance. The reason that
justifies this decision is based on the equipment of the vehicles currently on the market,
which incorporate sensors that can obtain this information thus avoiding the installation
of new sensors. Speed is a data that is easy to know at any time for any vehicle; in the
same way, and thanks to the detection systems fitted in current cars, it is possible to obtain
information on the distance between the front of the vehicle and other point (object on the
road, another vehicle, etc.). This second value corresponds to the space available for the
vehicle to stop.

The objective of the proposed ANN is to obtain the value of the pressure in the brake
circuit, which is the output variable of the system; in addition to being able to characterise
the type of braking manoeuvre that the vehicle has suffered (maintained, progressive
or emergency). To optimise the performance of the ANN, output layers with different
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numbers of neurons are tested. The cases studied include 37, 57, 97, 137, 177 and 217
neurons in the output layer according to 5, 10, 20, 20, 30, 40 and 50 divisions in the pressure
sensor data that define qv y vfillv parameters. The neurons in the output layer contain
information about the type of braking and defined indicators for right and left pressure
sensors in Section 3.3 (qt, qv, vfillt, vfillv and statistics).

ANN models are designed with one hidden layer that contains a different number of
neurons: 10, 20, 30, 40 and 50.

The network has a sigmoid transfer function in the hidden layer and a linear transfer
function in the output layer.

The output function taken for all neurons is the identity, so that the output signal of
each neuron matches its own activation state.

The training of the ANN is also an important choice. In combination with the number
of divisions and the number of neurons in the hidden layer, three different types of train-
ing are proposed: Levenberg–Marquardt (LM), Bayesian Regularization (BR) and Scaled
Conjugate Gradient (SCG) (see Figure 12).
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The data were randomly split into training, validation and test sets: 70% for training,
15% to validate that the network is generalizing and to stop training before overfitting and
15% to independently test network generalization. The training of the network is optimised
using the default criterion used by the MATLAB Neural Network Toolbox, which consists
of the minimisation of the Mean Square Error (MSE)—the average squared error between
the network outputs and the target outputs (loss function). According to this, the smaller
the MSE, the better the data is adapted. The main objective during the model construction
process has been to maximise the regression value (R2) while minimising the MSE. R2

measure the correlation between the outputs and targets.
Combining the number of neurons in the output layer, number of neurons in the

hidden layer and the type of training, 90 different network models have been trained to
find out which one produces the best fitting results between inputs and targets. Figure 13
shows the influence of the different parameters mentioned on the sensitivity of the ANN
according to the degree of regression of the input values with those returned by the system
in its testing process (regression expressed over 1).
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Figure 13. ANN sensitivity of the different models designed for the training type: (a) BR, (b) LM,
and (c) SCG.
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It has been observed that, in all models, when the MSE decreases, the R2 increases.
Furthermore, the MSE decreases as the number of divisions performed in the output data
vector increases. However, there is no relationship between the number of neurons in the
hidden layer and the MSE. The best of the three algorithms tested was BR, followed by LM
and, lastly, SCG. All models have a high degree of regression, however, and given that the
computational cost is negligible (network training is not performed in real time, only the
simulation and parameter estimation process take place in real time), an ANN with the
following parameters has been chosen (see Figure 14).
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Figure 14. Architecture of the chosen ANN.

• Number of neurons in the input layer: 2.
• Number of neurons in the hidden layer: 20.
• Number of neurons in the output layer: 217.
• Type of training: Bayesian Regularization.
• Divisions of the data vectors: 50.

The 217 neurons that make up the output layer correspond to:

• Position 1: Represents the type of braking that has been performed (maintained = 1,
progressive = 2 or emergency = 3). It is contemplated that decimal values appear in
position 1 of the output vector.

• Position 2: Represents the braking capacity value measured by the right pressure
sensor (qt).

• Positions 3–52: Vector dividing by 50 the braking capacity value measured by the right
pressure sensor according to the time the vehicle takes to stop (qv).

