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Abstract: Previous research revealed that isotopes 13C and 18O of exhaled CO2 have the potential
link with Helicobacter pylori; however, the 17O isotope has received very little attention. We developed
a sensitive spectroscopic sensor for simultaneous δ13C, δ18O, and δ17O analysis of human breath
CO2 based on mid-infrared laser direct absorption spectroscopy with an interband cascade laser
(ICL) at 4.33 µm. There was a gas cell with a small volume of less than 5 mL, and the pressure in
the gas cell was precisely controlled with a standard deviation of 0.0035 Torr. Moreover, real-time
breath sampling and batch operation were achieved in gas inlets. The theoretical drifts for δ13C, δ18O,
and δ17O measurement caused by temperature were minimized to 0.017‰, 0.024‰, and 0.021‰,
respectively, thanks to the precise temperature control with a standard deviation of 0.0013 ◦C. After
absolute temperature correction, the error between the system responded δ-value and the reference
is less than 0.3‰. According to Allan variance analysis, the system precisions for δ13C, δ18O, and
δ17O were 0.12‰, 0.18‰, and 0.47‰, respectively, at 1 s integration time, which were close to the
real-time measurement errors of six repeated exhalations.

Keywords: laser absorption spectroscopy; CO2 isotopes; breath analysis

1. Introduction

Breath analysis, which is a non-invasive and painless method, has been proven to
have potential for disease screening and diagnosis [1–5]. Carbon dioxide (CO2) is one
of the most important components in human exhaled substance, accounting for about
5%. The most abundant isotopologues of CO2 are 12C16O2, 13C16O2, and 18O 12C16O,
17O12C16O, with natural abundances of 0.984204, 0.0110574, 0.00394707, and 0.000733989,
respectively. Exhaled CO2 is usually a product of glucose catabolism in the human body,
and previous research revealed that carbon-13 (13C) in breath CO2 has a potential link with
the gastric pathogen Helicobacter pylori (H. pylori) in response to glucose ingestion [6,7].
H. pylori is widely acknowledged to be associated with a variety of clinical outcomes,
such as duodenal ulcer, gastric ulcer, distal gastric adenocarcinoma, and gastric mucosa
associated lymphoid tissue lymphoma [8–10]. In addition, a growing body of evidence
suggests that the effects of H. pylori may also be relevant to several other extragastric
diseases including idiopathic thrombocytopenic purpura, cardiovascular disease, anemia,
diabetes, and insulin resistance [11,12]. In recent years, a few studies have reported that the
oxygen-18 (18O) isotopes in exhaled CO2 are also a biomarker related to H. pylori because
of the rapid exchange of the 16O in 12C16O2 and 18O in H2

18O in response to periplasmic
α-carbonic anhydrase activity [13–15].

For gas identification and quantification, there are significant advantages to laser
absorption spectroscopy, such as high sensitivity, high selectivity, fast response, and real-
time online analysis [16–20]. Many laser absorption spectroscopy based sensors have
been developed for monitoring the human breath CO2 isotopes in recent years, especially
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for 13C. Generally, the δ value has been used to describe the relative deviation of the
sample isotope ratio from the standard reference value (e.g., the standard abundance
in Vienna Peedee Belemnite (VPDB)). Crosson et al. constructed a cavity ring-down
spectrometer using a three-mirror high-finesse ring-down cavity, and demonstrated the
ability to obtain δ13C in breath samples [21]. Kasyutich et al. developed an off-axis
cavity-enhanced absorption spectrometer, and estimated δ13C standard deviations of 1.8‰
and 3.7‰ based on peak height and integrated area estimations, respectively [22]. A
multidimensional linear regression technique to calculate the δ13C isotope was reported
by Andreev et al., and precision of 0.07‰ was obtained at an averaging time of 3 min
thanks to a Herriott multipass cell [23]. Based on an off-axis integrated cavity output
spectroscopy system, Pradhan’s group studied the mechanisms linking exhaled δ13C and
δ18O of CO2 to H. pylori [12–15]. These measurements at near infrared require the assistance
of a high-finesse optical cavity or a multipath cell, which is usually accompanied by a
larger volume of gas demand, so they are not really friendly for real-time online breath
analysis, where the sample gas is usually limited. A hollow waveguide with a small volume
was used by Zhou et al. to achieve simultaneous measurement of δ13C and δ18O, and the
minimum precisions were 0.26‰ and 0.57‰ for δ13C and δ18O, respectively, achieved by
calibration-free wavelength modulation spectroscopy [24,25]. However, there is currently
no measurement of δ17O in exhaled CO2, although studies have shown that 17O isotopes in
respiration can be used as a biomarker of brain oxygen metabolism [26,27].

