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Abstract: Digital healthcare is a composite infrastructure of networking entities that includes the
Internet of Medical Things (IoMT)-based Cyber-Physical Systems (CPS), base stations, services
provider, and other concerned components. In the recent decade, it has been noted that the demand for
this emerging technology is gradually increased with cost-effective results. Although this technology
offers extraordinary results, but at the same time, it also offers multifarious security perils that
need to be handled effectively to preserve the trust among all engaged stakeholders. For this, the
literature proposes several authentications and data preservation schemes, but somehow they fail
to tackle this issue with effectual results. Keeping in view, these constraints, in this paper, we
proposed a lightweight authentication and data preservation scheme for IoT based-CPS utilizing
deep learning (DL) to facilitate decentralized authentication among legal devices. With decentralized
authentication, we have depreciated the validation latency among pairing devices followed by
improved communication statistics. Moreover, the experimental results were compared with the
benchmark models to acknowledge the significance of our model. During the evaluation phase, the
proposed model reveals incredible advancement in terms of comparative parameters in comparison
with benchmark models.

Keywords: cryptography; data integrity; IoT-based-CPS; data privacy; device to device authentication;
digital healthcare; IoT; security

1. Introduction

IoMT-based patient wearable devices and gadgets are employed in an open atmo-
sphere with a radio communication infrastructure, which puts them a risk of new security
threats. It is not only patient wearable devices that are susceptible to security risks, but
their collected and transmitted data are also at risk during the communication process;
therefore, the whole ecosystem needs to be shielded against internal and external threats [1].
In these networks, patient wearable devices act as edges and gateways for end-side data
collection and transmission. Therefore, an adversary can easily target and compromise
them to extract data from the network or inject malicious data into the network [2,3].

According to Tractia, an intelligent organization, annual earnings in the sector using
blockchain technologies will reach 19.9 billion by 2025 [1]. IoTs are progressively active in
health care to give real-time services to patients and physicians [2]. This is accomplished
by incorporating IoMT medical devices into medical institutions and businesses. However,
as the number of Internet-connected medical devices (IoMT) grows, a greater volume of
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inconsistent data will be generated [3]. The current implementation aspect of the (CCS)
mode, which includes all activities carried out in the center, has significant challenges such
as a high latency (HL), network dependency, individual points of failure and failure impact,
and an inability to adapt to instantaneous transactions [4]. As a result, the fog or edge
computing (EC) prototype supports the time and resource efficient services at the network’s
edge. The fog layer (FL) serves as a middleware for management between the edge and the
Cloud. Figure 1 shows the basic fog IoMT model [5]. Figure 1 represents the applications of
IIOT in various domains. These domains range from smart transportation, smart industries,
smart homes, and smart healthcare systems to smart education, etc. It assists the planner in
establishing and delivering a service; hence, improving the resource balance and service
latency. The 5G network enables mobile networks to connect and control machines and
other things [6].
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In contrast to these networks, cybersecurity is a weakened realm in traditional com-
puting systems to contend various malicious threats and the infiltration of adversaries [7].
Most of the present cybersecurity explications use simple or complex authentication mod-
els, which in the simple cases are susceptible to security threats, while the complex model
demands an ample amount of network resources that degrades its real implementation.
In-flight IoT drone security and surveillance are a few examples of 5G-enabled IoMT com-
munication applications. These apps help the community every day. Everything in this
ecosystem uses the Internet. So, this message requires security and privacy [7]. It also
faces other threats. Defending 5G-enabled IoT communication infrastructure against these
threats is crucial. These protocols include key management, user authentication/device
authentication, access control/user access control, and intrusion detection. This paper
details many 5G-enabled IoT communication system models (network and threat models)
with the communication environment’s security dangers and requirements. Moreover, the
security techniques for 5G-enabled IoT connectivities are compared. This research has been
used in various fields, including the streaming of the 5G-enabled IoMT and the develop-
ment of safe, secure medical data transfer methods. The Cloud with a blockchain-based
fog architecture (FA) provides a bigger foundation for coordinating remote resources and
completing jobs [7]. Unlike traditional Cloud computing (TCC), the hybrid service environ-
ment, which incorporates the edge or a secure IoMT layer that services blockchain [8] has
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more unpredictable and diverse uses, necessitating a more flexible, resilient management
by using the proposed method. We designed a data privacy technique to keep private data
protected during DL training and inferences for fog computing. The data preserving tech-
nique presented in this paper is designed for preserving EMR used to distinguish authentic
and valid users from intruders and hackers [9]. The DL model does not have access to
any identifiable information. It takes only encrypted images as inputs. The encryption
of the chest X-ray is completed from the user side before it is fed to the DL model. This
encryption is homomorphic, which means that the final classification result does not need
any decryption of the image. The DL model will only work with these encrypted data
without requiring any personally identifiable information. We think this feature is essential,
especially in the healthcare system using fog-computing. In fact, several research works
have been conducted to show that EMR datasets are important nowadays because of their
privacy. Moreover, many people explicitly require that the body details shown in these
kinds of images be kept private and secure [10]. The technique presented in this paper
fulfills this requirement at a very low cost (around a 1% decrease in accuracy). We explain
the detail of hybrid Deep Learning techniques for privacy using homomorphic encryption.