• Position 53: Represents how the right pressure sensor reaches full braking capacity,
providing information on “how braking occurs over time” (vfillt).

• Position 54–103: Vector dividing by 50 the value of vfillt relative to the right pressure
sensor (vfillv).

• Positions 104–109: Statistical values for braking characterisation relating to the right
pressure sensor.

• Position 110: Represents the braking capacity value measured by the left pressure
sensor (qt).

• Positions 111–160: Vector dividing by 50 the braking capacity value measured by the
left pressure sensor according to the time the vehicle takes to stop (qv).

• Position 161: Represents how the left pressure sensor reaches full braking capacity,
providing information on “how braking occurs over time” (vfillt).

• Positions 162–211: Vector dividing by 50 the value of vfillt relative to the left pressure
sensor (vfillv).

• Position 212–217: Statistical values for braking characterisation relating to the left
pressure sensor.
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The training was stopped at iteration 874 when the learning rate reached the predefined
value (5 × 1010). This indicates that the network convergence is correct. The value of R
obtained for the training and test phase is shown in Figure 15. As a combination of these
phases, the R value obtained for the total system is 0.99566 (expressed over 1).
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5. Results of Braking Parameter Estimation

This section shows the results obtained after the different simulations of the chosen
ANN. These values are compared with the parameters with which the system has been
trained in order to check the correlation between the target values and the simulated values.
Random simulations have been carried out covering the whole range of test speeds in
combination with the different types of braking manoeuvres: maintained, progressive and
emergency.

For a better understanding of the results, as an example, those relating to braking of
the three types at a test speed of 70 km/h are shown.

Figure 16 shows the comparison between the simulation of the total values estimated
by ANN and the total target data. The total values coincide with the parameters: qt, vfillt,
qv, vfillv and statistical values of the two pressure sensors, as well as the type of braking.
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Figure 16. Comparison between the complete data simulated by ANN and the target data for braking
at a speed of 70 km/h for type: (a) maintained, (b) progressive and (c) emergency.

As can be seen in Figure 16, the lines representing the simulations made from the
estimated values and the target data practically overlap, a sign of an ANN with a high
degree of fit and convergence. It is important to note that, due to the nature of the data
used in the system, the output layer is made up of a vector of variables that take different
numerical values. Due to this, when dealing with the results, the units of measurement
of each independent variable have not been taken into account, giving importance to the
interpretation of the data as a numerical value and interpreting each one by its position.

To study the results independently, Figure 16 is split to analyse each dataset separately.
Figure 17 compares the simulation of the ANN estimated values and the target data for the
braking capacity (qt) for the two pressure sensors (right and left).

Figure 18 shows the comparison between the simulated data and the target data on
how the braking capacity evolves as a function of braking time (qv) for the right pressure
sensor over the 50 divisions performed.

Figure 19 shows the comparison between the simulated data and the target data
concerning the evolution of qt over the 50 divisions performed for the left pressure sensor.

Figure 20 shows the comparison between the ANN-estimated values and the target
data for vfillt.

Figure 21 shows the comparison between the ANN-simulated data and the target data
for how the right pressure sensor achieves braking capacity as a function of braking time
(vfillv).

Figure 22 shows the comparison between the ANN simulated data and the target data
for the vfillv parameter corresponding to the left pressure sensor.

Another of the simulated data refers to the type of braking performed. The comparison
between the simulated values and the target data of the braking type parameter for the
three types of braking is shown in Figure 23.
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Figure 19. Comparison between the ANN-simulated data and target qv data for the left pressure sen-
sor for braking at a speed of 70 km/h for the type: (a) maintained, (b) progressive and (c) emergency.
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Figure 20. Comparison between the ANN-simulated data and vfillt target data for the two pres-
sure sensors for braking at a speed of 70 km/h for the type: (a) maintained, (b) progressive and
(c) emergency.
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Figure 21. Comparison between ANN-simulated data and vfillv target data for the right pressure sen-
sor for braking at a speed of 70 km/h for the type: (a) maintained, (b) progressive and (c) emergency.
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Figure 23. Comparison between the ANN-simulated data and target braking type data for braking at
a speed of 70 km/h for the type: (a) maintained, (b) progressive and (c) emergency.

