
����������
�������

Citation: Padmasiri, H.;

Shashirangana, J.; Meedeniya, D.;

Rana, O.; Perera, C. Automated

License Plate Recognition for

Resource-Constrained Environments.

Sensors 2022, 22, 1434. https://

doi.org/10.3390/s22041434

Academic Editors: Raffaele Bruno,

Leopoldo Angrisani, Nikos Fotiou

and Ismail Butun

Received: 26 December 2021

Accepted: 11 February 2022

Published: 13 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Automated License Plate Recognition for
Resource-Constrained Environments

Heshan Padmasiri 1, Jithmi Shashirangana 1, Dulani Meedeniya 1 , Omer Rana 2 and Charith Perera 2,*
1 Department of Computer Science and Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka;

heshanpadmasiri.16@cse.mrt.ac.lk (H.P.); aajithmishashirangana.16@cse.mrt.ac.lk (J.S.);
dulanim@cse.mrt.ac.lk (D.M.)

2 School of Computer Science and Informatics, Cardiff University, Cardiff CF10 3AT, UK; ranaof@cardiff.ac.uk
* Correspondence: pererac@cardiff.ac.uk

Abstract: The incorporation of deep-learning techniques in embedded systems has enhanced the
capabilities of edge computing to a great extent. However, most of these solutions rely on high-end
hardware and often require a high processing capacity, which cannot be achieved with resource-
constrained edge computing. This study presents a novel approach and a proof of concept for a
hardware-efficient automated license plate recognition system for a constrained environment with
limited resources. The proposed solution is purely implemented for low-resource edge devices and
performed well for extreme illumination changes such as day and nighttime. The generalisability of
the proposed models has been achieved using a novel set of neural networks for different hardware
configurations based on the computational capabilities and low cost. The accuracy, energy efficiency,
communication, and computational latency of the proposed models are validated using different
license plate datasets in the daytime and nighttime and in real time. Meanwhile, the results obtained
from the proposed study have shown competitive performance to the state-of-the-art server-grade
hardware solutions as well.

Keywords: edge computing; resource-constrained devices; energy efficiency; low cost; night vision

1. Introduction

The emergence of edge computing has unveiled an exceptional proliferation of computer-
intensive applications for smart cities [1,2] and smart homes [3] for different domains
such as security [4], city parking [5] and traffic management [6]. Most of these modern
systems involve capabilities beyond traditional computing by embedding edge intelligence
to enable self-learning solutions including machine learning and deep learning [7–9].
Generally, edge-based solutions tend to be reliable and efficient due to the associated
on-device decision-making and data-computing inclinations. However, edge computing
inherits a new set of challenges in terms of resource management, data accumulation, and
energy consumption [10,11]. As opposed to traditional internet-of-things (IoT) networks,
edge computing minimizes the network load, thus reducing system latency. For instance,
real-time applications such as vehicle license plate identification in smart cities usually
have higher latency values [9]. However, with edge computing technology, these can
be processed at the edge without sending the data to a central cloud [10,11]. Hence, it
is increasingly important to put basic timely computations approximate to the physical
system, as it reduces the latency of the overall system by multiple times.

This paper proposes an Automated License Plate Recognition (ALPR) solution for
edge computing with resource-constrained environments, which can lead to support smart
city development and management processes. Although ALPR is a well-established area in
the domain of image processing, research on ALPR is still challenging with the associated
constraints in the environment such as varying weather conditions, plate variations across
regions, vehicle motion, distorted characters, dirty plates, shadow and reflection [9]. More-
over, most of the existing ALPR solutions limited to execution in server-grade hardware

Sensors 2022, 22, 1434. https://doi.org/10.3390/s22041434 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041434
https://doi.org/10.3390/s22041434
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4520-3819
https://orcid.org/0000-0003-3597-2646
https://orcid.org/0000-0002-0190-3346
https://doi.org/10.3390/s22041434
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041434?type=check_update&version=3


Sensors 2022, 22, 1434 2 of 29

with nearly unlimited resources and limited to daytime performance. Thus, currently,
there has been less attention paid to build systems that work efficiently in constrained
environments targeting low cost, energy efficiency, less computational power requirements,
remote location deployments and work in night vision. The technological developments of
deep-learning techniques can be improved to use in edge devices to provide an efficient
solution for ALPR in resource-constrained environments.

We present an approach and a proof-of-concept prototype for hardware-efficient ALPR
at nighttime, while adhering to several constraints in terms of energy efficiency, resource
use, low cost, low-latency communication and computation as the novel contributions.
The proposed ALPR system can operate at nighttime without any visible additional illu-
mination and require no Internet connection for operation. Consequently, the system is
fully implementable on low-power edge devices such as Raspberry Pi 3b+ and operated
completely with a battery that lasts long due to the energy-saving strategies implemented
in the solution. Therefore, the system recognizes license plates in real time both day and
nighttime, and can be deployed in rural or forest areas, where there is no stable Internet
connectivity or a direct power grid, which is one of the main contributions of this study.

Our methodology uses deep-learning-based Neural Architecture Search (NAS) strate-
gies to discover a novel set of hardware-efficient neural networks for autonomous manage-
ment of license plate detection and recognition process for edge devices with low resources.
The proposed differentiable architecture search is based on FB-Net (Facebook-Berkeley-
Nets) [12] and PC-DARTS (Partially Connected Differentiable architecture search) [13].
These algorithms seek effective architectures without comprising the performance, by sam-
pling a small part of a super-network to reduce the redundancy in exploring the network
space. Thus, compared to the general approaches such as reinforcement learning, and evo-
lutionary algorithms, the differentiable architecture search proposed in this study provides
a significant reduction in computational power required to search neural networks.

Although neural networks for license plate recognition is a well-explored area for
the daytime images with the server-grade hardware specification, we provide a solution
for ALPR with limited resources in constraint environments. Moreover, compared to the
existing studies as stated in Table 1, to the best of our knowledge, we provide a novel
contribution to design and develop models to detect and recognize license plates using
low-resource edge devices with different configurations. Thus, the implementation of the
NAS-based data engineering techniques in IoT applications for hardware-efficient ALPR
solutions, is one of the scientific contributions of this study. Therefore, the main focus of
this study was to design and develop neural network-based models that are competitive
with state-of-the-art models such as RPNet (Roadside Parking Net) [14] that are designed
for server-grade hardware, consumes more memory, and are computationally expensive to
execute on edge devices.

However, it is challenging to train the discovered deep neural networks to recognize
license plates due to the lack of a large, annotated and diverse dataset. To circumvent this
issue, we use a synthetic data generation process based on image-to-image translation
techniques to convert daytime RGB (Red–Green–Blue) images into thermal infrared (TIR)
images. The presented data synthesising process is inspired by the related work that has
shown promising results in license plate recognition, as given in Table 2. Thus, we provide
synthetic data generation approaches to mitigate the issue with the scarcity of a large and
diverse nighttime license plate data set for the learning process of deep-learning models.
Accordingly, this study uses 200,000 daytime license plate images from the CCPD data
set Chinese City Parking Data set (CCPD) [14], and the corresponding nighttime images
generated synthetically. Additionally, we use 100 nighttime images captured in a real
environment showing the possibility of using the proposed approach for different other
license plate data sets.



Sensors 2022, 22, 1434 3 of 29

Table 1. Summary of the related LP recognition studies on edge platforms.

Related
Study

Description Techniques Type
(D/N/S)

Performance

[15] Use a NVIDIA Jetson TX1 embedded board with
GPU. Provides LP recognition without a detection
line. Not robust to broken or reflective plates.

AlexNet (CNN) D AC = 95.25%

[16] Real-time LP recognition on an embedded DSP
platform, Operation under daytime condition
with sufficient daylight or artificial light from
street lamps, High performance with low image
resolution.

SVM D F = 86%

[17] Real-time LP recognition on GPU powered mobile
platform by simplifying a trained neural network
developed for desktop/ server environment.

CNN D, N, S AC = 94%

[18] Implemented in a Raspberry Pi3 with a Pi NoIR
v2 camera module. Robust to angle, lighting and
noise variations, Free from character segmentation
to reduce errors in character mis-segmentation.

CNN D, S AC = 97%

[19] A portable ALPR model trained on a desktop com-
puter and exported to an Android mobile device.

CNN D AC = 77.2%

Table 2. Comparison of studies with synthetic and nighttime images.