In response to these challenges, in this paper, we propose a hybrid lightweight au-
thentication scheme, which is basically designed from two different attributes such as the
supervised machine learning (SML) technique and the Cryptographic Parameter Based En-
cryption and Decryption (CPBED) model to ensure the validation of legal devices followed
by secure data transmission in the IoMT-based CPS. In this scheme, the authentication of
legitimate patient wearable gadgets is enabled in a decentralized fashion by exercising the
SML technique to predicate the nearest authentication server (AS) and radius server or
service provider (SP) to validate communicating devices by managing public and private
keys. The SML algorithm allows the patient wearable devices to use a hop count communi-
cation infrastructure with proper validation in a decentralized atmosphere to depreciate
the overheads and complexity of the network. Unlike ordinary authentication schemes, the
intended prototype uses multiple AS SP to assure the validation of patient wearable devices
in smart healthcare such as IoMT-based CPS, where multiple hospitals are interconnected
through the Internet.

Recently, several research works related to data privacy protection and the identifica-
tion of cyber-attacks, particularly using the Cloud and edge computing integrated with
blockchain, have been proposed to tackle the above issues. However, it should be noted that
there are still various drawbacks in the system [11]. The major challenges are constructing a
privacy-preservation scheme to protect the sensitive data transactions from being accessed
by unauthorized users [12]. Moreover, ensuring a secured authentication data transfer
scheme, and maintaining data integrity when communicating the data over IoT network is
a challenging issue. Second, designing an adaptable security mechanism that can efficiently
distinguish between normal and attack instances in IIoT is also a challenging issue. As
such, the IoT network comprises various interconnected medical sensors, actuators, and
machines (e.g., VMs and platforms), located at multiple locations [13]. Third, developing a
new framework for deploying blockchain and deep-learning techniques in current Cloud-
edge-assisted industrial systems is strenuous. As such, the framework often faces issues
related to scalability; moreover, due to the different computing powers of the participating
edge nodes, it is infeasible to store the complete block in the edge networks [14]. Figure 1
describes the application of IoT applications in real time scenarios. Therefore, it can be
easily observed from Figure 1 that the number of applications is too large using IoT and
IoMT techniques.

Key Contribution

In this paper, motivated by the above challenges, we designed and implemented a
blockchain-based deep-learning framework to enhance security and privacy in IIoT.

The key contributions of this paper are as follows:
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1. We propose a Proof of Improved consensus algorithm designed for blockchain to
validate the blocks before they are committed to the ledger;

2. The design of a deep learning-based secure model to identify honest miners and
restrict malicious miners;

3. We present a complete working solution for the integration of the proposed consensus
algorithm with the Ethereum Framework;

4. A comparative analysis of the existing consensus and the proposed consensus protocol
is presented;

5. The design of a novel algorithm is added in order to secure the proposed model.

2. Background and Related Studies

Smart healthcare, which is constituted from patient wearable IoT devices, encom-
passes various security vulnerabilities and susceptibilities, i.e., the authentication of patient
wearable devices, data privacy, and preservation, etc. [14–16]. Authentication of multiple
wearable devices in a network is a critical part of secure communication because it guaran-
tees the users’ identities. Even though many experts have worked in this field to alleviate
the known vulnerabilities and threats, over time these authentication models become sus-
ceptible to external and internal threats as the adversaries continually try to tamper and
hijack them. Therefore, this domain is still open to new authentication schemes that could
help to promote the validation process with better communication attributes. In [17], a
community identity-based authentication model was proposed for healthcare IoT networks
to address the security concerns in these networks. In this model, an elliptical curve cryp-
tographic (ECC) was performed primarily to produce erratic bio-cryptographic signals
to assure the validation of legal devices with secure communication. The authors of [18],
presented a certificate-less-based authentication model for wireless body area networks to
fix the security solicitudes of these networks. The storage of patient health records over the
Cloud provides various opportunities and challenges. Cloud-based access control models
are more susceptible to security breaches and a secure access control system is needed for
current PHR-based models, since a Cloud-based framework mostly works in an open and
integrated environment. Due to these features, Cloud-based networks are more vulnerable
to data loss, theft, and security attacks. A weak network security system is one of the
most highlighted and explored problems which has directed IT researchers to explore more
smart security directions and tools for the Cloud using medical health-related data. The
digital healthcare industry has many reasons not to trust the Cloud environment, because it
cannot provide complete access control to patient health records. The fog computing-based
IoMT is currently a hot topic [7]. Previous research works have missed important security
issues such as:

1. Healthcare IoMT devices send data to Cloud servers that are frequently unencrypted
and open to manipulation and attack. As a result, sensitive patient information will
likely be accessible.

2. To our knowledge, the need to identify IoMT medical devices, which leads to the
verification and authentication of health data, is urgent, and it can be accomplished
quickly using a blockchain in the FC-IoMT system. Servers at the network’s edge
should perform more detailed authentication and verification.

3. BAKMP-IoMT, the new IoMT key agreement technique for blockchain-accessible
authentication, was designed by Aazam et al. [13].