In this paper, a breath diagnosis system has been developed for simultaneous analysis
of δ13C, δ18O, and δ17O in human breath CO2 based on mid-infrared laser direct absorption
spectroscopy employing an interband cascade laser (ICL) at 4.33 µm. Considering the
practical application of the system, a single path cell with a small volume was adopted, and
the design of multi-channel gas sampling can meet the needs of real-time measurement and
batch processing. The accuracy of the system was improved by the high-precision control
of temperature and pressure.

2. Isotopes Experimental Theory

For laser direct absorption spectroscopy, the absorption at frequency ν is given by the
Beer–Lambert law

−ln(IT(ν)/I0(ν)) = Nσ(ν)L, (1)

where I0(ν) and IT(ν) are incident and transmitted laser intensity, respectively, N (molecules/cm3)
is the number density of absorbing molecules, L (cm) is the absorption path length, and σ(ν)
(cm2/molecule) is the absorption cross section related to frequency. The integrated σ(ν) is equal
to the temperature-dependent transition intensity S(T) (cm−2/atm) and another isotopologue
abundance n needs to be considered for isotopes measurement. Thus, the integral absorption
area A can be expressed as:

A =
∫

Nσ(ν)L dν = NLS(T)/n. (2)

For isotope ratio calculation, it can be directly expressed by the ratio of molecular
number densities:

R =
Nr

Na
=

Arnr/Sr(T)L
Aana/Sa(T)L

=
Ar

Aa
·Sa(T)/na

Sr(T)/nr
, (3)

where in r and a represent rare isotopic species (13C16O2, 18O12C16O and 17O12C16O) and
abundant isotopic component (12C16O2), respectively. In this work, the VPDB standard
is adopted to express the isotope ratios as δ values, and the R13

VPDB-CO2
, R18

VPDB-CO2
, and

R17
VPDB-CO2

are 0.011180, 0.0003931, and 0.00208835, respectively. Thus, the sample gas
stable isotope δ value is given by:

δ =

(
R

RVPDB
−1
)
×1000‰. (4)
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As can be seen in Equation (3), except for the experimentally measured integral
absorption area, the isotope ratio is only related to the transition intensity and isotopologue
abundance n. It should be noted that n is a constant, and the temperature-dependent line
strength is given by [28]:

S(T) = S(T0)
Q(T0)

Q(T)
exp

[
−hcE′′

k

(
1
T
− 1

T0

)]
×
[
− exp

(
1− hcv0

kT

)][
1− exp

(
−hcv0

kT0

)]−1
(5)

where S(T0) is the line strength at reference temperature T0 (usually T0 = 296 K), Q(T0) and
Q(T) are the partition functions of the absorbing molecule, h (J s) is the Planck’s constant,
c (cm/s) is the speed of light, k (J/K) is the Boltzmann’s constant, E” (cm−1) is the lower
state energy and ν0 (cm−1) is the transition center frequency. The temperature stability
will also affect the δ value measurements, and this temperature dependence ∆δ/∆T is
proportional to the difference of ground state energies of the transitions [29]:

∆δ

∆T
≈ ∆E′′

kT2 × 1000‰. (6)