Study NT Syn. Synthesised Method Performance

[20] X GAN-based AC = 84.57%
[21] X GAN-based AC = 91.5%
[22] X Augmentation (rotation, size and noise) AC = 62.47%
[23] X Augmentation, superimposition, GAN-

based
AP = 99.32%

[24] X Illumination and pose conditions R = 93%
[25] X Random modifications (colour, blur, noise) AC = 99.98%
[26] X X Random modifications (colour, depth) AC = 85.3%
[27] X X Intensity changes FN = 1.5%
[17] X X Illumination and pose conditions AC = 94%
[28] X AC = 96%
[29] X AC = 93%
[14] X AP = 95.5%
[30] X F = 98.32%
[31] X AC = 95.7%
[32] X AC = 93.99%
[33] X AC = 92.6%
[34] X AC = 86%
[35] X AC = 96.2%

The prototype of our solution simulates a case study of an animal poacher vehicle
detection problem. At present, Wildlife has faced a capacious and prejudicial issue that
has caused a countable number of wild animals to lose their lives. Most of the existing
approaches to minimize illegal hunting of wild animals, rely on manual surveillance from
the camera feeds. Poacher vehicle detection system uses modern image processing and
deep-learning techniques to detect poacher vehicles while tracking their license plate
numbers and sending the detected vehicle details to authorized parties through SMS. It has
been noticed that poachers arrive mostly at nighttime since the poacher vehicle detection
system is designed to function at nighttime as well. The case study environment contains
several constraints. This system relies on battery power only, thus the power consumption
should be minimized. Since there is no Internet connectivity in the wild, SMS is the only
possible communication method, where images can be stored for later prosecution material.
Additionally, the system should be deployed in an unnoticeable way to the poachers. Thus,
the proposed ALPR solution considers the following requirements.



Sensors 2022, 22, 1434 4 of 29

• The system executes autonomously in real time on an edge platform with constrained
memory and computational capabilities.

• The system is feasible, low cost and energy efficient to be deployed in the wild or
remote areas, where there is no reliable Internet connection or a power grid.

• The system operates at nighttime without additional lighting that is visible to the
naked eye.

Furthermore, the solution we present can be used to develop smart city-based ap-
plications such as identifying fraudulent vehicles and overcome security challenges with
low resources in a cost-effective way. Thus, supports energy-efficient and low-latency
communication and computation. Therefore, the novel approach we proposed directs
towards the future perspective in edge computing.

The rest of the article is organized as follows. Section 2 reviews the literature in the
field of automatic license plate recognition systems in embedded platforms and high-end
serve-grade hardware. The design overview of the proposed solution is presented in
Section 3. Section 4 analyses the results, and Section 5 discusses the findings. Section 6
concludes the study.

2. Background and Related Studies
2.1. Overview of LP Recognition Approaches

Over the time, many research studies have addressed Automated License Plate Recog-
nition (ALPR). Yet, most of these solutions are designed to be executed on server-grade
hardware with sufficient resources. In early stages of ALPR domain, most of the studies
applied well-defined traditional computer vision techniques such as edge detection [36–39],
genetic algorithms [40], and fuzzy logic [33] for both license plate detection and recogni-
tion. Although these solutions were faster, simple, and lightweight, they still lacked better
performance when complex scenarios are involved. These techniques were often sensitive
to noise, illumination variations and were mostly unable to place the license plates when
they are inclined or deformed.

However, with the development of data engineering techniques, researchers have
considered machine learning and deep-learning-based solutions for ALPR [30,41–43] with
the aim of achieving high performance than the prevailing traditional solutions. However,
these solutions consume more resources and processing power when compared to clas-
sical methods. In deep learning, the problem of automatic license plate recognition was
considered to be a general object detection and a character recognition problem. Therefore,
some researchers [44,45] used generic object detection models such as YOLO [46] to detect
the license plate. However, these methods were more robust to noise, illuminations and
inclinations of the plates thus eliminating most of the limitations in the classical methods.

2.2. LP Recognition in Constrained Environment

Computer vision applications are often developed to replace human in harsh, danger-
ous or tedious situations to handle numerous applications. Such harsh environments often
raise many challenging conditions which are hard to tackle in naive ways. Among them,
night vision is a pivotal area in most of the safety-critical applications such as surveillance,
automotive safety [47], military defence systems [48]. Traditionally, there are common
ways to capture nighttime images such as low-light-level (image-intensified) cameras, and
thermal infrared (TIR) cameras. Nevertheless, the widely used approach in most modern
applications is thermal imaging. These thermal images are sensitive to the infrared region
of the electromagnetic spectrum, and they use variations in the temperature levels of the
objects and the background to distinguish the objects in a TIR image. The main advantage
of using TIR images is that they are robust against any illumination variations and can
also be used to capture images at nighttime in complete darkness. They also produce
quality images with no or few distortions during difficult weather conditions. However,
thermal cameras are quite costly, and the scarcity of TIR datasets limits most of its applica-



Sensors 2022, 22, 1434 5 of 29

tions. Therefore, a practical solution to mitigate this issue is to convert the available RGB
(Red–Green–Blue) image datasets to TIR images.

A systematic study of converting RGB images to TIR was reported by Zhang et al. [49].
A large set of synthetic data generated by this work has provided accurate results than a
small dataset with real TIR images in the field of object tracking. They have shown that
a combination of real TIR images and the generated synthetic data gives the best results
while tracking objects. They have used mainly two image-to-image translation methods
called pix2pix [50] and cycleGAN [51]. Moreover, some applications use filters such as
grey-scaling to transform daytime images to night-vision images. In another related study,
Ismail et al. [52] have used an effective object detection method called Cascade classifier to
function at nighttime and rainy weather conditions. They have enhanced the images using
the top-hat transform operation. Another novel feature-based algorithm has presented
in [53] to localize license plates even in complex situations such as different illumination
and weather conditions. They have used an edge-based approach based on vertical edges
and morphological operations. This study has shown an accuracy of 96.5% and has created
a database with 269 images in challenging environments. Multiple-intensity IR-illuminator-
based license plate detection in the nighttime has presented in [54]. Although infrared
light allows detecting license plates under different illuminations, it does not perform well,
when the distance from the target is changing. The authors have addressed this issue
using a multiple-intensity IR illuminator that detects license plates at different levels of
illuminations and distances and showed an accuracy of 98%.

Furthermore, except for changing illuminations, some hazardous weather conditions
such as rain, fog, snow have always made the license plate recognition problem com-
plex. However, few ALPR models are robust to these challenging situations in outside
uncontrolled environments. Azam and Islam [55] have proposed such an ALPR algo-
rithm to process license plates in rainy and foggy weather by removing rain streams and
fog from the images captured. Accordingly, the complexity of the license plate detection
task is greatly influenced by different environmental conditions. Although many studies
have addressed license plate detection and recognition, only a few can be applied to an
uncontrolled complex situation such as nighttime illumination, and extreme weather condi-
tions [9]. In another point of view, even though the retro-reflective nature of license plates
makes them readable even at night, still, it is challenging to accurately locate a license
plate at nighttime, for reasons such as the insufficient amount of light to acquire the details.
The use of an illuminator can be used to solve this issue to some extent. In addition, the
emission of too much light from headlights also causes difficulty in reading license plates,
as the plate reflects more light and the resulted brightness makes it hard to extract the
data on the license plate. Thus, the related applications with computer vision techniques
face challenges in situations such as changing weather conditions, issues with camera and
equipment, moving object detection, demand for excessive resources and power.

2.3. ALPR Using Edge Devices

Edge computing enables offloading computational tasks to perform at the edge devices
in contrast to the traditional social sensing approaches [56]. With the growth of data being
produced at edge devices, it is becoming increasingly difficult to carry out all the necessary
computations in the cloud with an acceptable latency. Edge computing supports solves this
issue by merely increasing the computational capabilities of the edge devices, thus reducing
the communication cost and the application latency. Moreover, it has become possible to
due to the increase in computational performance in edge devices without significantly
compromising energy efficiency [57].