Between the medical devices implanted and the personal server, BAKMP-IoMT pro-
vides a secure key management mechanism. P. Gope et al. [16] presented a revolutionary
anonymous Internet of Things authentication mechanism resistant to machine PUF attacks.
Salem et al. [14] developed a strategy to avoid interference with MitMs and prevent alarms
from the remote health surveillance system. P. Zhang et al. [15] used a profound learning
model with the deep convolutions neuronal network (CNN) and a short-term long-range
memory network. The approach described by Z. Ning et al. [16] can achieve a Nash balance.
It is also obtained theoretically from the algorithm’s top time complexity and the number
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of MEC patients. Mobile-based healthcare system was proposed by Liang et al. [17]. This
is also called a record sharing framework using BC through an approach based on user-
centric security to limit the access of unprivileged users and to enhance the privacy via
a channel formation scheme. The issue in this approach is the computational cost due to
the complex cryptographic mechanism. However, using a health technology blockchain,
Dwivedi et al. developed a peer-to-peer strategy for linking distant medical sensors and
equipment through the Internet. They came up with the notion of a better blockchain
foundation for IoT devices. In a decentralized context, the suggested approach by these
authors provides higher security for a healthcare system.

Dwivedi et al. proposed a peer-to-peer approach based on a privacy-preserving digital
health blockchain for connecting remotely medical sensors and devices. They proposed
the idea of an improved blockchain framework appropriate for IoT devices. This proposed
framework of these authors works in a distributed environment to provide more privacy to
a clinical system. Aggarwal S. et al. investigated several outstanding research topics on
readers’ 5G-enabled Tactile Internet fog computing. This is also something that researchers
have investigated. Ahad A et al. thoroughly examined 5G-assisted smart healthcare
solutions in the IoT. R. Cao et al. proposed a multi-Cloud cascade architecture, and a
low-overhead native testing framework anda medical data storage backup method was
proposed by B. D. Deepak et al. A smart service authentication (SSA) system was proposed
to improve patient–physician data security.

The impact of the increased security vulnerability of electronic systems is exacerbated
for devices that are part of the critical infrastructure or those used in military applications,
where the likelihood of being targeted is very high.

In addition, a systematic threat modeling analysis and security validation is included
in this paper, which indicates that the proposed solution provides better protection against
information leakage, loss of data, and the disruption of operations. The rest of the paper
is organized as follows. Section 2 discusses various privacy-preservation and intrusion
detection techniques, and relevant existing work. In Sections 3 and 4, we present the
proposed framework with its various functional components, and our evaluation approach.
Finally, the paper is concluded in Section 5.

2.1. Preliminaries

The following concepts are used in this research paper and are explained below.

Blockchain-Based Fog Computing

A blockchain and fog network [18–24] connects the Internet of Medical Things (IoMT)
and fog nodes (FN) (IoMT-fog). Distributed technology can deliver on-demand services by
combining high performance and low latency (LL). It will raise the threshold for monitoring
people’s health. The FC paradigm aids IoMT elements with a low latency (LL), allowing for
faster data processing. The proposed IoMTfog, shown in Figure 2, could provide a more
appropriate medical equipment (ME) solution [18].

2.2. Proof of Work

PoW is a blockchain consensus that requires network participants to solve a random
mathematical puzzle. In this mechanism, a group of individuals compete against one
another to complete a transaction on the network; this is defined as mining. One of
these miners with a high computational power will solve the cryptographic puzzle and
be considered the winner. The miner creates the new block and receives a reward. The
ethereum network is based on the PoW consensus for making a decision and resisting
attacks. In Figure 2 we have explained the proof of work concept for fog-based computing
in the IoT environment.
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Limitations of PoW

The first is that electricity waste is a critical issue in the blockchain environment. Peers
consume additional energy when performing computation work. Second, a 51 percent
attack is a severe challenge in a small network. A 51% attack occurs on PoW when a group
of attackers with high computation power or hash rate control the entire network. Because
of the high computation requirement, mining pools may govern the mining game, resulting
in centralization and vulnerabilities [19]. PoW tends to centralize and over time several
people wind up with all the resources by the computers. They capitalize on the scale of the
economy once they have a mining form, which makes it cheaper to obtain the electricity
and buy the machines needed to stay in the control of the network [20]. When it comes
to non-financial use cases, PoW has a problem in that the thing we are trying to transfer
becomes more valuable than the electricity.

3. Proposed Framework

The description of the proposed framework is provided in three parts, which are
provided as below. The systematic architecture of the proposed framework consists of three
layers, namely:

1. IIoMT-enabled industrial layer;
2. Edge and fogblockchain layer;
3. Cloud–blockchain layer.

As illustrated in Figure 1:

1. IIoMT-enabled industrial layer: This layer consists of IoT-based industrial track-ing
systems and implantable medical devices (e.g., glucose monitor, temperature sensors,
heart rate devices);

2. Edge–Blockchain layer: This layer consists of powerful nodes, i.e., full nodes (FN),
that include edge-computing servers, industrial computers, data analysis servers, and
so on. Here, the peer-to-peer network is created by the edge devices situated at main
and urban health centers through geo-distributed areas. Every patient is enrolled to
an edge service node which is responsible for gathering patient data, processing it,
raising alarms in emergency scenarios, and communicating with the Cloud for backup
and long-term storage [22–28];

3. Cloud–Blockchain layer: Various Cloud suppliers and data centers are included in
this layer. These data centers (DC) are responsible for providing services (such as
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processing, calculation, and so on) to clients. An IoT-enabled industrial system mainly
consists of LNs, FNs, and DCs. The LNs have resource constraints, and therefore
they can send the data to FNs in the edge–blockchain layer. The FNs can assist LNs
to search transactions, and can be used for mining, and adding a new block in the
blockchain network. Finally, DCs are responsible for the long-term storage of data
from FNs as required [29–35].