3. Sensor Structure and Optimization
3.1. Transitions Selection

For the linearly symmetrical CO2 molecule, there is a strong antisymmetric stretching
vibration (ν3) at 4.3 µm, and the transition intensity here is several orders of magnitude
greater than that in near infrared. In this paper, the transitions of the P(20) line of the
16O12C16O (1, 00, 11) ← (1, 00, 1) band at 2309.81 cm−1, the R(40) line of the 16O13C16O
(0, 00, 11)← (0, 00, 1) band at 2310.35 cm−1, the P(27) line of the 18O12C16O (0, 00, 11)←
(0, 00, 1) band at 2310.21 cm−1, and the P(35) line of the 17O12C16O (0, 00, 11)← (0, 00, 1)
band at 2309.98 cm−1 were selected based on the HITRAN database [30]. As shown in
the shadow of Figure 1, there are similar transition intensities (weighted by isotopologue
abundance) with tolerable gaps, and the span of the selected transitions is less than 1 cm−1,
which can be detected simultaneously by a single laser current sweep. In addition, there is
no absorption disturbance from other exhaled substances such as H2O, O2, and other trace
gases. It should be noted that low pressure is required to avoid the overlap of spectral lines
caused by pressure broadening, especially for the 17O12C16O transition and the P(17f) line
of the 16O12C16O (0, 22, 11)← (0, 22, 1) band at 2310.00 cm−1. Although there is a P(17e)
line of the 16O12C16O (0, 00, 21)← (0, 00, 11) band at 2310.19 cm−1, it has less effect on the
next 18O12C16O P(27) line due to the low transition strength.

1 
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Figure 1. Absorption lines of CO2 isotopes at 4.33 µm based on HITRAN 2020.
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3.2. Experimental Setup

Figure 2 shows the schematic diagram of the developed sensor for simultaneous
analysis of human breath CO2 isotopes. A room temperature ICL (manufactured by
Nanoplus, Gerbrunn, Germany) emitted at 4.33 µm was used as the laser source, and its
working temperature and scanning current were controlled by a homemade mid-infrared
laser controller. The radiated laser light was firstly collimated through the gas cell and then
focused on the thermoelectrically cooled mercury cadmium telluride photodetector (VIGO
system). Finally, the spectrum signal was acquired by the data acquisition (DAQ) card and
processed by PC.
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Figure 2. Schematic diagram of the developed sensor for simultaneous measurement of 12C16O2,
13C16O2, 18O12C16O and 17O12C16O in human breath.

All the optical components and gas cell were thermally insulated. With the feed-
back from a 10 kΩ thermistor mounted onto the gas cell, a pair of thermoelectric coolers
controlled by a homemade temperature controller based on digital PID algorithm were
adopted to regulate the temperature in the insulation case.

Since breath analysis has the feature of less sample gas, especially for real-time mea-
surement, a single pass cell with a small volume was adopted in the system. The length
of the gas cell was 150 mm, with an inner diameter of 6 mm, which results in a volume
of less than 5 mL. The gas inlet was controlled by a solenoid valve group so that the
sensor can work in real-time measurement and batch mode. Real-time measurement is
to directly sample the exhaled breath gas through the replaceable mouthpiece. The batch
mode can automatically process multiple prepared breath collection bags, and 12 channels
were included in this system, which is more convenient when it is needed to compare
the isotope abundance difference before and after taking medicine or when there are a
lot of samples. The breath sample was first filtered out of water and particles and then
extracted to the gas cell by a pump. A check valve was placed behind the cell to prevent
backflow. Two solenoid operated proportional valves were equipped to control the inlet
and outlet flow rates to ensure a stable low pressure in the gas cell, combined with a
pressure transducer and digital PID algorithm based homemade pressure controller.

3.3. Spectrometer Optimization

Although the isotope abundance measurement based upon the direct absorption peak
areas is theoretically immune to the pressure variation in the optical cell, a stable pressure
can reduce the unnecessary errors in the optical baseline removal and signal fitting. The
pressure in the gas cell was set at 20 Torr to weaken the overlap of the spectra while further
reducing the sample gas consumption. The continuous 24 h data of the pressure in the gas
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cell were recorded and displayed in Figure 3a, the mean value is consistent with the set
value, and the standard deviation of the data is 0.0035 Torr.
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Figure 3. (a) Pressure in gas cell and (b) temperature in insulation case recorded continuously a 24 
h period. 
Figure 3. (a) Pressure in gas cell and (b) temperature in insulation case recorded continuously a 24 h period.

According to Equation (6), theoretical temperature coefficients ∆δ13C/∆T = 15.0‰ K−1,
∆δ18O/∆T = 20.9‰ K−1, and ∆δ17O/∆T = 17.7‰ K−1 are estimated at 296 K for the tran-
sitions chosen in this work. To minimize the temperature caused drifts, the temperature
of the gas cell and optical components were precisely controlled. The target temperature
was set at 40 ◦C, which is higher than room temperature for a better result. Figure 3b
displays the continuously recorded 24-h temperature from the thermistor, the mean value is
consistent with the target, and the standard deviation is 0.0013 ◦C, which result in a possible
δ-value drifts of only 0.017‰, 0.024‰, and 0.021‰ for δ13C, δ18O, and δ17O, respectively.
It provides an important guarantee for the accuracy and precision of the sensor system.