Another reason to increase the computational capabilities in edge devices is the devel-
opment of hardware accelerators for edge devices. These are dedicated hardware compo-
nents such as Graphical Processing Units (GPUs) that enhance the graphical performance
of the computer and Tensor Processing Units (TPUs) that accelerate application-specific
integrated circuit (ASIC) and are used to improve performance in certain parts of programs



Sensors 2022, 22, 1434 6 of 29

thus lessen the execution time for deep neural networks. Such accelerators had been used
in large servers in the cloud environment for a relatively long time. However, large energy
efficiency can be achieved on edge devices by applying these accelerators, as it produces a
large increase in the rate of computation for every watt of power consumed.

Data processing within edge devices, without moving computational loads for cloud
services, has clear advantages. For instance, Hochstetler et al. [58] have shown that a neural
network can be speedup by a factor of 1137% by adding an Intel® MovidiusTM Neural
Compute Stick (NCS), which is an accelerator that draws a maximum of 2.5 W of power to
a Raspberry Pi 3B that has a maximum power draw of 6.7 W execution of MobileNet [59].
That is a large performance increase compared to a power increase of less than 40%. Such
accelerators allow the execution of computations that would otherwise require cloud
servers on edge devices. Moreover, Yi et al. [60] and Ha et al. [61] have demonstrated the
improvements in response time by shifting computations to the edge devices. Additionally,
by minimizing the amount of data that needs to be transmitted, Chun et al. [62] have
shown up to 40% improvement in energy consumption can be achieved by shifting to edge
computing.

In a related study of license plate recognition on embedded systems, Lee et al. [15]
have proposed an ALPR system to detect Korean license plates on an NVIDIA Jetson
TX1 embedded board. They have used a simple convolutional neural network (CNN)
architecture called “AlexNet” and claimed a high recognition accuracy of 95.24%, but on
a small dataset with 63 input images. Another study by Luo et al. [63] have designed a
low-cost, high-speed, real-time embedded ALPR system based on a Digital Signal Processor
(DSP). In this solution, they have ensembled a variety of peripheral modules to fulfil several
requirements such as memory, input image acquisition, and networking etc. Nevertheless,
the proposed solution is claimed to consume less power, high speed and precise enough to
perform real-time license plate recognition in practical applications. Rezvi et al. [17] have
proposed another solution to detect Italian license plates on a mobile platform by simpli-
fying the architectures of two different pre-trained CNNs for license plate detection and
recognition. However, this simplification flow introduces a trade-off between the accuracy
and the execution time. Thus, a decrease in accuracy is expected regarding the network
simplification process. Moreover, they have examined the system on two different GPU
environments, such that a desktop workstation equipped with a Quadro K2200 GPU card
and a powerful Jetson TX1 embedded board. In both environments, the simplified networks
show lesser execution time than the original networks. Additionally, by converting the
trainable parameters from double to float, they have reduced the memory consumption of
both plate and character classifiers by half. However, this indeed has reduced the accuracy
of the simplified architectures when compared to the original networks.

Accordingly, many solutions for license plate detection and recognition have been
discussed extensively in the literature [9]. Most of the prevailing solutions in the domain
of ALPR have addressed unrestricted environments such as a desktop computer with
powerful processors. These solutions are designed to achieve maximum accuracy while
assuming the availability of sufficient computational resources. However, this assumption
does not valid for edge devices such as Raspberry Pi. Such environments often demand a
small model with low complexity and low-resolution input images. One likely explanation
for the low popularity of license plate detection and recognition solutions on the edge is the
difficultly of handling the complexity of the computations in the limited resources in the
edge devices. Furthermore, these ALPR solutions are expected to be effective and efficient
to satisfy the real-time constraints of an embedded platform.

Table 1 states a summary of the selected existing edge-based solutions for license plate
recognition with daytime (D), nighttime(N) and synthesised (S) data. Most of the related
studies have been implemented on modern hardware settings, and may not execute on edge
devices with limited resources. They were tested on powerful machines with powerful
GPUs [15,17,25,26]. In addition, a few studies have provided solutions for embedded
platforms with low resources [18]. Although the accuracies of the proposed models do



Sensors 2022, 22, 1434 7 of 29

not outperform the existing server-grade models such as RPNet [14] and TE2E [64] that
require powerful GPUs, our aim of this study is to show the competing results of the
proposed models that can be run on edge devices with limited resources. At the same
time, the presented mid-tier and high-tier models show superior performance to license
plate detection using Yolo-V3 [31,65]. This shows that our models are competitive with the
existing state-of-the-art solutions in terms of accuracy.

Moreover, most of the studies have considered only daytime images [15,16] and
only a few studies have considered nighttime and synthesised data [17]. Considering the
challenges and limitations in the existing studies, we present a family of models based on
NAS are designed for different hardware tiers of edge devices, in a way that the complexities
of the proposed models are relatively low compared to server-grade models. Our solution
can execute entirely on edge devices such as Raspberry Pi with limited memory and
power constraints, showing competing results as stated in Section 4.3. Additionally, our
solution has been tested for both daytime, synthetic, real nighttime data, and shown the
best accuracies of 99.87%, 94.%, 98.82%, respectively.

In our previous study [57], we have discussed the architecture of the Lite LP-Net
models in detail. As the next phase, this paper mainly describes the hardware circuit
configurations from the deployment point of view, synthetic data generation process,
stochastic super-network implementation and the bi-level optimization in Section 3, as the
scientific contribution.

2.4. ALPR with Synthetic and Nighttime Images

Several studies have used the synthesised image for both daytime and nighttime
license plate recognition with promising results. Table 2 shows the existing studies that
have used nighttime (NT) and synthetic (Syn.) images. The performance metrics include
accuracy (AC), false negative (FN), recall (R), average precision (AP) and F-score (F). Most
of these studies were implemented on server-grade hardware settings. The study by Wu et
al. [20], have achieved accuracy improvement using synthetic data and fine-tuning with a
limited number of real data. However, the results depend on many factors such as the type
of the dataset, optimization methods and used hyperparameters in deep-learning-based
models. In [23], the best performing models have a large ratio of synthesised data using
techniques such as CycleGAN, which strengthens the usefulness of the approach. In this
study, our data synthesising method is inspired by the Generative Adversarial Network
(GAN) and we used GAN-based pix2pix [20,49], as describe in Section 3.2. Moreover,
several studies have used nighttime images in LP recognition. Considering the performance
values, it can be observed that synthesised nighttime images have shown better results as
well. However, they were not focused on implementation with low-resource settings, as
we have considered in this study.

3. System Design and Methodology
3.1. Design Aspects of the Proposed ALPR System

The proposed system design consists of three main modules: input module, main
processing module, and communication module as shown in Figure 1. The input module
captures the vehicle images and feed them to the main processing module. Meanwhile,
the main processing module performs the core functions of the system, which are license
plate detection and recognition. Upon the retrieval of results from the license plate recog-
nition stage, the communication module handles the data communication between the
ALPR system and its operators. Figure 2 shows the hardware stack of our solution. The
corresponding hardware specifications are given in Section 3.1.1.



Sensors 2022, 22, 1434 8 of 29

Figure 1. Overview of the proposed model.

Figure 2. Hardware stack of the proposed solution.

3.1.1. Cost-Effective Mobile-Sensing Data Communication Specifications
Raspberry Pi 3 Model B+

We used Raspberry Pi 3 Model B+, which is a well-balanced single-board computer
as the default low-cost edge platform since it represents the middle ground of most of
the product solutions. It can execute deep-learning models while being both relatively
inexpensive and power-efficient, with 4 Cortex-A53 64-bit cores clocked at 1.4 GHz and
1 GB of LPDDR2 RAM [66]. Although the original Model B supports Bluetooth 4.1, B+
also advances its support for Bluetooth 4.2. The Model B+ also has a dual-band wireless
antenna, supporting 2.4 GHz and 5 GHz 802.11 b/g/n/ac Wi-Fi.

Raspberry Pi Zero

We also used Raspberry Pi Zero, which consists of 1 GHz single-core processor and
512 MB of RAM [66]. Although the Raspberry Pi Zero model is not as powerful as the
Raspberry Pi 3 Model, it is cheaper, power-efficient and smaller in model size than the
Raspberry Pi 3. Thus, Raspberry Pi Zero is used as an edge platform for situations, where
the Raspberry Pi 3 is expensive or consumes more power. However, with comparatively
limited computing capabilities this unit cannot run complex models, such as those on the
Pi 3. Thus, the Raspberry Pi Zero module represents the low-end edge devices in our
experiments.