Th proposed framework is shown in Figure 3. These devices constantly capture the pa-
tients’ critical health parameters and due to limited resources and computing power, these
devices can store and process part of data on the blockchain and are termed lightweight
nodes (LN). Figure 3 represents our proposed secure searchable encryption system and the
layout of the proposed communication. Figure 3 provides a detailed insight into the struc-
ture of the three layers that we propose for our framework. Each layer has its own function
and responsibilities as described through Figure 3. The DCs send data to the edge as per the
requirement. The proposed blockchain-based security and privacy scheme is used to regis-
ter all three nodes, and therefore, authenticates the data transactions in the network using
proposed smart contract-based ePoW. In addition, the IPFS storage system is used to store
complete transactions and the generated hash string is stored in the blockchain. Finally, the
DL-based privacy and security scheme is used to transform and detect intrusions in the net-
work. This scheme is deployed as Software- as-a-Service (SaaS) at various network nodes
(i.e., routers, gateways, edge servers, and Cloud data centers). Further, the framework
is deployed in a large-scale distributed network model or an individual host that makes
communications successfully, either in the edge–blockchain and the Cloud–blockchain
layer, and further it coordinates with others to detectcyber-attacks [36–41].
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3.1. The 5G Technology and Its Applications

The network deployment of 5G and the marketing research began in 2014 and is
expected to be finished by 2021. In addition to network densification and support for a
wide range of IoMT devices, 5G [10] networks should enable higher data rates (DR). The
5G networks are designed to support intelligent IoMT-based medical applications that
require high data throughput, scalability, blockchain rollout, low latency, dense deploy-
ment, reliability, high energy efficiency, and long-term communication. Figure 3 shows
the fogIoMT Architecture for the security of IoT device-based healthcare records using
blockchain technology [42–44].
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3.1.1. Fog Computing (FC)

Recent advances in fog computing and fog-Internet of Things (fog-IoT) technology
involve data analysis and AI-based medical operations. This model’s main flaw is its
susceptibility to security threats and cyber-attacks even against fog computing layers.
In this scenario, each layer is vulnerable to attack, including the edge layer (sensing),
the fog layer (processing), and the public layer (storage and management) (Cloud). Fog-
Internet of Things (fog-IoT) is currently and broadly the backbone of intelligent health care
systems. The proposed blockchain-based fog computing using 5G technology is illustrated
in Figure 4. Figure 4 completely describes the flow of data via the fog-based blockchain
using a high data rate Internet called 5G Technology. The fog-IoT is designed to overcome
the limitations of the secure data access (SDA), data storage (DS), and scalability associated
with IoT medical devices [21]. However, the rapid growth of IoT-based medical devices
and managing such a broad, sophisticated medical IoT system on standard Single Cloud
platforms (CP) would be extremely difficult. We propose a scalable FC with blockchain-
based architecture for the 5G-enabled IoMT platform. To work on an FC architecture with
flowing effects, low overheads, and secure storage (SS), this research proposes a secured
blockchain-based fog-BMIoMT communication mechanism [22].
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3.1.2. Blockchain-Enabled Security and Privacy Scheme

Registration Phase: In this phase, the registration of the data center (DC), full node
(Np) is completed securely in the off-line mode by a trusted registration authority. In
addition, the light node, i.e., the sensor node (NS) is registered with (Np)using the zero
knowledge proof protocol (KPP). This protocol authenticates two parties without revealing
any secret identity or information. In this approach, one party becomes the challenger and
the other party becomes the prover. If the prover response is correct, then it becomes the
verified party. Here, (Np) registers (Np) by initiating a request after zero knowledge proof
verification. The steps of registration and verification process are discussed below:

In the initial step (Np)generates a temporary key (kt) of (NS) which consists of three
major parameters: (i) sensor temporary identification of (it); (ii) MAC of sensor.

3.1.3. Proposed Neural Network

Our proposed neural network system is shown in Figures 5–7, respectively in complete
detail. The proposed neural network consists of input layers, hidden layers, and an output
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layer. In Figure 5, the proposed neural network model is presented. Figure 5 also explains
the number of hidden layers, input layers, and output layers. The complexity of the
proposed neural network can be seen in the number of hidden layers. The more hidden
layers, the more complex the system. Figure 6 represents the detailed structure of our
proposed convolutional neural network (CNN) and shows how we trained the dataset. We
used an IoT-based dataset and we divided it into two parts. The division of the dataset
was based on the testing and training. We trained 30% of the data and then we tested 70%
of the data. Figure 6 describes each step carried out through the training and testing in a
schematic way.
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3.1.4. Proposed System Architecture

Several physical servers combined in an FN configuration to cover a specific diameter
region. The fog nodes (FN) can be wired or wirelessly connected [23–25]. The FN provides
processors and sets up the equipment and network services as a small virtual data center.
The processors, software, and network services made up the fog nodes (FN). Smart sensors
(SS) collected data from the surrounding environment, which FN analyze and uses to
understand decision-making better. The FN also provides a 5G network with a limited
range of unicast wireless connections. Concurrent data transfer is enabled by the newly
created 5G network protocols, which allow packets to be sent to all or a selected destination
simultaneously [26]. The FN, a storage system for passive memory resident programs, can
include the local database. For heavy IoMT applications, this means faster processing and
loading times [27]. The Internet of Things in the Medical Field (IoMT) is a network safety,
reliability, bandwidth, and optimization application that affects IoMIs, IoMT, and IoMT
network safety deployment, reliability, bandwidth, and latency optimism. In this context,
several FNs provide dynamic information as represented in Figure 8.

