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Abstract: Abnormal electricity data, caused by electricity theft or meter failure, leads to the inaccuracy
of aggregation results. These inaccurate results not only harm the interests of users but also affect
the decision-making of the power system. However, the existing data aggregation schemes do not
consider the impact of abnormal data. How to filter out abnormal data is a challenge. To solve
this problem, in this study, we propose a lightweight and privacy-friendly data aggregation scheme
against abnormal data, in which the valid data can correctly be aggregated but abnormal data will be
filtered out during the aggregation process. This is more suitable for resource-limited smart meters,
due to the adoption of lightweight matrix encryption. The automatic filtering of abnormal data
without additional processes and the detection of abnormal data sources are where our protocol
outperforms other schemes. Finally, a detailed security analysis shows that the proposed scheme
can protect the privacy of users’ data. In addition, the results of extensive simulations demonstrate
that the additional computation cost to filter the abnormal data is within the acceptable range, which
shows that our proposed scheme is still very effective.

Keywords: data aggregation; abnormal data; source; matrix encryption; lightweight

1. Introduction

With the application of electricity in our daily life becoming increasingly extensive,
more factors need to be considered in the production decisions of the cloud server [1,2],
such as how to maintain a balance between supply and demand when electricity usage
changes dramatically [3]. Thus, it is critical to obtain the electricity usage data of all
users. In addition the smart grid, as a key infrastructure, adds upstream information
feedback based on the traditional grid, which can help us collect the electricity usage data
of users in various regions [4,5]. The prominent advantage of smart meters is to make
sure that electricity supply matches the demand of users within a short period, which is
of great significance for the rational distribution of power resources and the reduction of
economic losses [6,7]. To obtain the real-time electricity demand of users, their electricity
usage data should be measured, aggregated, and analyzed through advanced metering
infrastructure [8,9].

However, it is a noteworthy problem of the smart grid that the abnormal electricity
data, caused by electricity theft or meter failure, can lead to inaccurate aggregation results.
This not only harms the personal interests of users, but also interferes with the production
decisions of the cloud center. To the best of our knowledge, none of the existing schemes
consider the impact of abnormal data. In the extant schemes, the aggregation center is
responsible for aggregating all the reported electricity usage data of smart meters but cannot
detect whether the reported data is abnormal, let alone find the source of the abnormal data.

Therefore, it is an important challenge to filter out the abnormal data and find the
source of the abnormal data when the data is encrypted. To address this issue, we propose a
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lightweight and privacy-friendly data aggregation scheme against abnormal data, in which
the valid data is correctly aggregated, but the abnormal data is automatically filtered out
during the aggregation process. Notably, the filtration of the abnormal data does not need
additional procedures, which is the highlight of this work. Besides, compared with other
methods in other schemes, the encryption method used in our scheme is more suitable for
smart meters with limited computing capacity. Specifically, the main contributions of this
paper are summarized as follows:

• We propose a lightweight and privacy-friendly data aggregation scheme against
abnormal data by using lightweight matrix encryption. It is suitable for smart meters
with limited computing power, since no time-consuming computation operators are
involved.

• Abnormal data can automatically be filtered out without additional procedures. In
addition, the source of the abnormal data can also be found out in this process.
Thereby, accurate aggregation results can be obtained through the proposed scheme,
and abnormal meters can also be identified for maintenance, even if the data is
encrypted.

• Finally, a detailed security analysis is provided to prove that our scheme can fully en-
sure the privacy and security of users’ data. Experiments and performance evaluations
demonstrate that our scheme has a low computation cost and high practicality.

The rest of the paper is outlined as follows. In Section 2, some related works are
provided. The preliminary is provided in Section 3. Section 4 illustrates the system model
and adversary model. We propose the details of our scheme in Section 5, followed by
the security analysis of our scheme in Section 6. A performance analysis is conducted in
Section 7. Finally, the conclusion of our scheme is summarized in Section 8.