Intel Neural Compute Stick 2

The Intel® Neural Compute Stick 2 (Intel® NCS2) unit executes server-grade deep-
learning models at the edge level power consumption. It consists of an Intel Movidius
Myriad X Vision Processing Unit and 4 GB of RAM. With this accelerator, a Raspberry



Sensors 2022, 22, 1434 9 of 29

Pi can run complex models as a GPU or a TPU used in a server environment. Therefore,
Raspberry Pi 3 equipped with an Intel® NCS2 represents the high-end edge devices in our
experiments [67].

Raspberry Pi Camera Module

The Raspberry Pi camera module is intended to capture both still images and high-
definition videos. The original Raspberry Pi camera module has an effective resolution of
5 Mega-pixels and supports video recording at 1080@30fps, 720p@60fps and Vga@90fps.
Later, in 2016, 8 Megapixel Camera Module v2 was released and currently, the latest version
has a high-quality resolution of 12 Mega-pixels. Both early versions supported visible light
and infrared versions and however, there is no infrared version for the latest 12-Megapixel
model. However, this high-quality camera uses a Hoya CM500 infrared filter and can be
removed if needed. The camera module can be connected to Raspberry Pi via Camera
Serial Interface (CSI) port and can be accessed via Multi-Media Abstraction Layer (MMAL)
and Video4Linux (V4L) APIs and other third-party software such as Picamera Python
Library [68].

GSM Module Sim 900a

Global System for Mobile Communications (GSM) module sim 900a is a GSM modem
that supports Quad-bands GSM850, EGSM900, DCS1800 and PCS1900. The shield sends
and receives General Packet Radio Service (GPRS) data through protocols such as TCP/IP
and HTTP. It also allows sending SMS, MMS, GPRS and Audio via UART using ATtention
(AT) commands [69].

3.1.2. Input Module

The input module consists of two main components, a motion trigger and a camera.
Motion trigger detects motions such as movement of a vehicle and activating the rest
of the system. The camera captures the images at nighttime without additional visible
illumination. The motion trigger uses a passive infrared (PIR) sensor to detect movements.
PIR sensor detects the changes in the amount of infrared radiation falling on it and detects
the motion. For instance, when a vehicle passes near the sensor, the heat radiation from the
vehicle engine fall on the sensor as it enters the sensor’s field of view. When the vehicle
leaves the sensors field of view, then it will stop the heat radiation. This causes a change in
the amount of infrared radiation falling on the sensor causing the sensor to be activated.
A typical PIR sensor can detect a motion, but it cannot recognize the motion. Despite this
limitation in many state-of-the-art solutions, PIR sensors are widely used for detection
applications such as surveillance systems, automatic lighting, and alarm systems as simple
but reliable motion triggers [70,71]. Our design solution uses PIR sensor purely to detect a
motion happening near the motion trigger. Whether that motion was caused by a vehicle
passing will be recognized by subsequent modules. The sensitivity range of a PIR sensor is
normally up to 20 feet (6 m) and therefore, we use a cluster of PIR sensors to widen the
sensor range.

To operate the motion trigger, we used an ESP32 micro-controller with integrated WiFi
and Bluetooth connectivity, while performing as a complete standalone system with low
cost and low power consumption. When a change of the infrared level is detected by the
PIR motion sensor, a digital value is passed to the ESP32 module. After recording this value,
it sends a signal to the main processing module via Bluetooth as it boosts considerably
low power compared to a WiFi connection. However, as Bluetooth is more reliable with
short-range devices, the distance between the sensor module and the main module should
be kept less than 10 m, while ensuring no obstructions between the two devices.

Until it receives a signal from the motion trigger, the main processing module will
be in a standby mode, which helps to reduce the power consumption. After receiving the
signal, it goes to the normal operation state. In this state, it uses the camera from the input
module to capture images and passes them through the processing module to recognize the



Sensors 2022, 22, 1434 10 of 29

license plate. For the camera, we used a Raspberry Pi NoIR camera V2. It is equipped with
a Sony IMX219 8-megapixel sensor without an infrared filter. This coupled with an infrared
illuminator that captures images at nighttime without using any visible illuminators. Here,
the camera sensor is sensitive to not only the visible spectrum but also to the infrared
spectrum, without an infrared filter. Thus, it can capture images using the infrared rays
reflected by the license plate. However, this camera setup is not as sensitive as purpose
build thermal or night-vision cameras thus requiring an infrared illuminator. The main
advantage of using this camera setup over such a purpose build camera setup is to produce
a low-cost solution.

3.1.3. Main Processing Module

The main processing module takes the image from the input module and outputs the
license plate content to the communication module. From a software point of view, the
main processing module consists of two convolutional neural networks, one that detect
and localize the license plate in an image and the second which recognize the content of
the license plate. Thus, this is a two-stage license plate recognition process. Figure 3 shows
the process flow of the two-stage process of detecting and recognizing a license plate.

Figure 3. Two-stage license plate recognition pipeline.

The input image is passed through a set of transformations such as resizing and
normalizing, before feeding it to the detection model. This model produces two outputs.
First, a bounding box description for the license plate and the second, a confidence level
value indicating how confident the model is for the bounding box. The confidence value
will be high, if there is a license plate in the image, otherwise the value will be closer to 0. If
this value is greater than a predetermined threshold value, then the systems moves to the
next stage. If not, the image is discarded, and the system moves on to the next image from
the camera. If the system discarded all the images within a time period indicating that no
vehicle is passed through the system, then the main processing module becomes standby
mode waiting to be activated by the motion trigger.

Once an image is passed to the next stage, it is cropped to the license plate bounding
box and passed to the recognition model. It will recognize the license plate as a text
sequence and passed to the communication module, thus, it can inform the recognized
license plate number to the operator, as a text SMS since there is no Internet connectivity in
this environment. From a hardware point of view, there are three possible variations for
the main processing module, as a single hardware solution may not cover all the possible
deployment scenarios. Instead, we propose low, mid and high-tier hardware configurations.
Low-tier hardware configuration is intended to be sufficiently inexpensive making large
scale mass deployment economical. Higher-tier configuration is more suitable for situations
where the unit cost is not that significant and mid-tier is meant to be a middle ground.
Computational capabilities increase from low to high tier allowing the use of advanced
license plate detection and recognition models giving higher accuracy.



Sensors 2022, 22, 1434 11 of 29

One of the main objectives of this study is to develop an ALPR system for edge
devices with minimum cost. Table 3 states the hardware specification for energy-efficient
computation and low-latency communication. Each of the configurations uses a common
set of hardware including Raspberry Pi camera module V2-8 Megapixel,1080p (USD 23.00),
Raspberry Pi power supply (USD 15.00) and GSM module sim 900a (USD 7.00), where the
total add up to USD 45.00.

Table 3. Hardware tier details.

Hardware Tier Specification Cost (as of January-2022)

Low-tier Raspberry Pi Zero USD 10.60
Mid-tier Raspberry Pi 3 B+ USD 38.63
High-tier Raspberry Pi 3b+, Intel Neural Compute Stick 2 USD 38.63 + USD 89.00

We developed different models for license plate detection and recognition based on
neural architecture search strategies as described in Section 3.3, per each tier to exploit the
capabilities of different hardware tiers. The appearance and the circuit of the configuration
are shown in Figure 4 and Figure 5, respectively.

Figure 4. High-tier model (left): Internal view, (right): Exterior deployment view.

In the license plate detection process, we developed two models for each hardware
tier. One model is optimized for the specific hardware platform using a hardware aware
architecture search strategy and another model optimized using a hardware-agnostic
architecture search. Both models are small in size, and the required computational power
is sufficient to execute on the target hardware, while the hardware-optimized model gives
better latency compared to the hardware-agnostic model. However, the hardware-agnostic
model can generalize better with other similar hardware setups. In the license plate
recognition process, we developed three models based on hardware-agnostic architecture
search, representing each hardware tier.

Consequently, the lower-tier configuration uses a Raspberry Pi Zero as its hardware
platform. As stated in Section 3.1.1, it is a relatively inexpensive single-board computer
with limited processing capabilities. As a result, it is coupled with the simplest detection
and recognition models. Mid-tier configuration uses a Raspberry Pi 3 B+ instead of the
Raspberry Pi Zero; thus, allows the execution of more complex models and has high
computing capabilities giving better accuracy. The higher-tier configuration consists of a
Raspberry Pi 3 B+ with an Intel® NCS2. This offloads the execution of convolutions neural
networks to the more computationally capable Intel® NCS2 allowing use of computationally
expensive but more accurate models.