In this research work, we considered a series of hospitals as a case study, where several
inpatient wearable CPS, authentication servers, and base stations are interconnected. In
a hospital, there are several units i.e., gastrology, cardiology, pulmonology, hematology,
pathology, radiology, wards, patient reception centers, discharge lounges, and an emergency
transportation center followed by private rooms to facilitate patients. These units, wards,
and facilitation centers are interconnected to access, assess, store, and transmit the patient’s
data accompanied by other important credentials in the network. As shown in Figure 7, an
AS employs the prognosticated information of the SML technique to contrive the validation
process of legal patient wearable devices within its proximity region of an individual
hospital in a decentralized environment rather than sending it to a particular AS, which
manipulates the authentication process in a centralized environment.

The entire Internet layer represents the actual user environment, where programs
can be deployed without restriction. IoMT devices are divided into categories based on
their location and function. This conserves energy, reduces consumption, lowers prices,
and saves time. Software and hardware services help data centers integrate and process
information. Peer-to-peer (P2P) TCP/IP can be used to communicate between IoMT
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devices across short distances [28]. They can use FN via WiFi, ZigBee, and Bluetooth-like
technologies if they are remotely apart.
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Figure 9 shows the system architecture of the proposed model. The system architecture
consists of the blockchain, fog computing devices, and smart contracts. The proposed smart
contracts check the access control policy using deep learning techniques and if the user
has enough attributes, then access is provided, otherwise access is denied. Figure 10
describes the three-layer structure of the proposed framework. The first layer consists of
the perception layer, the second layer consists of the fog layer, and the third layer consists
of the Cloud layer. Each layer has its own function, and it supports different devices.
Our proposed framework works on these three layers. IoMT and blockchain (BC) use for
centralized communication paradigms which are part of the existing IoMT. Centralized
Cloud servers will validate IoMT devices. As a result, the current IoMT solutions for
sharing health-related data rely on Cloud computing (CC) and network resources for
infrastructure and maintenance. A Wireless Body Area Network (WBAN) with devices that
constantly expand and drop is deployed in the medical field.
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3.2. Proposed Algorithm

We have proposed novel algorithms for the proposed framework. The proposed
algorithms 1–3 are described below.

3.3. Dataset

The initial dataset is presented with all the information from the log file described
above. Making a split for each space in each log row results in ten columns. After inputting
the log file and extrapolating a schema, only the columns needed for future training are
selected. In particular, the IP address is essential to differentiate the requests made by client
made and then the label is created to differentiate licit users from illicit ones. The date is
important to create the 30 s periods necessary for the model to perform the training, for
the size of the request bytes, and also for the only one to give input to the neural network.
The final dataset is structured in such a way as to have periods of 30 steps, each regarding
the sum of requests made by an IP address in a small range of time, with three columns:
IP, Byte, and Label; the latter identifies the type of user (licit, illicit). The IP column has
not been removed because in order to test data in a real environment, where you will not
know if it is a licit or illicit request, once the prediction has been made you will need to
identify the attacker in case a DDoS attack is in progress. The information exchange in
the target application comprises a large amount of healthcare device data, such as IoMT,
which is rapidly growing. There is a need for more bandwidth, data storage, and capacity.
It sends data to and from local storage devices, online devices, and the Internet. The data is
remediated, filtered, and merged under corporate standards. In this case, the Cloud is used
as the final layer for metadata processing. Data and metadata analysis are summarized by
FN (edge or dew computing (DC)). With FN and dew computing (DC), the proposed fog-
IoMT Architecture improves the mobility of IoE (Internet of everything) users. Blockchain
(BC) adds a second layer of security to prevent anonymous users from using IoMT devices.
The following is the order in which the communication takes place: (a) Wireless Internet
access is used to communicate with IoMT devices across a medium distance. TCP/IP
is utilized for inter-primary communication, whereas ZigBee and Bluetooth are used
for primary communication. (b) Wireless or wired media communicate between Cloud
computing, dew computers, and the fog nodes [30]. TCP/IP end-to-end connections are
made via a CAT-5/6 optical fiber. There are two sorts of communication: direct and indirect.