To determine the accurate isotope abundance, the absolute temperature value is also an
important factor, which can be found from Equations (3) and (5). Although there is a great
accuracy of temperature controlling, its absolute value still needs to be calibrated. In this
work, three cylinder gases with known δ13C values (−18.5‰, −15.5‰, and −12.5‰) were
used to calibrate the absolute temperature in the incubator. Figure 4 shows the measured
absorption signal of the gas with δ13C of −15.5‰, and the optical baseline was removed
by the least square fitting of the light intensity without absorption. To obtain the integral
absorption areas, the signal is divided into four segments to fit the Viogt profile respectively.
It should be noted that the double peak fitting has to be used for the 17O12C16O peak and
the next P(17f) 16O12C16O peak, conversely the single peak fitting is used for 18O12C16O
due to the negligible effect from the P(17e) 16O12C16O peak. Obviously the measured
absorptions match well with the Viogt fitting data, and the residuals are less than ±1‰
except for the unfitted 16O12C16O peak at 2310.19 cm−1. As shown in Figure 5a,b, the initial
measurement gas was ambient air, and then alternate measurement takes place between
the three cylinder gases and ambient air. The results indicate a 90–10% fall time of about
3.63 s and a 10–90% rise time of about 3.54 s, thanks to the small volume of the single pass
absorption cell. As expected, the calculated δ13C values before temperature calibration are
far from the nominal values as exhibited in Figures 5c and 6; however, the difference can
be reduced by changing the temperature value, and an optimal temperature of 310.93 K
was adopted. The calculated δ13C values with corrected temperature are displayed in
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Figures 5d and 6, they are exactly close to the nominal value, and the error is less than
0.3‰. Therefore, in subsequent calculations, the absolute temperature value is considered
to be 310.93 K, and the absolute δ13C, δ18O, and δ17O can be calculated from Equation (3).
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Figure 4. Measured absorption signals fitted to Voigt profile and fitting residuals. Figure 4. Measured absorption signals fitted to Voigt profile and fitting residuals.
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4. Sensor Performance
4.1. Concentration Dependence

Figure 7 displays the CO2 absorption spectrum signals measured by the developed
system. The CO2 sample gases with a concentration range of 2–7%, which covers the
exhaled breath CO2 concentration, were prepared by diluting pure CO2 with N2. As shown
in Figure 7, the weakest absorption peak of 17O12C16O can still be clearly distinguished
with a signal-to-noise ratio of 8 even when the sample CO2 concentration is 2%. The
calculated isotopic abundances of the different diluted gases are shown in Figure 8, they
are evenly distributed around certain values, and which is following the theory that the
isotope abundance does not depend on gas concentration. Part of the calculation result
deviation may come from the baseline removal and fitting error caused by a wide range of
concentration changes.
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4.2. Stability and Detection Limit

The stability and minimum detection limits of the sensor system were evaluated by
Allan variance. The 5% CO2 gas with stable isotopes (δ13C = −37.51‰, δ18O = −64.61‰,
and δ17O = −136.4‰) were measured at 1 Hz for 1 h, the recorded raw data of δ13C, δ18O,
and δ17O are plotted in the upper panels of Figure 9, and the lower panel shows the Allan
variance as a function of the measurement time. As shown in the Allan deviation, the
precisions of the system at 1 s are 0.12‰, 0.18‰, and 0.47‰ for δ13C, δ18O, and δ17O,
respectively. When the integration time is short, the theoretically expected behavior of
the system mainly comes from white noise. At the integration time of 10 s, the preci-
sions of the system can be optimized as 0.046‰, 0.086‰, and 0.15‰ for δ13C, δ18O, and
δ17O, respectively.
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4.3. Real-Time Measurment of Human Breath