Sensors 2022, 22, 1434 12 of 29

Figure 5. Circuit diagram of the design.

Figure 4 (left) shows the internal module design of the main processing module
along with the camera in the higher-tier configuration and Figure 4 (right) shows the main
processing units exterior view, which is designed for a wild environment as explained in
the experiment setup with the case study. The exterior view of the main processing module
are based on several consideration based on the proposed application domain. The package
needs to be compact, thus it can be easily camouflaged and hidden from direct view. At
the same time, it must larger enough to store all the components of the system except the
motion trigger along with the battery to power them in it. Figure 5 shows the design circuit
of the proposed solution.

3.1.4. Communication Module

The communication module consists of two main components. The SMS notification
system notifies the characters in the recognized license plates to the authorities and the
on-demand evidence offloading module offloads images stored within the system. Data
flow of these components and the main system is shown in Figure 6. Once a license plate
has been successfully recognized by the license plate recognition model, it is passed to the
SMS notification system. The SMS notification system uses a sim 900a mini v3.8.2 GSM
module connected to the main processing module to send SMS messages. It is connected to
the Raspberry Pi’s serial TTL port using the universal asynchronous receiver/transmitter
(UART) protocol. Since sim900a is a 5 V device and Raspberry Pi is a 3.3 V device, we used
a 5 V to 3.3 V TTL logic shifter to protect the Raspberry Pi.

Figure 6. Data flow of the proposed system.

The on-demand evidence offloading module is designed as a quality-of-life improve-
ment, thus the operators do not require physical connection with the system to offload data.



Sensors 2022, 22, 1434 13 of 29

To use this system, the operator sends an SMS message to the system, which enables the
WiFi module of the Raspberry Pi. It then searches for a WiFi hot-spot with a predefined
Service Set Identifier (SSID) and WiFi Protected Access 2 (WPA2) password. The operator
will carry a mobile device that uses the mobile hot-spot functionality to create this hot-spot.
After the Raspberry Pi has been successfully connected to the hot-spot operator can access
the images stored within the Raspberry Pi in wireless mode and download necessary files.
With this system, operators can easily access images stored within the system without a
physical connection to the system, which may be difficult due to camouflaged placement of
the system.

3.2. Environment Simulation Techniques

Generally, a large and diverse dataset supports to train a learning model robustly.
This helps to classify data against varying environmental conditions including adverse
weather and camera conditions such as location and vibration without the need for fragile
explicit image processing steps. There exist such LP datasets such as Chinese City Parking
Data set (CCPD) [14] that is used by state-of-the-art models such as Roadside Parking
Net (RPNet) [14] and Towards End-to-End Car License Plate Detection and Recognition
(TE2E) [64] to achieve different variations. However, these data sets have mainly focused
on daytime images. Additionally, curating such a data set for nighttime images is both
expensive and time consuming. Therefore, to simulate the night vision, we used a synthetic
image generation technique to convert the RGB images of the CCPD dataset to nighttime
TIR images. However, we also deployed the working prototype in the actual field to acquire
a real nighttime dataset to evaluate the performance of our proposed models.

The process of generating the synthetic TIR images used by this work follows a
method proposed by Zhang et al. [49]. As shown in Figure 7, we used a GAN-based pix2pix
model for image translation and provided the model with a paired set of training data that
includes matching frames in both RGB and TIR images. To train the model for TIR image
translation, we selected the largest available multi-spectral dataset named KAIST [72]
that has a significant amount of matching RGB and TIR images. Finally, we trained the
pix2pix model and initialized the weights from a Gaussian distribution with a mean 0 and
standard deviation of 0.02. The input images were enlarged to 480 × 480 pixels and the
network is trained for 100 epochs with a decaying learning rate of 0.0002, lambda_l1 of
120.0 and keeping other parameters the same as the original pix2pix study. Then we used
this trained pix2pix model to translate the daytime RGB images of the CCPD dataset [14] to
TIR and used that synthetically generated nighttime images of CCPD to train the detection
models of our pipeline. To train the recognition models, we required comparatively high-
quality nighttime images of the license plates. Therefore, we converted the RGB images to
grey-scale using matplotlib Python library and set the colour map to grey. Herewith, we
preserved the image quality and avoided generating incomplete license plate characters
that are impossible to read.



Sensors 2022, 22, 1434 14 of 29

Figure 7. Pix2Pix for nighttime image generation.

3.3. License Plate Detection and Recognition Algorithms

In this paper, we use two differential neural architecture search (DNAS) strategies to
automate the architecture modelling for detection and recognition neural networks. We
define the neural architecture search problem as a bi-level optimization problem as in
Equation (1),

min
a∈A

min
wa

L(a, wa) (1)

where A is the set of possible neural network architectures referred to as the architecture
space and wa is the set of weights for the selected architecture a. Loss function L takes
into account both the resource use and model accuracy. In this work, we consider three
main factors related to neural architecture search, namely search space, search strategy, and
performance estimation strategy.

3.3.1. Search Space

The proposed neural architecture search (NAS) process uses a coarser search space
with “neural blocks” selected on the existing understanding of the domains such as license
plate recognition and object detection. Therefore, we selected 4 types of neural blocks:
(1) RPNet blocks [14], (2) MobileNet blocks [73], (3) Inception blocks, and (4) Identity
connections. The RPNet blocks were considered to be they currently serve the state-of-the-
art results in the automatic license plate recognition domain. The selection of MobileNet
blocks was based on two major factors. First, it is one of the backbone architectures used in
most of the object detection problems and secondly, it is lightweight and runs efficiently
in resource-constrained environments such as mobile devices or other devices with low
computational power and memory space. The Inception models are uniform, simplified
and heavily engineered architectures that introduce the concepts for “wider” networks
instead of “deeper”. One can consider the search space as the set of possible permutations of
these blocks that can run on the edge device. Although selecting a “finer” search space may
have resulted in better performance, we decided against it because that will lead to a much
larger search space requiring more computational time to perform the architecture search.

3.3.2. Search Strategy

In this study, two neural architecture search strategies namely PC-DARTS (Par-
tially connected—Differentiable architecture search) [13] and FB-Net (Facebook-Berkeley-
Nets) [12] are explored to discover the neural network architectures for the license plate
detection and recognition modules optimized for memory-constrained embedded devices.



Sensors 2022, 22, 1434 15 of 29

Our previous work has presented the detailed implementation aspects of the LP-net archi-
tecture used for this study [57].

We used PC-DARTS as a hardware-agnostic neural architecture search strategy. Thus,
it optimizes the architecture considering only the input and the target output, independent
of the hardware platform. We introduced a hard upper limit to the memory use in A based
on the target device. This ensure all possible values of a can be run on then given target.
Rational for performing architecture search in a hardware-agnostic manner is to develop
models that will perform well on targets similar to the intended target by preventing
overspecialization to the intended target. PC-DARTS defines its stochastic super-network
as a directed graph where vertices represent tensors and edges represent operation in the
search space.

Figure 8 (left) shows a simple case with only 2 intermediate tensors namely x1and
x2. The tensor x0 is the input to the super-network and tensor x3 is the output of the
super-network. We call the number of intermediate tensors as the depth of the network in
our implementation. As shown in the figure each tensor is connected to every one of its
predecessors using all the operations in the search space. For brevity we have shown only
op 1 and op n in the figure. For our architecture search process these operations are the
neural blocks described in the previous section.

xj = ∑
i<j

∑
o∈O

α(i,j,o)o(xi) (2)

Figure 8. Stochastic super-network (left): PC-DARTS, (right): FB-Net.

Value of each tensor xi can be defined using its predecessors as shown in Equation (2).
Here we are using value of subscripts to represent the order of tensors and O represents the
set of operations in the search space. We call the value of α(i, j, o) as the architecture weight
of operation o for edge (i, j) . These weights represent the probability of connected each
tensor with its predecessor j using operation o. Therefore, we used a SoftMax distribution
to represent these weights. We call the set of all such architecture weights as the architecture
weights of the super-network (wα). Each individual operation such a convolution can have
their own weights and the set of all such weights in the super-network is known as the
operation weights of the super-network (wθ). We can then find the optimal values for wα

and wθ using bi-level optimization as given in Algorithm 1. Once this optimization has
converged, we can find the optimal architecture by performing argmax on architecture
weights.