2. Related Work

There exist extensive data aggregation schemes on the topic of protecting users’ privacy
in smart grids [10–23]. Homomorphic encryption has been applied in several works to
achieve privacy-preserving data aggregation [10–19]. Shen et al. [10] proposed a Paillier-
based data aggregation scheme against malicious data mining attacks, which can prevent
the adversary from inferring a target user’s electricity usage data and obtain accurate
aggregated results of electricity usage data. Xue et al. [11] proposed a privacy-preserving
service-outsourcing scheme for a real-time pricing demand response in a smart grid, which
solves the privacy issues by modifying the Paillier cryptosystem to hold two different
decryption keys and achieves the flexible enrollment and revocation of smart meters. In
addition, Saleem et al. [12] proposed a scheme to resist the malfunctioning of smart meters
for data aggregation based on a modified Paillier cryptosystem. Their system can resist
false data injection attacks by filtering out the inserted values from external attackers.
For achieving secure data aggregation, the ElGamal-based algorithm has been taken into
account [13,14]. Liu et al. [14] proposed a lifted elliptic ElGamal-based privacy-preserving
data aggregation scheme, in which the trusted third party is removed and the users, with
some measure of trust, construct a virtual aggregation area to mask the single user’s data
against the denial of service attack. In order to resist quantum attacks and improve the
efficiency of the algorithm, the lattice-based homomorphic approach has been applied
to achieve secure data aggregation for smart grids [15,16]. Abdallah et al. [16] proposed
a lattice-based privacy-preserving data aggregation scheme for a smart grid, which can
further reduce the computation burden for smart appliances, because it depends on simple
arithmetic operations. In [17], a privacy-friendly data aggregation scheme is proposed
by Vahedi et al. They use elliptic curve digital signature algorithms (ECDSA) in smart
grids to protect users’ privacy from the grid operators. Besides, to meet the higher data
analysis requirements of the cloud server, multidimensional data is aggregated in some
schemes [18–20]. Although the schemes based on homomorphic encryption can obtain
accurate aggregation results, a heavy computational and communication burden will also
be imposed on smart meters with limited computing power.
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As another major encryption technology, masking-value-based schemes also have been
proposed to achieve secure and efficient data aggregation in smart grids. As for masking-
based data aggregation schemes [21–24], Gope et al. [21] first proposed a lightweight and
privacy-friendly masking-based spatial data aggregation scheme for secure forecasting of
power demands in smart grids. Their scheme only uses lightweight cryptographic primi-
tives, such as exclusive OR operations and hash functions, thus it has a significantly lower
computational cost as compared with other approaches. The LCEDA scheme proposed
by Su et al. [22] achieves an efficient update of masking the value share to ensure forward
security of individual data, dynamic enrollment, and revocation of smart meters. Moreover,
Huang et al. [23] propose a lightweight and fault-tolerable data aggregation scheme that
can determine the smart meters which fail to upload data on time with the idea of flag
bit, and correct aggregation results can be obtained even if the data is not reported by the
smart meters. However, the existing masking-based aggregation schemes cannot screen
abnormal electricity consumption data either.

In addition, accurate aggregation results can be obtained by utilizing zero-knowledge
proof [24], but heavy communication and the computational burden will also be imposed on
the smart meters with limited computing power. Thus, the solution using zero-knowledge
proof is not practical.

Therefore, we propose a lightweight and privacy-friendly data aggregation scheme
against abnormal data by using matrix encryption, which can effectively filter abnormal
data and find out the source of abnormal data. To more intuitively show the advantages of
the proposed scheme compared with other schemes, the security feature comparisons are
shown in Table 1.

Table 1. Security feature comparisons.

Scheme Data
Confidentiality

Resistance to
Middle-Man

Attacks

Filtering of
Abnormal Data

Tracing the
Source of

Abnormal Data

Computational
Cost

[10–12] X X × × High
[13,14] X X × × High
[15,16] X X × × Low

[17] X X × × High
[18–20] X X × × High
[21,22] X X × × Low

[23] X X × × Low
[24] X X X X High

The proposed
protocol X X X X Low

3. Preliminaries

In this section, the preliminaries of the proposed scheme are presented, in which we
describe the basic idea of filtering abnormal data.