As mentioned above, the simulations were performed randomly over the whole range
of test speeds and braking manoeuvres. In the following, the errors derived from the
braking system parameters are shown in comparison with the empirical data. Table 5
shows the target values for braking type and qt for the two pressure sensors, the data
simulated by ANN for the above parameters and the error of these values compared to the
target data.

Braking types 1, 2 and 3 correspond to maintained, progressive and emergency brak-
ing, respectively.

Table 6 shows the vfillt target values for the two pressure sensors, the ANN-simulated
data for these parameters and the error of these values against the target data.

Table 7 shows the mean error obtained for the parameters qt, vfillt and the type of
braking for each type of braking.

Table 8 shows the standard deviation associated with the above mean values.
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Table 5. Target and simulated values of braking type (Tb), right pressure sensor qt (pr), left pressure
sensor qt (pl) and error.

Test
Speed
(km/h)

Tb Target Tb ANN Error Tb
(%)

qt pr
Target

(−)

qt pl
Target

(−)

qt pr
ANN (−)

qt pl
ANN (−)

Error
qt pr (%)

Error
qt pl (%)

20 1 1.198 19.790 61.666 55.066 62.325 51.528 1.068 6.426
30 1 1.267 26.690 83.841 76.920 83.896 74.716 0.066 2.866
40 1 1.339 33.870 144.547 132.640 143.452 132.713 0.758 0.055
50 1 1.268 26.780 176.539 161.390 175.466 163.674 0.608 1.415
60 1 1.273 27.340 196.110 176.927 200.004 182.471 1.986 3.134
70 1 0.934 6.640 212.132 189.399 210.982 189.003 0.542 0.209
80 1 0.799 20.060 256.899 224.802 257.644 224.558 0.290 0.109
20 2 1.839 8.075 68.920 64.861 67.529 63.509 2.018 2.084
30 2 2.175 8.755 91.568 85.262 91.926 85.583 0.391 0.376
40 2 2.345 17.255 149.352 139.339 149.797 138.186 0.298 0.827
50 2 1.749 12.560 174.557 162.725 174.978 162.466 0.241 0.160
60 2 1.931 3.475 256.852 237.602 242.019 228.535 5.775 3.816
70 2 1.899 5.040 304.726 284.060 304.717 283.668 0.003 0.138
80 2 1.872 6.425 351.586 315.649 347.118 316.410 1.271 0.241
20 3 2.302 23.283 84.704 80.895 79.247 73.292 6.443 9.399
30 3 2.694 10.213 121.171 108.838 122.686 114.119 1.250 4.852
40 3 2.502 16.610 153.193 141.558 149.638 138.841 2.321 1.920
50 3 2.850 5.010 218.325 193.090 216.281 194.676 0.936 0.821
60 3 2.656 11.470 284.893 256.028 282.748 258.274 0.753 0.877
70 3 2.560 14.673 330.512 289.901 328.298 291.454 0.670 0.536
80 3 2.723 9.220 367.199 333.607 365.160 331.577 0.555 0.609

Table 6. Target and simulated values of vfillt of the right pressure sensor (pr), vfillt of the left pressure
sensor (pl) and error.

Test Speed
(km/h) Tb vfillt pr

Target (−)
vfillt pl

Target (−)
vfillt pr

ANN (−)
vfillt pl

ANN (−)
Error vfillt

pr (%)
Error vfillt pl

(%)