Sensors 2022, 22, 1434 16 of 29

Algorithm 1: Bi-level optimization.
Data: stochastic super-network
Result: w∗α that minimize L(wθ , wα)
while L(wθ , wα) not converged do

for iθ iterations do
wθ ←− wθ − γθ∇θ L(wθ , wα)

end
wα ←− wα − γα∇αL(wθ , wα)

end
w∗α ←− wα

wθ : operation weights
wα: architecture weights
γθ : learning rate for operation weight update
γα: learning rate for architecture weight update
L(wθ , wα): loss
iθ : number of iterations for inner optimization

The FB-Net was used as the hardware sensitive search strategy that produces opti-
mized models for a specific hardware platform. Hence, FB-Net-based models use special
hardware characteristics of the target platforms to reduce their latency. However, the
performance can be reduced, if these models are used on a different hardware platform
other than the platform considered for the optimization due to overspecialization for the
intended target. As a result, models developed using FB-Net gives us better hardware use
at the cost of generalizability across different hardware platforms.

Similar to PC-DARTS FB-Net also represent the search space as a stochastic super-
network. However, it is more similar to a typical feed forward network as shown in
Figure 8 (right). Each layer takes the output of the previous layer xi−1 and apply operation
as shown in Equation (3) to obtain its output xi. O is the set of all operations in the
search space.

xi = ∑
o∈O

α(i,o)o(xi−1) (3)

We call the value α(i,o) architecture weight of layer i with respect to operation o. Set
of all such weights is given by pi as shown in Equation (4). We define the set of all such
pi values as the architecture weights of the stochastic super-network(wα). We then used
the previously given bi-level optimization to obtain the optimal architecture similar to
PC-DARTS.

pi = α(i,1)∀o ∈ O (4)

3.3.3. Lite LP-Net Architectures

We have designed and developed a set of optimal learning models that can be deployed
in edge devices with low processing power and worked without Internet connectivity. The
proposed Lite LP-Net family of models consists of (1) hardware-optimized LP detection
model, (2) hardware-agnostic LP detection and (3) LP recognition subnetworks as shown
in Figure 9. The naming convention of the models is detailed in Tables 4 and 5. We
used the tensorflow.keras.layers API and the default parameters as in TensorFlow version
2.3.0. Moreover, as stated in Section 3.1.2, the hardware-optimized LP detection model
is implemented following using FB-Net (Facebook-Berkeley-Nets) [12] algorithm and the
other two models were based on PC-DARTS [13]. These were implemented for three
hardware configurations namely low, mid, and high tier, as described in Section 3.1.1.



Sensors 2022, 22, 1434 17 of 29

Figure 9. Model Architectures (left): hardware-optimized detection, (middle): hardware-agnostic
detection, (right): recognition subnetworks.

Table 4. Detailed summary of the data set.

Data Set CCPD Day
Time Image

Synthesised Nighttime
Image from CCPD

Sri Lankan LP
Images-Day Time

Sri Lankan LP
Images-Nighttime

Sample
image

No. of
images 200,000 200,000 100 100

Table 5. Performance results of the detection model.

Model
Name

Resource
Requirement

Performance Measure
Latency
(s)

Model
Size (MB)

AP
(Daytime)

AP
(Synthetic)

AP
(Real)

s1_h Raspberry Pi 3b+, Intel® NCS2 0.012 0.7776 0.9284 0.8451 0.85
s1_h_h Raspberry Pi 3b+, Intel® NCS2 0.011 0.8707 0.9299 0.8401 0.9
s1_m Raspberry Pi 3b+ 0.157 0.6869 0.9005 0.7982 0.85
s1_m_h Raspberry Pi 3b+ 0.004 0.6830 0.9029 0.7962 1.0
s1_l Raspberry Pi Zero 4.54 0.5568 0.8422 0.7146 0.95
s1_l_h Raspberry Pi Zero 4.08 0.5625 0.8327 0.6987 0.95

In addition, we have used a novel differentiable neural architecture search (NAS)
process based on PC-DARTS and FB-Net to develop the models. The advantage of using
differentiable architecture search over commonly used methods such as reinforcement
learning, and evolutionary algorithms is a significant reduction in GPU hours required to
search of neural networks. To the best of our knowledge, this is the first time such tech-
niques have been used for the development of models for license plate recognition in edge
devices such as Raspberry Pi and neural compute stick, which has different computational
capabilities and requires different model designs and optimizations.

The LP detection models are designed to predict the bounding boxes of the license
plate image. As shown in Figure 9 (left) and (middle), the detection model uses 6 different
models. The hardware-optimized and hardware-agnostic models are designed to reduce
the latency and increase the accuracy, respectively. Considering the application domain
considered for this study, we recommend the model that supports low latency. These
hardware-optimized models are implemented by applying NAS with the FB-Net algorithm
as described in Section 3.3. The hardware-optimized model for each tier is selected based on



Sensors 2022, 22, 1434 18 of 29

the latency values calculated for each hardware configuration and applying NAS. Although
hardware-optimized models provide low latency in the processing, these models can give a
subpar performance in similar but not identical processing units. Thus, hardware-agnostic
models were designed to handle this variability. The implementation of these models is
based on the PC-DARTS algorithm and optimized to increase detection accuracy without
regard to processing latency.

The LP recognition models provide a sequence representing the content, given a
cropped image of the license plate. As shown in Figure 9 (right), this study presents
three 3 hardware-agnostic models for LP recognition, by following the same process as
used for the hardware-agnostic detection models. We applied two design paradigms.
(1) The model based on the Tuple-based End-to-end (TE2E) [64], uses a single model to
predict all the characters in the image. Since it shares parameters when recognizing each
character, the memory consumption is low. (2) The model based on Roadside Parking Net
(RPNet) [14], uses a separate subnetwork for each character in the license plate. Since the
separate subnetworks cannot share the parameters, the memory consumption is high. The
optimal architectures were obtained by training the stochastic super-networks as described
in Section 3.3.2. The entire set of characters in the license plate is the input for each
subnetwork and the consecutive output values of each subnetwork form the recognized
license plate number. The subnetwork-based approach has outperformed the single model
approach, based on the experiments done for each hardware configuration.

3.3.4. Performance Estimation Strategy

The performance estimation strategy is used to identify the optimal architecture
among the selected architectures. Generally, the evaluation strategy of NAS has a bi-level
optimization problem as in Equation (1). Thus, for a given input the aim is to learn an
optimal architecture a to obtain a given output, and the associated weights w within all
the mixed operations. In our experiment, the input to the NAS is either an image directly
from the camera or an image of the cropped license plate, and the output is either the
bounding box of the license plate or the sequence representing characters in the license
plate. However, unlike in PC-DARTS that considers the accuracy of a given architecture
only, the loss function used in FB-Net is more thorough and reflects both accuracy and
latency of an architecture on a target hardware. Thus, the architectures searched using
FB-Net algorithm become hardware sensitive. In this study, we used the same latency
aware loss function as in the original FB-Net implementation.

First, a latency table is created for the execution of each operation on the target
hardware. Then, we use the latency lookup table and calculate the latency of layer i using
value pi as shown in Equation (5).

LAT(pi) = ∑
o∈O

latoα(i,o) (5)

In Equation (5), lato refers to the latency of operation o read from the latency lookup
table. Then we obtain the latency of the super-network, LAT(wα), by summing up the
latency values for all the layers in the network. Therefore, we include this latency term
in the bi-level optimization algorithm to obtain a hardware sensitive architecture search
process.

4. System Evaluation
4.1. Data Set

Two experiments have been done to test the performance of the proposed detection
and recognition system using two different data sets: a simulated and a real nighttime data
set as listed in Table 4. The first experiment was done on a Chinese City Parking Dataset
(CCPD) that has over 200,000 images collected from a roadside parking from 07.30 a.m. to
10:00 p.m. covering different illumination and environmental conditions during the day.
However, still a large portion of the CCPD dataset is also taken under daylight similar to



Sensors 2022, 22, 1434 19 of 29

most other datasets available for LP detection. Therefore, due to the scarcity of a publicly
available nighttime LP dataset and curating such a large nighttime dataset is both expensive
and time consuming, we created a synthetic nighttime dataset using the CCPD daytime
images as comprehended in Section 3.2. Although CCPD which is the largest LP image
dataset has complex background conditions when compared to an LP image captured in a
wild environment, training with this dataset is beneficial to obtain a well-trained model
for LP detection, as the actual image is less complex than the trained dataset. With the
synthetically generated CCPD data set, we used a five-fold cross validation, where each
fold consists of 40,000 images.