Filtering abnormal data: Suppose that a is the data to be determined and b is the
upper limit of the normal value, and they are in the range of [0, N2 − 1]. Then, whether the
data a is abnormal can be determined as follows [25]:

1. Construct an N × N matrix containing all possible values in [0, N2 − 1], as shown in
Figure 1. Each value has a row coordinate and a column coordinate in this matrix.
The value in the matrix can be represented by iN + j, the corresponding row coordinate
and the column coordinate of this value are (i + 1) and (j + 1), respectively. Based
on these values, a and b can be represented as two-dimensional coordinates (ia, ja)
and (ib, jb), where ia, ja is the row and column coordinate of a, and ib, jb is the row
and column coordinate of b. (ia, ja) and (ib, jb) can be computed from the following
formulae:

ia =
[ a

N

]
+ 1; ja = a mod N + 1. (1)
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ib =
[

b
N

]
+ 1; jb = b mod N + 1. (2)

Figure 1. Representation of the constructed matrix.

2. Based on (ia, ja), we can construct three N-dimensional column vectors for a as

ã =

[
0ia

1N−ia

]
, ā = eia , â =

[
0ja−1

1N−ja+1

]
, (3)

where 0ia denotes an ia-dimensional zero vector, 1N−ia denotes an 1N−ia -dimensional
vector, and all elements are 1; eia denotes an N-dimensional unit vector, and the ia-th
element is 1. In this way, we can obtain the following transformation relation:{

a ≤ b⇔ ã[ib] + ā[ib] ∗ â[ib] = 1
a > b⇔ ã[ib] + ā[ib] ∗ â[ib] = 0

(4)

3. Construct X = [ãT āT ], X′ = [1 âT ] and a 2N × (N + 1) matrix Q satisfying

Q[ib, 1] = Q[N + ib, jb + 1] = 1, (5)

and the other elements in Q are 0. We have

ã[ib] + ā[ib] ∗ â[ib] = [ãT āT ]Q
[

1
â

]
= XQX′T . (6)

So we have the conclusion that{
a ≤ b⇔ ã[ib] + ā[ib] ∗ â[ib] = 1⇔ XQX′T = 1
a > b⇔ ã[ib] + ā[ib] ∗ â[ib] = 0⇔ XQX′T = 0.

(7)

As we describe above, the judgment on whether data a is abnormal can be transformed
to the equality test of XQX′T = 1 or 0. To be specific, if XQX′T = 1, it is equivalent to the
fact that a is less than or equal to b, where b is the upper limit of the normal value we set.
Therefore it means that the data a is normal. The opposite is also true.

To help readers better understand the principle, we add a numerical example here.
Supposed that N = 10, a = 55, b = 60. We have ia =

[ 55
10
]
+ 1 = 6; ja = 55 mod 10 +

1 = 6, and ib =
[ 60

10
]
+ 1 = 7; jb = 60 mod 10 + 1 = 1. Therefore, ã = [0000001111]T,

ā = [0000010000]T, and â = [0000011111]. Further, we can obtain ã[7] + ā[7] ∗ â[7] = 1.
Next we construct the matrix X, X′andQ as described above. Finally, we can obtain that
XQX′T = 1, which is also equivalent to a ≤ b.
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4. System Model

In this section, we will introduce the system model and the adversary model of the
proposed scheme.

4.1. System Model

The system model of our scheme is shown in Figure 2, which consists of three entities:
smart meters(SM), the aggregation center (AC), and the cloud server(CS).

• Smart Meters (SM): Smart meters are intelligent devices installed at users’ premises
with limited computing resources. Each smart meter encrypts the electricity usage
data and reports it to the aggregation center.

• Aggregation Center (AC): The aggregation center has sufficient computing power to
collect and aggregate the electricity usage data reported by the smart meters.