20 1 0.453 0.420 0.461 0.430 1.674 2.306
30 1 0.448 0.408 0.412 0.384 8.110 5.841
40 1 0.315 0.284 0.307 0.279 2.699 1.759
50 1 0.354 0.324 0.339 0.307 4.191 5.244
60 1 0.484 0.437 0.478 0.437 1.306 0.081
70 1 0.358 0.319 0.387 0.358 8.295 12.057
80 1 0.412 0.361 0.405 0.370 1.736 2.456
20 2 0.428 0.403 0.433 0.404 1.150 0.332
30 2 0.430 0.400 0.453 0.424 5.463 5.962
40 2 0.692 0.645 0.745 0.694 7.579 7.675
50 2 0.619 0.577 0.626 0.580 1.099 0.548
60 2 0.895 0.828 0.847 0.774 5.392 6.545
70 2 0.896 0.835 0.950 0.860 5.952 2.960
80 2 0.623 0.581 0.616 0.568 1.011 2.310
20 3 0.538 0.510 0.530 0.495 1.475 2.893
30 3 0.927 0.817 0.892 0.829 3.795 1.418
40 3 0.876 0.747 0.853 0.793 2.644 6.233
50 3 1.200 1.061 1.110 1.021 7.485 3.792
60 3 1.217 1.094 1.170 1.065 3.942 2.663
70 3 1.306 1.146 1.251 1.129 4.254 1.454
80 3 1.429 1.298 1.373 1.236 3.898 4.752
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Table 7. Mean error in the results of the braking type, qt and vfillt simulations of the pressure sensors.

Tb Mean Error
Tb (%)

Mean Error
qt pr (%)

Mean Error
qt pl (%)

Mean Error
vfillt pr (%)

Mean Error
vfillt pl (%)

1 23.024 0.760 2.030 4.002 4.249
2 8.798 1.428 1.092 3.949 3.762
3 12.926 1.847 2.716 3.927 3.315

Total 14.916 1.345 1.946 3.959 3.775

Table 8. Standard deviation in the results of the brake type, qt and vfillt simulations of pressure sensors.

Tb
Standard
Deviation

Tb (%)

Standard
Deviation qt

pr (%)

Standard
Deviation qt

pl (%)

Standard
Deviation

vfillt pr (%)

Standard
Deviation

vfillt pl (%)
1 8.675 0.629 2.328 3.024 3.980
2 4.731 2.044 1.384 2.773 2.965
3 5.913 2.113 3.317 1.846 1.755

Total 6.439 1.595 2.343 2.548 2.900

6. Validation of Results against Direct Sensor Readings

As mentioned in Section 3.3, the data collected directly by the sensors were treated
to work with them; however, in order to incorporate the proposed estimation system in a
real vehicle, it is necessary to interpret the results under the same conditions in which they
were taken during the experimental tests.

This section will show the comparison between the values of the simulations carried
out by ANN and the empirical values obtained by the sensors during the experimental tests.

The values estimated by ANN are represented in the time in which the system esti-
mates that braking will occur. The braking time is not an output layer value but can be
calculated using the simulated values for qt and vfillt.

Figure 24 shows the comparison between the data provided by ANN when simulating
braking at a test speed of 70 km/h for the three types of braking and the data collected by
the right pressure sensor during these tests.
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Figure 24. Comparison between the ANN-simulated data and actual data collected by the right
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(c) emergency.
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Figure 25 shows the behaviour of the left pressure sensor during braking at 70 km/h
for the three types of braking together with the system’s estimation for these manoeuvres.

Sensors 2022, 22, x FOR PEER REVIEW 27 of 30 
 

 

 
 

(a) (b) 

 
(c) 

Figure 24. Comparison between the ANN-simulated data and actual data collected by the right 
pressure sensor for braking at a speed of 70 km/h for the type: (a) maintained, (b) progressive and 
(c) emergency. 

Figure 25 shows the behaviour of the left pressure sensor during braking at 70 km/h 
for the three types of braking together with the system’s estimation for these manoeuvres. 

  
(a) (b) 

 
(c) 

Figure 25. Comparison between the ANN-simulated data and actual data collected by the left
pressure sensor for braking at a speed of 70 km/h for the type: (a) maintained, (b) progressive and
(c) emergency.