The second experiment was done using a real-world Sri Lankan data set which was
collected specifically for this considered use case of wild environment conditions. The
created real-world nighttime data set contains 100 images and was collected between 8 p.m.
to 4 a.m. Then we used this collected data set to perform transfer learning on our models
to train them for Sri Lankan license plates and then validated the performance of them
against local license plate numbers. However, as the main focus of this study was to build
an ALPR system to work with resource-constrained environments, the created dataset does
not include any complex weather conditions.

4.2. Experiment Setup

A simulation of a poacher vehicle detection case study is used to evaluate the effec-
tiveness of the proposed approach. This experiment has been performed using the CCPD
dataset with 200,000 daytime license plate images [14], and the corresponding synthetically
generated nighttime license plate images following the process described in Section 3.2. In
addition, the proposed model is practically tested in a real nighttime environment with
120 vehicle images. The hardware configuration specifications have described in Section 3.
The software configuration consists of Raspberry Pi OS (32-bit) version August 2020, Tensor-
Flow lite version 2.1.0 and Python 3.7.3. We used Open-VINO version 2019.3.376 to convert
TensorFlow models that were compiled using TensorFlow version 2.2 into intermediate
representations for the Intel® NCS2. The model training and evaluation codes for Lite
LP-Net is available in GitHub repository [74].

4.3. Model Performance

The performance of deep-learning models used for license plate recognition was
measured under two broad categories. We measured the model correctness using the three
datasets and efficiency while achieving the task it was designed to perform. For stage
one (detection) models, we used an average precision at a fixed Intersection over Union
(IOU) threshold, a metric typically used for object detection as the evaluation metric. Also,
to measure the correctness of the stage 2 (recognition) models, we used a more relaxed
metric of accuracy, and we considered a prediction to be accurate if and only if every single
character in the license plate is recognized correctly. Model efficiency is measured using
two parameters, model size and model latency. The model size is measured considering
the size of the TensorFlow Flatbuffer that estimates the required RAM to execute the model.
Model latency is calculated by considering the average time takes to process a single image.
This can also be viewed as a proxy to the computational complexity of the model.

Results of these experiments are shown in Tables 5 and 6 for the detection and recog-
nition stages, respectively. The model names ending with h, m and l represent high-tier,
mid-tier and low-tier configurations, respectively. Each hardware tier in the detection
process contains two types of models namely hardware-optimized using FB-Net [12] and
hardware-agnostic using PC-DARTS [13].



Sensors 2022, 22, 1434 20 of 29

Table 6. Performance results of the recognition model.

Model
Name

Resource
Requirement

Performance Measure
Latency
(s)

Model
Size (MB)

Accuracy
(Daytime)

Accuracy
(Synthetic)

Accuracy
(Real)

s2_h Raspberry Pi 3b+, Intel® NCS2 0.021 4.5 0.9987 0.9476 0.9873
s2_m Raspberry Pi 3b+ 0.148 11.7 0.9877 0.9382 0.9882
s2_l Raspberry Pi Zero 6.2 4.5 0.9565 0.9054 0.9586

First we evaluated the day and nighttime performance of each model using the original
CCPD [14] data set and the synthetically generated nighttime data set. Figure 10 compares
the detection and recognition models’ performance for day and nighttime data. According
to the reported values, all the models have shown high accuracy in both day and night
conditions, while high-tier models have shown better accuracy than the other models.
Additionally, we have tested our models against some state-of-the art ALPR systems such
as RPNet [14], TE2E [64] and a general object detection models such as yolo-v3 [46] for a
better comparison. We can also observe that the proposed detection models, especially
higher-tier models show performance close to the current state-of-the-art server-grade
models such as RPNet, although our models are designed specifically for low resources. At
the same time, all models except the lower-tier ones show superior performance to Yolo-
V3 [46], which is a popular general-purpose object detector that has been used in several
license plate detection studies [44,45]. Meanwhile, the same trends can be observed for the
recognition models as well. Higher-tier models perform better than lower-tier models and
unlike with detection higher-tier models actually outperform the current state-of-the-art
models such as RPNet.

Figure 10. Model accuracy on the synthetically generated dataset (left): detection, (right) recognition.

In the detection stage, the hardware-optimized models have lesser latency than their
corresponding hardware-agnostic models (s1_h, s1_m and s1_l). Overall, the low model
sizes shown the ability to execute these models in edge devices with low resources.

Moreover, we measured the model robustness against variations of camera position to
identify the impact of the camera angle and elevation on the performance of the system.
This experiment aims to validate that the model performance does not change significantly
with the changes in the camera position. Metrics related to model efficiency are functions of
the model and the hardware solution, thus independent of the camera position. In contrast,
we check whether the model correctness metrics are affected by the camera position. To
validate the impact of the camera position on the model accuracy, an experiment was
carried out by driving a vehicle at a speed in the range of 20–30 km/h towards the camera.
The camera was positioned in one of the four positions as shown in Figure 11 (left). Angle
measurement indication is between the centre of the license plate and the camera when the
vehicle is 20 m away from the camera. We started the test when the vehicle is 20 m away
from the camera and executed the test until the vehicle left the view range of the camera.
During this time, we sampled the video stream at the rate of 10 frames per second and
identified the number of correctly recognized license plate numbers.



Sensors 2022, 22, 1434 21 of 29

Figure 11. Camera positions (left) and sample deployed image (right).

The considered environment is a rural area with many trees and bushes, thus can be
simulated as a wildlife sanctuary. Figure 11 (right) shows a sample image taken under the
same conditions from camera position 1 during daytime to better illustrate the environmen-
tal conditions under which this experiment was performed. The actual images used for
the accuracy results are taken at the same location during nighttime (8 p.m.–10 p.m.) on a
moonless night (13 January 2021).

In this experiment, we used a Raspberry Pi NoIR camera for capturing nighttime
images. The functions of the Pi NoIR camera are same as a regular camera; however, it
does not employ an infrared filter for IR-Blocking, therefore allowing it to use in infrared
photography in general. However, one of the main benefits of using a NoIR camera is its
ability to be used in both daytime and in complete darkness as well. Moreover, it is also
relatively less expensive compared to a regular IR camera module, where one of the main
focus of this study is a low-cost solution. Though a NoIR camera can see better in a low
light environment even without the assistance of an IR illuminator, using an infrared light
source (illuminator) that is completely invisible to the human eye, can ensure a clearer
image in the total darkness. Therefore, in this design, we have used an infrared illuminator
that is invisible to the naked eye for better performance. Thus, our solution gives the system
the most challenging conditions because there are no visible illumination sources.

Results of this experiment are shown in Table 7. The proposed model performance
is not affected adversely depending on the camera position. Furthermore, as shown in
Figure 12, the higher-tier models have shown better accuracy. As we can see from this
experiment, the proposed model is robust against variations of camera elevation and angles
giving results that are similar to each other irrespective of camera position. This is to be
expected, because the CCPD [14] dataset contains images taken from handheld devices
giving high variation in terms of both elevation and camera angle.

Table 7. Model performance with respect to the camera position (Number of correctly identified im-
ages).

Experiment Number of Images
Number of Correct Images

Camera Position
Low-Tier Mid-Tier High-Tier

1 27 25 26 26 1
2 35 30 31 34 1
3 33 30 31 33 2
4 29 24 25 28 2
5 25 21 23 25 3
6 28 22 25 27 3
7 30 25 26 28 4
8 26 19 23 25 4



Sensors 2022, 22, 1434 22 of 29

Figure 12. Model accuracies of each experiment.

4.4. Hardware Performance

Since the proposed solution is supposed to be a battery-powered system that will be
deployed in a wild environment, the metrics battery life and power consumption are used
to evaluate the hardware performance of the edge devices. We measured the peak power
consumption where the processing unit executes at maximum load, using the input power
via the USB interface to Raspberry Pi devices. Since the camera and Intel® NCS2 (where
applicable) is powered via the Raspberry Pi, this gives us the power requirement for a
minimum ALPR system with both input and processing capabilities. The worst-case power
consumption over a general case is considered due to the following reasons:

1. The probabilistic estimation of the number of vehicles passing through an operation
unit is not readily available for a given case study. Thus, we considered the maximum
possible processing load on the unit for a general case.