• Cloud Server (CS): The cloud server receives and analyzes the aggregated results sent
by the AC, thus making appropriate production decisions and reasonable electricity
distribution.

Figure 2. System model.

4.2. Adversary Model

In this scheme, we assume that:

• Users may not only try to steal electricity by compromising smart meters, but also be
interested in the privacy of other users’ electricity usage data. In addition, there may
be cases where the meter fails and reports abnormal electricity consumption data.

• AC and CS are semi-honest. This means that the two entities will honestly execute the
proposed protocol and do not tamper with the computational results, but they may
attempt to learn individual electricity usage data as much as possible. Besides, AC
and CS will not collude with each other.

• Any probabilistic polynomial-time adversary can intercept the channels between SMs
and AC and the channels between AC and CS to obtain the reported data.

Other security issues are beyond the scope of our scheme.
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4.3. Security Goals and Functionality

On the basis of the system model and adversary model above, our system should
satisfy the following security goals and functionality requirements.

• Data privacy: Because the data reported by the electricity meters is closely linked to
the users’ daily habits and household situations, the proposed scheme should ensure
that the privacy of users’ electricity usage data is not compromised by curious internal
entities, as well as by external attackers.

• Filter abnormal data: In order to prevent the abnormal electricity usage data reported
by the electricity meters from affecting the accuracy of the aggregation results, the
abnormal electricity usage data should be filtered out during the aggregation process.

• Trace abnormal source: The proposed scheme should track the source of abnormal
data to further repair and maintain abnormal meters.

5. The Proposed Scheme

Our scheme is mainly composed of five stages: system initialization, registration, data
encryption, aggregation and filtering, and decryption. In addition, the work flow of our
scheme is presented in Figure 3.

Figure 3. The work flow of our scheme.

5.1. System Initialization

At this stage, the cloud server generates two random non-singular matrices, M̃1 ∈
R(2N+4)×(2N+4) and M̃2 ∈ R(N+5)×(N+5), and computes their inverse matrices, M̃3, M̃4.
After that, the public parameters of the system can be denoted as M̃1, M̃2, M̃3, M̃4, and H0.
Here, the symbol H0 is a collision-resistant one-way hash function.

5.2. Registration

When the smart meter SMi registers with the cloud server, the cloud server generates
a random number ri and a pseudo-identity PIDi for it. Then, the cloud server sends
{PIDi, ri} to it over a secure channel.



Sensors 2022, 22, 1452 7 of 14

5.3. User: Data Encryption

(1) For electricity usage data xi, the smart meter SMi generates two random numbers,
µx,i and µ′x,i, and constructs the following matrices

{
X̃i, X̃′i

}
as

x̃i =

[
0ix

1N−ix

]
, x̄i = eix , x̂i =

[
0jx−1

1N−jx+1

]
, (8)

where x̃i, x̄i, and x̂i are constructed as in Section 3, i.e.:

Xi = [x̃T
i x̄T

i ], X′i = [1 x̂T
i ] (9)

X̃i = [(xi + ri)Xi Rx,i 1 0] (10)

X̃′i =


X′i

T

R′x,i
0
1

, (11)

where Rx,i = [µx,i µx,i], R′x,i = [µ′x,i µ′x,i].
(2) The smart meter SMi encrypts

{
X̃i, X̃′i

}
into the ciphertext {HTi,1, HTi,2} as follows:

HTi,1 = X̃i M̃1, HTi,2 = M̃2X̃′i. (12)

(3) Finally, the smart meter SMi reports the ciphertext {HTi,1, HTi,2, PIDi} to the
aggregation center.