Real-time measurement was performed to detect the CO2 stable isotope abundances
in the breath. Figure 10 shows the analysis results of six repeated exhalations. The interval
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between each breath analysis was about 2 min so that there was a regular breathing rate
and there was no residual gas. In the analysis results, there are large fluctuations in the start
and end positions of each cycle. This is mainly due to the incomplete gas replacement in the
gas cell at the start and end of the measurement process. The isotope abundances averaged
from the reliable values in the middle of the six breathing cycles are (−12.12 ± 0.22)‰,
(−23.35 ± 0.26)‰, and (−14.19 ± 0.56)‰ for δ13C, δ18O, and δ17O, respectively. The
deviations are slightly larger than Allan deviations, maybe because of the instability of the
airflow in real-time breath measurement.
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Figure 10. Real-time measurement of the exhaled δ13C, δ18O, and δ17O.

5. Discussion

In this paper, we report a breath gas sensor for simultaneous measurement of δ13C,
δ18O, and δ17O in CO2. The carefully selected transitions were covered by a single ICL
emitted at 4.33 µm. A gas cell with a volume less than 5 mL was equipped, which is friendly
to exhalation diagnosis with less sample gas. In addition to real-time breath sampling,
a batch mode was also included that can automatically process multiple prepared gas
sampling bags. To reduce the unnecessary errors, the pressure in the gas cell was precisely
controlled with a standard deviation of 0.0013 Torr. Moreover, the temperature in the
insulation case was precisely controlled with a precision of 0.0013 ◦C, resulting in small
temperature dependence drifts of 0.017‰, 0.024‰, and 0.021‰ for δ13C, δ18O, and δ17O,
respectively. An error of not more than 0.3‰ was found between the system responded
δ-value and the reference. Precisions of 0.12‰, 0.18‰, and 0.47‰ were estimated at 1 s
integration time for δ13C, δ18O, and δ17O, respectively, from Allan variance, and they can
be optimized to 0.046‰, 0.086‰, and 0.15‰ at 10 s integration time, respectively. Finally,
to demonstrate the potential for disease diagnosis, similar precisions were obtained in real-
time breath measurement. Compared with the gas sensor in recent work [24] mentioned
in the introduction section, our system reaches a more than five times better precision
on δ13C and δ18O measurements. The obtained results highlight the viability of the laser
spectroscopic system in general and its potential for practical application in breath analysis.

The 17O isotope is considered the least abundant stable isotope of oxygen; however,
since it is the only oxygen nuclei with a magnetic moment, 17O-labeled H2O (H2

17O) has
been measured by magnetic resonance imaging (MRI) for studying the oxidative metabolism
in brains which is connected to many diseases such as schizophrenia, Alzheimer’s disease,
Parkinson’s disease, or the process of aging [26,27]. The H2

17O molecules used for MRI
are products of the respiration of 17O-labeled oxygen molecules in mitochondria. Studies
have shown that the oxygen isotopes in CO2 and H2O will exchange rapidly through a
bicarbonate ion when catalyzed by carbonic anhydrase in whole blood [31–33], so there
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will be theoretical isotopic enrichments of 17O in breath CO2 when a dose of 17O-labeled
oxygen is ingested, and the 17O isotope in breath CO2 may be related to cerebral oxygen
metabolism, which is similar to the mechanisms linking metabolism of H. pylori to 18O-
isotopes of human breath CO2. Moreover, 18O and 17O isotopes in breath CO2 may be
potential biomarkers for the early infection detection or preclinical stage of diseases related
to both H. pylori and oxygen metabolism. However, to determine whether 17O of exhaled
CO2 is related to H. pylori and oxygen metabolism, sufficient and credible samples are
required, which is limited by patients and isotope labeled urea in this paper.

6. Conclusions

This work has shown a potentially valuable laser spectroscopic system that can si-
multaneously obtain valid data of δ13C, δ18O, and δ17O in exhaled CO2. Simultaneously
sensitive measurement of the δ13C, δ18O, and δ17O in human exhaled CO2 can provide
a more comprehensive reference for metabolic status monitoring or disease diagnosis. It
would be useful for non-invasive detection of different diseases in the human body. How-
ever, future works are still needed for the implementation, especially the experimental
determination, of the specific link between O isotopes in CO2 and H. pylori or oxygen
metabolism. Besides, it would be interesting to measure the breath samples at different
stages of diseases.
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