7. Discussion

In the work presented here, an automatic braking system has been proposed. Knowing
how the braking system behaves depending on the braking pressure the system will decide,
based on the braking distance and the vehicle speed, how to execute the braking manoeuvre.

As for the readings that have been obtained from the pressure sensors during the
experiments, Tables 2–4 show the increasing average of the values recorded by each sensor
due to the increase in speed for the three types of braking. For the same test speed, the
minimum values collected correspond to maintained type braking, followed by progressive
type braking, and finally, the maximum values are those recorded for emergency braking.

Of the possible network structures that exist, an MLP has been chosen for the design
of the estimator, which is a type of feed-forward network. This choice is due to the fact
that the data used for the training does not have long dependencies. Different network
models have been proposed depending on the number of neurons in the output layer (37,
57, 97, 137, 177 and 217); the number of neurons in the hidden layer (10, 20, 30, 40 and 50)
and the type of training (LM, BR and SCG). The best result was obtained by the network
with 20 neurons in the hidden layer, 217 neurons in the output layer and BR training. This
network presented the highest R2 value and the lowest MSE value.

Simulations have been carried out to evaluate the performance of the system designed
based on ANN. These simulations show the ability of the proposal to obtain accurate values
of the parameters that have been defined to characterise the braking of a vehicle and the
type of braking. As can be seen in Table 7, the mean error of the parameter estimating
the braking capacity (qt) of all simulations was 1.345 and 1.946% for the right pressure
sensor and left pressure sensor, respectively. The mean error of the parameter estimating
the braking intensity (vfillt) of all simulations was 3.959 and 3.775% for the right pressure
sensor and left pressure sensor, respectively. It is worth mentioning that the braking type
estimations contain the highest error, mainly for maintained braking (23.024%). It has been
found that for the emergency braking type the system does not exceed the braking type
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set in the training, which offers a higher degree of safety and comfort because the braking
system will be controlled from the safety side and less aggressively.

In all cases, the comparative curves between the data obtained from the simulations
and the data collected by the pressure sensors during the experiments show that both
follow the same behaviour patterns (see Figures 24 and 25).

Based on the results obtained, it can be confirmed that the proposed method can
accurately estimate the braking parameters. However, there is still a lot of research to be
done. The experiments are limited by the fact that female drivers could not be involved.
For future work, female drivers will be recruited to participate in the tests in order to
improve this research. Future work needs to be carried out with different sensors, different
manoeuvres, different road surfaces, determining weather conditions, multiple trajectories,
different vehicles, etc. Other estimation methods such as Fuzzy Logic, Kalman filter or
H-Infinity filter can also be used. It would be also interesting to design ANN models with
two or more hidden layers.

8. Conclusions

A vehicle has been instrumented with pressure sensors incorporated in the indepen-
dent hydraulic braking circuits of the front wheels, thermocouple in the brake disc and load
cell installed on the brake pedal. The effectiveness of these sensors has been demonstrated
to take measurements with high precision during dynamic tests. A GPS receiver has also
been installed in the vehicle to obtain additional information during tests.

Experimental tests have been carried out in which the driver performs, following
a straight path, a series of braking manoeuvres with the vehicle until it stops. Three
types of braking are proposed: maintained, progressive and emergency braking, which
cover all possible driving circumstances in which the braking system may be involved.
These manoeuvres are repeated for a range of test speeds from 20 to 80 km/h in 10-km/h
increments. Each test is characterised by the combination of test speed and type of braking.

To analyse the data collected by the pressure sensors during the experimental tests
and in order to operate with them homogeneously in the design of the estimator, new
parameters were defined: qt, vfillt, qv and vfillv. Each of these indicators provided relevant
information to characterise vehicle braking.

An ANN estimator has been designed to simulate the real values collected by the
sensors in order to characterise the braking of a vehicle and to be used in real driving
situations. The estimator uses the vehicle speed and the available braking distance as input
data and returns, as output data, the pressure to be applied to the braking system over
time, as well as the type of braking to be performed, thus achieving the objective set for
this research.
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