5.4. The Aggregation Center: Aggregation and Filtering

(1) The aggregation center generates the matrix Q̃ according to the upper limit of
normal data, q:

Q̃ =


Q 0 0 0
0 RQ 0 0
0 0 µQ,1 0
0 0 0 µQ,2

, (13)

where µQ,1 and µQ,2 are random numbers, and Q is a 2N × (N + 1) matrix constructed as
in Section 3:

RQ =

[
rQ,1 rQ,2
rQ,3 −(rQ,1 + rQ,2 + rQ,3)

]
, (14)

where rQ,1, rQ,1, and rQ,1 are random numbers.
Then, the aggregation center constructs matrix TT according to the matrix Q̃ and the

matrix
{

M̃3, M̃4
}

as in the following equation:

TT = M̃3Q̃M̃4. (15)
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(2) The aggregation center aggregates the reported data to obtain the aggregation
result R′ according to the following equation:

R′ =
n

∑
i=1

HTi,1TTHTi,2

=
n

∑
i=1

(xi + ri)X̃i M̃1M̃3Q̃i M̃4M̃2X̃′i

=
n

∑
i=1

(xi + ri)X̃iQ̃iX̃′i (16)

=
n

∑
i=1

(xi + ri)(XQX′T + R′x,iRQRx,i)

=
n

∑
i=1

(xi + ri)XQX′T .

For abnormal data, the result of XQX′T is 0, therefore the result of the formula
HTi,1TTHTi,2 is 0. While, for normal data, XQX′T = 1, the result of the formula HTi,1TTHTi,2
is still (xi + ri). In this way, the abnormal data is automatically filtered in the process of
aggregation, that is, the aggregation result R′ is ∑ (xm + rm), where xm represents the
normal electricity usage data, and rm represents its corresponding masking value. Besides,
if reported data are judged to be abnormal, the aggregation center will record their source,
PIDab, and send it to the cloud server.

(xi + ri)XQX′T =

{
(xi + ri), i f data xi is normal

0, otherwise
(17)

(3) Lastly, the aggregation center sends the aggregated result, R′ = ∑ (xm + rm), and
the pseudo identities, {PIDab}, of the abnormal smart meters to the cloud server.

5.5. The Cloud Server: Decryption

After receiving the aggregated result, R′ = ∑ (xm + rm), and the pseudo identities,
{PIDab}, of the abnormal smart meters from the aggregation center, the cloud server
decrypts the data to obtain the real aggregated result R as in the following equation:

R = ∑ (xm + rm)− (∑ rm)

= ∑ (xm + rm)− (∑ ri −∑ rab)

= ∑ xm, (18)

where rab represents the masking value corresponding to the smart meter which reports
abnormal data.

Therefore, the cloud server can obtain the accurate aggregated result R that does not
include abnormal data and the pseudo identities PIDab of abnormal meters, so that it can
make appropriate production decisions and check for abnormal smart meters.

As the range of electricity usage data expands, the constructed matrix will become
larger, which greatly increases the communication cost. For example, the bit length of the
report data will be at least 1000 bits when the electricity usage data reaches 1000.

To solve this problem, a mapping function f : S → S∗ is proposed to map the
original data to a smaller set, where S and S∗ are the original data set and the mapped
set, respectively. For any xi ∈ S, there exists a unique xi

∗ ∈ S∗ corresponding to it and
xi
∗ = [xi/b], where b is determined by the filtering accuracy. By sacrificing some accuracy

within an acceptable range, communication overheads can be greatly reduced.



Sensors 2022, 22, 1452 9 of 14

6. Security Analysis

In this section, we present the security proof of the proposed scheme to solve the
problem of adversarial models.

Theorem 1. (Resistant to the middle-man attack) The proposed scheme can ensure that the privacy
of users’ data is not compromised by the external adversaries.

Proof. The confidentiality of users’ electricity data xi(i = 1, 2, . . ., n) and the aggregation
result ∑ xm will be proved below.

If the PPT adversary tries to obtain xi from {HTi,1, HTi,2}, (s)he must know ri since
HTi,1 = (xi + ri)X̃i M̃1 and HTi,2 = M̃2X̃′i . However, ri is a random number only available
to registered users and the cloud server. Consequently, the external adversaries cannot
infer the individual electricity data xi from {HTi,1, HTi,2}.