Sensors 2022, 22, 1448 13 of 25

Algorithm 1 Algorithm Transaction Creation and Encryption
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Algorithm 2 Algorithm Transaction Mining

1: Proc Mining Transactions
2: Init
3: Whileω τ then ≤
4: If τ

5: Ret T value
6: Else
7: Ret F Value
8: If
9: Inc block num
10: Else
11: Inc is not performed
12: End Procedure



Sensors 2022, 22, 1448 14 of 25

Algorithm 3 Algorithm Method Evalution

1: Enhance Manifold Analysis Evaluation of both the IoMT end
2: SelectIoMT device for comm
3: Obtain acquisition, hash, electronic medical records (EMR)
4: Extract EMRFromRepository from EMR (EMR name)
5: EMR, valid SHA checkHash (EMR, hash)
6: if EMR, valid is true, then
7: Obtain the Connect Length using Connect length (Connect)
8: Generate Indications(Connect length) Generate Indications(Connect length)
9: F Blockchain transaction addAnalysis(i, indications)
10: deleteLocalEMR
11: end if (EMR)
12: end
13: end

In [22], an anonymous authentication scheme was proposed for wireless body area
networks to securely transfer data in the transatlantic communication environment. To
address the data privacy preservation, authentication, and integrity solicitudes in health-
care IoT applications, a multi-factor authentication model was proposed in [23]. In this
model, the authors used biometric, smart care, and passwords as a combination to enable
authentication between the client and server. Consequently, a fine-grained-based authenti-
cation model was proposed by Chatterjee et al. [24] to manage the validation of legal IoT
devices in a telemedical information system. The authors of [25], presented a software
defined-based secure framework for an edge computing-enabled healthcare ecosystem.
In this scheme, edge servers were used to verify authorized devices in an operating net-
work. In [26,27], novel authentication schemes were presented for healthcare IoT networks
utilizing a blockchain-based infrastructure.

3.4. Identification of Threats

Under the above scenario, three main types of threats are relevant: information leakage,
tampering, and sabotage. The sabotage threat is not going to be addressed in this work;
in practice, this risk can be mitigated, for example by enhancing the physical security
of the device deployed, but it cannot be completely removed given the assumption that
the adversary has physical access so they can destroy the device or shut it down. A
more serious security challenge, in this case, is information leakage. Take, for example,
drones that are frequently flown into hostile territories. These devices are very likely to
be shot at if discovered, which can cause financial losses. However, if a drone is captured
by an adversary, this can have more dire consequences. Extracting information from
such a device (e.g., origin, mission, and likely destinations) is much more valuable to the
enemy than destroying it. Another threat, in this case, is false alarms, caused by noise
or environment variations. The latter may trigger undue tamper response mechanisms
such as powering down the system or the deletion of sensitive data, which undermines the
system’s availability and disrupts its operation. The identification of threat mechanisms is
explained in algorithms 1, 2 and 3. Our proposed algorithm only allows authorized users
to access the EMR through fog computing

3.5. Modeling of the Analysis Process

The analysis of previously recorded connected network data is the second major
phase in the 5G inspection process. We tested the blockchain network in the simulation
with various analysts operating at the same time. Algorithm 3 shows how the analytical
procedure was coded. Every analysis must analyze Nominalise inputs. To begin, the
analysts must retrieve acquisition information from the blockchain, download a copy of the
raw data electronic medical records (EMR), and validate the hash value of the EMR. The
process obtains the connect length, produces certain indicators, and runs the Add Analysis
transaction if the check is successful. Lastly, the raw data EMR’s local copy is erased. For
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secondary communication, multicasting is supported. With a high-speed connection and
low latency, the QoS of inter primary and primary communication increases. Fog-IoMT
supports flux/ubiquitous applications, heterogeneity, and secondary connections compared
to previous communications systems. Because of the distance between the components,
secondary and primary communication is separated. The FNs’ scalability has increased or
decreased. The local connection is controlled by primary communication, while secondary
communication controls the external connections. A subset of key communication is the
T2T relationship. The applications were vetted and authorized on the blockchain. To
avoid congestion, a fog-IoMT IoMT layer on a secure channel was utilized. This was also
performed to communicate with TFNT.

3.6. Attack Risk Factor

The stake value was calculated using the actual cost of various values estimated from
exchanges as follows. Where the current value of a token in the staking queue, that is
modified every block interval. is the total number of tokens staked during the current block
interval and is the number of tokens adequate for mining the transactions. Agreement
nodes in PoIP are referred to as miners since they are responsible for validating, confirming,
and constructing honest blocks. Miners can invest their original tokens or receive tokens
assigned by other existing shareholders. To calculate the security risk of PoIP systems, we
assumed that the number of different tokens in the stake pool was the same and added
a “generic” token; its price is the total of a token value in the PoIP staking blacklist as
mentioned in Equation (6). Where n is number of tokens used for computation in PoIP.
represents the value of token i in the PoIP stake blacklist where and. To initiate an attack
on the PoIP blockchain system, intruders need to possess a sufficient amount of and hold
the majority of the stake value. The probability density function of is calculated as below:

P(0 < ω ≤ π) =
∫

(f ≤ λ)dy (1)

The price for the associated security risk element is computed as follows:

ρ = τ ≤ ω (2)

U = PTX (3)

The estimated variables and samples are taken as m and n, respectively. The derived
principal features are enclosed as:

m = n ∗ UT (4)

and the eigenvectors of the selected covariance matrix are enclosed as:

m = m ∗ PT (5)

and can be written as:
T = T ∗ XX = l ∗ UP/P (6)

Some of the last eigenvectors are equal to 0 and can be ignored; however, it is ineluctable
to sustain more eigenvalues. Then the normalized principal features are shown below:

S = U1/2 = PTX = OX (7)

This can be used for the estimation of independent component (IC) and the O can be
represented as:

T = P(1/2) (8)

The main aim of this method is to estimate the matrix:

m = d/BT (9)
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B = B ∗ E/T (10)

Throughput = (Number of Request)(Number of ExecutionTimeinseconds) (11)

4. Results and Evaluation

In this section we present the simulation results and their evaluation. As depicted
in Figure 9, the values of the three metrics resulting from the training of the model were
all very high, which shows that the model reacted well to illicit users but at the same
time it didnot exchange the licit users for malicious ones. From these data, the confusion
matrix shown in Table 1 was derived. The paper aimed to use the Machine Learning
model presented to fight in a more accessible way the type of DDoS attack at application
level. The values of accuracy, precision, and recall give an idea of this; it should be used
and then adapted to more complex and real systems that acquire much more data, thus
creating much more periods, and changing parameters such as the number of steps, the
time between one step and another, the number of iterations, and everything that can
improve the model according to the system to which it interfaces. The use of the proposed
approach involves modeling and studying the infrastructure on which it is to be applied.
The data found in this work requires feedback from more impressive infrastructures and,
above all, from a realistic system. The categorization of requests in bytes into ranges
depending on the types of resources found in the system should be tested. This could
further facilitate the learning of the model since it would have categorized values and no
longer the normalized values of the requests. Moreover, the solutions taken in action in
the model (number of hidden layers, number of features, number of hidden units, number
of steps, time ranges, iterations, epochs, batch size, loss function, optimizer, etc.) could
be varied.

Table 1. Access control type, scope, scale, privacy issues, real time dataset used and the accuracy of
various occupancy techniques.

Technique/Technology Reference Scope
(Shape/Size)

Scale (Number
of People)

Privacy Issues
Sampling Time Accuracy

Access Control [1] NA 18 Yes Yes 80%
[2] 60 NA Yes Yes 80%
[3] 250 NA Yes Yes 80%
[4] 100 NA Yes NA 92%
[5] 100 8 Yes Yes NA

Access Control Types [6] 50 1 No Yes NA
[7] NA 1 No NA NA
[8] NA 14 No Yes 86%
[9] NA 1 No Yes 75%

Framework [10] 100 2 No Yes NA
[11] NA 150 No NA 90%

Security [12] 50 1 Yes Yes 93%
[13] 200 NA Yes Yes 79%
[14] 100 NA Yes No NA
[15] 50 6 Yes No 60%
[16] 100 30 Yes NA 91%

Data Storage [17] NA 45 Yes Yes 70%
[18] NA 4 No Yes 80%
[19] 100 4 No Yes NA
[20] 40 9 No Yes 80%
[21] 200 23 No NA NA
[22] 100 1 No NA 70%
[23] 50 3 No Yes 80%
[24] 150 3 No Yes NA
[25] NA 3 No Yes 73%

Efficiency [26] NA 72 No NA 55%
[27] 100 41 No No 86%
[28] 200 10 No No NA
[29] NA NA No No 91%
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Figure 10 shows the effect of the number of rounds and the error rate. We compared
our proposed framework to the models that are already out there. We can see from Figure 11
that our new framework is more efficient than the benchmark models. In Figure 12, we
ran simulations based on how many transactions and how accurate they were. In the first
simulation, the honest node behavior was set to make real blocks and real votes when
the nodes were chosen as miners, while malicious nodes made fake blocks and fake votes
together when nodes were chosen as miners. As shown in Figure 13, in this simulation, we
changed the percentage of the malicious nodes so that we could see how well the proposed
framework worked and how well the benchmark model worked based on the bandwidth
and number of rounds. It was set to 0 to 300 nodes. Figure 13 shows how it looked. The
accuracy of PoIP was better when there were a lot of nodes, such as 500 or more. As soon
as the percentage of malicious nodes is more than 50%, the accuracy will go down a lot. If
the proposed framework is better than the others because the positive value is used to pick
honest miners, then it is better than the other frameworks. The percentage of a malicious
node in real blockchains does not go above 50% in this kind of case. It is important to
see how quickly one block creation works so we ran a second simulation with a different
number of nodes to see how well it worked. We used the average time of 100 (or 50) rounds
of block generation as the simulation results, but we did not t lose generality with this
method. PoW was the most efficient, as shown in Figure 14. The performance of the
proposed framework was better when random honest miners were chosen from the group
of miners. Our simulation results were based on the average time of 200 rounds of block
creation. This way, we did not t lose the generality of our results. There is a group of people
who work together to make PoN more efficient, as shown in Figure 15. The development of
concurrent multi-blocks can help. In tests, it was found that the proposed strategy was both
effective and efficient at providing secure data sharing and access control for the IoT-based
supply chain system. The proposed method stopped some bad things from happening,
such as impersonation and Sybil attacks. People could join a federation without permission,
and the process was completely fair. It allowed anyone who was a validator to become
involved in a mine for a specific reward, which may change over time. If you look at
Figure 16, you can see that our proposed framework increased security and significantly
reduced the. To test the efficiency with one block creation, we ran a second simulation
with a different number of nodes. We used the average time of 100 (or 50) rounds of
block generation as the simulation results without losing generality. PoW had the highest
efficiency, as demonstrated in Figure 14. The performance of the proposed framework
was enhanced by generating random honest miners from the miner’s group. We used
the average time of 200 rounds of block creation as the simulation result without losing
generality. With the help of the mining team, the development of concurrent multi-blocks
can enhance the efficiency of PoN, as shown in Figure 15. The experimental results show
that the proposed strategy is effective and efficient in providing secure data sharing and
access control services for the IoT-based supply chain system. The proposed methodology
resisted some malicious activities, such as impersonation and Sybil attacks. The process
of joining a federation was fully decentralized, permissionless, and fair. It enabled any
validator to engage in a mine for explicit reward sharing, which may change dynamically.
Our proposed framework improved security and significantly reduced the computational
resources needed to maintain a strict level of safety security in the blockchain, as shown in
Figure 16.
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Figure 17 represents the simulation results based on the true positive rate and the false
positive rate. We classified the IoT data into different classes based on TP and TN.
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Figure 18 represents the simulation results based on the number of records and the
execution time in seconds. The number of records were counted from 500 to 10,000,
respectively. We compared our proposed framework with the benchmark model. From
Figure 18 it is very clear that the execution time for the same number of rounds in case of
our proposed framework was much less compared to the benchmark model.
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Figure 19 describes the simulation results based on the number of blocks and the
processing time. We compared our proposed framework with the benchmark models. The
performance achieved by our proposed framework was better than the benchmark models.
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Security Analysis