If the external adversary tries to derive ∑ xm from R, (s)he needs to know the sum of
random numbers ∑ rm since R =∑ (xm + rm). However, ∑ rm is only available to the cloud
server. Thus, adversaries cannot infer the normal total electricity usage data ∑ xm.

To sum up, any adversary cannot recover individual electricity usage data xi or total
electricity usage data ∑ xm that excludes abnormal data.

Theorem 2. Our proposed scheme can achieve the privacy of data transmitted by a smart meter.

Proof. In our scheme, the attackers of data privacy can be divided into two categories:
internal attackers and external attackers. For external attacks, they can be resisted, since an
encryption algorithm is adopted in our scheme. For internal attackers, we discuss it in the
following three cases.

1. When the internal attacker is the aggregation center, although it can obtain the en-
crypted users’ electricity usage data, it cannot gain the users’ real electricity usage
data. Specifically, the aggregation center can get {HTi,1, HTi,2} reported by smart
meters, where HTi,1 = (xi + ri)X̃i M̃1, and HTi,2 = M̃2X̃′i . If the aggregation center
tries to recover xi from {HTi,1, HTi,2}, it must know ri. However, ri is only available
to the user i and the cloud server. Therefore, the proposed scheme can resist privacy
attacks on the transmitted data from the aggregation center.

2. When the internal attacker is the cloud server, although it can obtain the aggregated
result of normal electricity usage data, it cannot gain the electricity usage data of
a single user. Concretely, the cloud server can only obtain ∑ (xm + rm) from the
aggregation center, that is, it can only obtain the aggregated result of normal electricity
usage data ∑ xm, which is computed by ∑ (xm + rm)−∑ rm. Therefore, the proposed
scheme can resist privacy attacks on the transmitted data from the cloud server.

3. When the internal attacker is a valid smart meter. Although it can intercept electricity
usage data reported by other smart meters, it cannot obtain that the corresponding
user’s true electricity usage information xi, because the masking value ri is known
only to the corresponding user and the cloud server. Hence, any smart meter cannot
recover the electricity usage data of other smart meters.

To sum up, our scheme can achieve data privacy.

Theorem 3. It is infeasible to learn users’ electricity usage data information according to the
reported data in different rounds.

Proof. In each round of data aggregation, the smart meter SMi updates the masking value
ri as r′i = H0(ri). Even if the adversary gets the reported data in two different rounds,
(xi + ri) and (x′i + r′i), (s)he can only obtain (x′i + r′i) − (xi + ri), which does not reveal
the changes in electricity usage data in the two aggregation rounds. Therefore, it is still
infeasible to obtain information related to users’ electricity usage data according to the
reported data in different rounds.
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Finally, we compare the security features of our proposed approach with homomorphic
encryption schemes [10] and masking-value-based schemes [22,26–28]. As shown in Table 2,
our scheme has the most comprehensive security functions and features.

Table 2. Security feature comparisons.

Scheme Data
Confidentiality

Resistance against
Man-in-the-

Middle
Attacks

Forward/Backward
Secrecies

Filtering of
Abnormal Data

Finding the
Source of

Abnormal Data

AMDA [10] X × × × ×
DMDA [26] X X × × ×
LPSDA [21] X × × × ×
ESPDA [27] X X × × ×
ERDA [28] X × X × ×

LCEDA [22] X X X × ×
The proposed

protocol X X X X X

7. Performance Analysis

In this section, we evaluate the performance of our scheme and compare our scheme
with two representative and related schemes, the LCEDA scheme by Su et al. [20] and
the DMDA scheme by Song et al. [25]. All of these schemes involve the use of masking
values to encrypt the electricity usage data, and our scheme uses matrix encryption to
filter abnormal data beyond that. Hence, we primarily evaluate the performance of the
proposed scheme with LCEDA and DMDA in terms of communication and computation
costs. Table 3 lists some notations for the performance comparisons.

Table 3. Notations.

Notation Semantics Notation Semantics

T(t−1)−poly
Time of evaluation operation of a

(t− 1)-polynomial
∣∣Zp
∣∣ Element size in Zp

|ID| Bit length of the identifier |G| Element size in G
|M1| (2N + 4)× (2N + 4) Matrix size |M3| 1× (2N + 4) Matrix size
|M2| (N + 5)× (N + 5) Matrix size |M4| (N + 5)× 1 Matrix size

Ta Time of an addition operation in Zp |Th| Time of a hash operation
Ts Time of a subtraction operation in Zp

∣∣Tpm
∣∣ Time of a point multiplication operation

Mm Time of a multiplication operation in matrix |Ma| Time of an addition operation in matrix

7.1. Communication Costs

The communication costs of the LCEDA, the DMDA, and our scheme in the enrollment
stage are shown in Table 4. The highest communication costs are mainly concentrated
between the cloud server and the smart meters in these schemes.

It costs
∣∣Zp
∣∣+ |ID| communication overheads for the aggregation center to register at

the cloud server in LCEDA. In addition, each smart meter spends t
∣∣Zp
∣∣+ |ID| and

∣∣Zp
∣∣

on registering at the cloud server and the aggregation center, respectively. Hence, in the
enrollment stage, the complexity of communication times in LCEDA is O(1), and the total
costs are (t + 2)

∣∣Zp
∣∣+ 2|ID|. In DMDA, the complexity of communication times is O(1),

and the aggregation center spends |G| communication overheads on registering at the cloud
server to obtain the mask values, while the smarts register spends (t + 2)

∣∣Zp
∣∣+ |G|+ 2|ID|

communication overheads. Therefore, the total length of a communication message is
constant in the enrollment stage of DMDA. In our scheme, the complexity of communication
times is O(1), and it costs |M1|+ |M2|+

∣∣Zp
∣∣+ |ID| communication overheads for the

smart meters to register at the cloud server.
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To sum up, in the enrollment stage, the total length of the communication message of
LCEDA in the enrollment stage is linear with t, hence, it has the highest communication
costs among these schemes. Although both the DMDA and our scheme are constant, our
scheme is less efficient than DMDA, comprehensively considering communication times
and message length.

Table 4. Comparisons of communication costs in the enrollment stage.

Scheme CS↔SM AC↔SM CS↔AC Total Costs

LCEDA t
∣∣Zp
∣∣+ |ID|

∣∣Zp
∣∣ ∣∣Zp

∣∣+ |ID| (t + 2)
∣∣Zp
∣∣+ 2|ID|

DMDA 2
∣∣Zp
∣∣+ |G|+ 2|ID| − |G| 2(

∣∣Zp
∣∣+ |G|+ |ID|)

The proposed protocol |M1|+ |M2|+
∣∣Zp
∣∣+ |ID| − |M3|+ |M4| |M1|+ |M2|+

∣∣Zp
∣∣+ |ID|+ |M3|+ |M4|

7.2. Computation Costs

To evaluate performance, we conducted some experiments on a computer running
Windows 10 with a 3.00 GHz Intel Core i5-8500 CPU and 8 GB memory. These experiments
were run separately 50 times to obtain the mean results using the GNU Multiple Precision
Arithmetic (GMP) Library and Pairing-Based Cryptography (PBC) Library.

The system initialization stage consists of two stages: the system setup stage and
the enrollment stage. We set the number of users as 1000 in the implementation. The
system setup stage in LCEDA, DMDA, and our scheme costed 8.74 ms, 29.9 ms, and
4.90 ms, respectively. The comparison of computation costs related to LCEDA, DMDA,
and our scheme in the enrollment stage is shown in Figure 4, where we set the number
of users to vary from 100 to 1000 at an increasing interval of 100. In LCEDA, the smart
meters spent (t + 1)T(t−1)−poly on registering at the cloud server and the aggregation center
without negotiating with each other. As shown in Figure 4, the computation time of LCEDA
ranged from 502.2 ms to 5895.2 ms when the number of users varied from 100 to 1000. The
computation costs of DMDA are 2(Tpm + Th + Ta). In our scheme, the smart meters and
the aggregation center register at the cloud server, which costs 4Mm, and the computation
time of the proposed protocol ranges from 465.3 ms to 4897.6 ms.