Registration against harmful actions is required for IoT nodes. Algorithms 1 and 2
illustrate how long it takes various IoT nodes to register. As can be seen in Figure 4, the real
upload time for IoT sensor data with IPFS protected storage and the number of transactions
is shown. As the number of transactions rises, so does the upload time. Block mining
time, block creation time, and block access time are shown in Figures 5 and 6. As might be
predicted, as the number of IoT sensor nodes grows, so does the elapsed time. The system
design and suggested topology are shown in Figures 5 and 6. In the proposed system, the
transaction sign guarantees non-repudiation. Figures 5 and 6 show our suggested system’s
security and access control module.

5. Discussion and Analysis

Our proposed algorithms do not require internal or external values but provide
security in the blockchain via the peer nodes. After the federation of nodes in the blockchain,
a selected group of nodes manage the blockchain data, even when all the nodes are
participating in blockchain, but it seems to be secure and centralized. We suggested
a blockchain-based fog consensus protocol (BFCP) that employs a group of nodes in a
federated capacity to provide strong security to the Blockchain. Our proposed (BFCP)
Protocol is perfect for securing a blockchain because its primary token has no value at all.
The proposed BFCP is ideal for blockchain security since its principal token has no monetary
value. BFCP supports and provides an efficient block proposer selection and validation
mechanism to find an alternate way for the mining process in PoW. This eliminates the
need to solve a difficult cryptographic challenge, allowing us to significantly reduce energy
usage while improving throughput. Consequently, in terms of latency and throughput, the
PoIP network is more scalable than the existing consensus.
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Security Analysis and Computation Overhead Analysis

In this section, we will check and compare our proposed SML and CPBED model
with comparable prototypes for storage overheads incurred by P Gi, P Gj, and TA. In
the proposed scheme, every P Gi IoMT network stores the identities of vicinity devices
in their memory table such as P GID, P G, P G, GP, and TA, respectively. In contrast,
the comparative schemes store these IDs and authentication parameters in a centralized
or concerned trusted authority. During the session initiation and establishment, these
parameters mostly matched in the centralized TA, or concerned TA, which created storage
overhead in these memory constraint devices, because they have to process each request
via hop count communication or a centralized location. As a result, the performance of
these authentication schemes with communication metrics was degraded.

6. Conclusions

Blockchain, IoMT (fog-BC-IoMT), and FC technologies all utilized the proposed archi-
tecture (fog-IoMT). To record the transactions, the BC was utilized to create a legal public,
hyperdistributed EMR. Several IoMT-NODES were utilized in the testing and implementa-
tion of the architecture. The outcomes were estimated satisfactorily. This study suggested
architecture for preventing data fraud by converting existing centralized database systems
to block-based distributed databases. It divided the system into four parts: Cloud, fog,
blockchain, and IoMT. The IoMT system was self-contained. We also looked into whether
the Network Convention method could assist with public Cloud resources more effectively.
HE-based encryption has been used in many research works due to its significant privacy
benefits. The rapidly increasing need to ensure the privacy of data while using DL tech-
niques makes HE very vital. In this paper, we proposed the use of the PHE-based BFCP
protocol to tackle the problem of the privacy of sensitive healthcare data when using DL
algorithms. The proposed protocol enabled the data to be secure and preserved a good
classification accuracy. The experiments conducted on the real IoT dataset demonstrated
an accuracy of 94.2% for simple EMR and 93.3% for encrypted EMR. In this sense, the
proposed research can serve as a tool to classify encrypted data by non-trustworthy third
parties without disclosing confidentiality. However, the main limitation of HE encryption is
its slow computation, which remains the major problem of this technique. Further studies
should focus on proposing hybrid encryption techniques such as FHE encryption and SSC
that can be used in conjunction with one another.
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