Figure 4. Computation Time of Enrollment Stage. The figure shows how the time required for
LCEDA, DMDA, and the proposed scheme in the enrollment stage changes as the number of users
increases. In addition, the figure reflects that the proposed scheme requires relatively little time
compared to the other two.

The data collection stage consists of three stages: the data encryption stage, the
aggregation stage, and the decryption stage. The encryption times of LCEDA, DMDA, and
our scheme are shown in Table 5. Each smart meter in LCEDA needed 0.001 ms to encrypt
the electricity usage data, while our scheme needed 0.3 ms to encrypt. The aggregation of
the encrypted electricity usage data costs 28.3 ms, 28.3, and 33.2 ms in LCEDA, DMDA,
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and our scheme, respectively, when the number of users is 1000. In LCEDA and DMDA,
the cloud center needs 0.53 ms to decrypt the aggregation result, whereas our scheme only
needs 0.13 ms. Finally, the time to encrypt data and to aggregate data in our scheme are
shown in Figure 5 and Figure 6, respectively. Therefore, LECDA and DMDA have lower
computation cost,s (2(Tpm + Th) + (n + 1)Ta + Ts) and ((n + t)T(t−1)−ploy + 2(n− 1)Tm +
(2n + 1)Ta + Ts), respectively, compared to our scheme, which is because they do not
involve filtering abnormal electricity usage data and do not support finding out the source
of abnormal electricity usage data.

Table 5. Comparisons of computation costs.

Scheme (n = 1000)
Encryption Aggregation Decryption

Times (ms) Costs Times (ms) Costs Times (ms) Costs

LCEDA Ta 0.001 (n− 1)Ta 28.3 Ts 0.53
DMDA Ta 0.001 (n− 1)Ta 28.3 Ts 0.53

The proposed protocol Ta + 2Mm 0.1 2nMm + (n− 1)Ta 33.2 Ts 0.13

To sum up, our scheme needs to pay more computation costs for filtering abnormal
users and finding out the source of abnormal users, but the increase is not significant, that
is, our scheme is indeed efficient.

Figure 5. Time to encrypt data in the proposed protocol.

Figure 6. Time to aggregate data in the proposed protocol.



Sensors 2022, 22, 1452 13 of 14

8. Conclusions

In this paper, we propose a lightweight and privacy-friendly data aggregation scheme
against abnormal data to solve the problem that the abnormal electricity usage data cannot
be filtered out when it is encrypted. Besides, our scheme can find out the smart meters
which reported the abnormal data. Compared with other complex schemes, our scheme
only uses a lightweight matrix encryption, which has lower computational costs and is
more suitable for smart meters with limited computing capacity. Finally, a security analysis
of our proposed scheme is presented to prove that our scheme can fully protect the privacy
of users’ electricity usage data. In addition, the performance evaluations and experiments
validate the effectiveness and practicability of our scheme. Consequently, our scheme can
be implemented in smart grids to effectively filter abnormal data and find out its source.

It is hard to say that our scheme has no drawbacks. We mainly focus on filtering
abnormal data during aggregation and finding the source of the abnormal data. We use
lightweight matrix encryption to process real-time electricity usage data. However, as the
range of electricity usage data expands, the constructed matrix will become larger, which
will gradually increase the computational and communication overheads. To overcome
this problem, we mapped the original data onto a smaller data set to reduce the size of the
construction matrix, and the mapping function was determined by the filtering accuracy.
By sacrificing some accuracy within an acceptable range, communication overheads can be
greatly reduced. In future work, we will focus on reducing computing and communication
overheads while ensuring better filtering accuracy.
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