2. The worst-case power consumption gives an upper bound for the unit’s power con-
sumption. Thus, using a power supply that satisfies the maximum power require-
ments can satisfy the power consumption of the unit under any other condition.

This measure includes the power consumption of all the processing units required to
execute the model including its input devices. As shown in Table 8, there is an increase in
the power consumption, when moving from the Raspberry Pi Zero (low-tier) to Raspberry
Pi 3b+. Although we observed an increase in peak power consumption when the Raspberry
Pi 3b+ was combined with the Intel® NCS2, it was a relatively smaller increase.

Table 8. Hardware performance of each configuration.

Hardware Tier Power Consumption (W) Average Battery Life (h)

Low-tier 0.8 132.15
Mid-tier 5.15 11.03
High-tier 6.2 13.04

To measure the expected battery life of a typical deployment, we used a 10,400 mAh
battery to power all the components of the system. We charged the battery to 100% and
executed the system continuously until it runs off the power. We measured the time taken
to drain the battery completely using the timestamp of the last image recorded by the
system. For each hardware tier, we repeated this experiment for a week and measured
the average battery life as shown in Table 8. The lower-tier hardware has significantly
better battery life compared to mid and higher-tier configurations. The most interesting
observation in this experiment was that the higher-tier system has a better battery life
compared with the mid-tier unit even though it had a higher peak power consumption. A
possible reason for this could be the better computing performance of the higher-tier model
with the Intel® NCS2. Hence, higher-tier models do not reach their peak load as often
as the mid-tier models that operate closer to maximum load with the Raspberry Pi, thus
higher-tier models consume less energy. With the knowledge of the power consumption
and battery life of the models, a suitable battery that meets the deployment requirements



Sensors 2022, 22, 1434 23 of 29

such as cost, external dimensions, battery recharge and replacement frequency can be
selected in practice. Although 13 h of battery life seems low in the high tier, the recorded
time is the sustained use time, where the system is taking pictures and processing them
in a continuous manner. However, in a forest environment, where there will not be many
vehicles passing by, we have installed a motion trigger to keep the device in a standby
mode when no vehicle is detected for a fixed amount of time. Therefore, the actual battery
life is much longer than this use time. Additionally, the system design can be even modified
to use solar recharging batteries.

Furthermore, we evaluated the communication systems of the proof-of-concept hard-
ware solution. We deployed the proposed models under operational conditions and test
the correctness of sending SMS messages and the data offloading module. Thus, we have
verified that the purposed hardware solution meets the requirements of the case study.

5. Discussion and Lessons Learned
5.1. Study Contributions

We presented an innovative approach to detect and recognize license plates automat-
ically for embedded platforms with limited computational and memory capacities. The
overall aim of this study is mainly twofold: (1) develop models for license plate detection
and recognition that gives competitive results to the server-grade hardware solutions, while
still being efficient enough to run on low-resourced, low-cost embedded platforms and
(2) develop a system that is energy efficient and viable to be deployed in wild or remote
areas without reliable Internet connectivity or direct power supply. The proposed approach
has achieved the following objectives;

• Designed and developed a lightweight and low-cost night-vision vehicle number plate
detection and recognition model with competitive accuracies.

• Developed a license plate reading system capable of operating without Internet con-
nection and powered by batteries for an extended period. Thus, supported mobile
communication with minimum resources.

• Supported SMS sending that contains the identified license plate number to a given
phone number (e.g., send to the wildlife department in the considered case study).

• Designed in small size in appearance and deployed discreetly in the field. Thus, in the
considered case study, the poachers may not notice these camera traps and equipment.

• Analysed the trade-offs and explored the impact of the constraints such as accuracy
and power consumption.

• Maximized resource use and minimized the end-to-end delay.

We have shown the use of a novel family of neural networks called the Lite LP-Net
model for both licenses plate detection and recognition, which are light-weighted and
optimized for edge devices. As another novel contribution, we used an infrared blaster to
capture nighttime images in the dark. It captures the license plate using its illumination,
without visual illumination at nighttime. We have also presented a case-study-based
approach as a proof of concept for the use of proposed models in real-time applications
in the wild. The experiment results have shown the system’s robustness to variations
in the angle and its high recognition accuracy at nighttime. Providing a basis for future
research on nighttime license plate recognition, this study has also presented a synthetic
data generation technique to create a versatile nighttime license plate dataset with publicly
available RGB images of license plates. The main advantage of this approach is that it helps
to mitigate the problem with the scarcity of large and diverse nighttime LP datasets.

Moreover, as shown in Figure 11 (left), the system design has considered the technical
aspects such as angle of the camera, distance to the camera, camera location. The models
detect and recognize the license plate in constrained environments with different vehicle
speeds and lighting conditions. Thus, the model can execute on edge devices with low-
resource requirements and showed competitive accuracy values compared to server-grade
related systems. However, the proposed solution can be further extended to train learn-
ing models for different image variations with constraints environments such as diverse



Sensors 2022, 22, 1434 24 of 29

weather conditions, and complex parameters such as license plates rotations to develop
robust models. Furthermore, these energy-efficient and low-latency communication and
computation models can be deployed at a low cost, such that the total cost of low-tier and
high-tier models are USD 63 and USD 146, respectively.

Based on the considered case study, model size is a main limiting factor when de-
ploying the license plate recognition models in edge devices, and higher latency may
be tolerable. To execute the inference, the model size should be smaller than the device
memory. As shown in Tables 5 and 6, our proposed model sizes are significantly smaller,
hence can execute in memory-constrained edge devices. Moreover, although, the higher-
tier models have high power consumption, they execute more accurate models and have
smaller latency compared to the lower-tier hardware configurations. We have simulated an
experiment for the case study of the poacher vehicle detection system. Such a system might
support the wildlife in minimizing the rate of losing their existence and violent matters.
It will, directly and indirectly, affect the rights of the wildlife by assuring the security of
the wild animal’s lives. Thus, reduces damage done to wildlife in reserves by making
prosecution of poachers easier. Accordingly, this approach can be used to identify vehicles
number plates in remote locations without access to the Internet and power grid. A similar
system can be used for any scenario that requires reading license plates such as parking lot
management, traffic management.

5.2. Solution Assessment

The problems of automated license plate recognition have many proposed solutions.
However, it cannot be denied that most of these prevailing solutions are limited to un-
constrained environments with higher computational capabilities and memory capacities.
Despite their accuracy and latency in server-grade hardware, most of the state-of-the-art
solutions in the ALPR domain are not implementable on the embedded platforms due to
their memory and energy requirements. For instance, RPNet [14] model currently serves
the state-of-the-art results in the ALPR domain but still, it is tested on PCs with eight
3.40 GHz Intel Core i7-6700 CPU, 24 GB RAM, and one Quadro P4000 GPU. Thus, though
it achieves over 90% accuracy for plate recognition, it cannot be executed on a low-cost
edge platform such as a Raspberry Pi. However, in this study, we have proposed a system
that is implementable on these embedded platforms but still showing competitive results
to the server-grade solutions.

Since the solutions built on the server-grade hardware requires more memory require-
ments and computational power, the researchers are encouraged to build lightweight ALPR
systems to execute these solutions on edge devices for practical scenarios. To assess the
significance of our approach, we have compared the proposed solution with the existing
embedded ALPR systems as given in Table 9. Since most studies do not report energy
consumption or memory requirements for their methods, a direct comparison for these
values was not possible. However, our solution has shown competitive performance and
the subsequent studies may use our values as a reference to guide future research. In con-
trast to existing studies, the proposed solution is not limited to one specific edge platform.
Thus, our approach is generalized over three hardware tiers and any edge device within
the specifications or the computational capabilities of either of these tiers can effectively
use the proposed models.



Sensors 2022, 22, 1434 25 of 29

Table 9. Comparison with the related studies.

Study Dataset Resource
Requirement Accuracy Latency

Lee
et al. [15] Nearly 500 images NVIDIA Jetson TX1

embedded board
95.24%
(daytime) N/A

Arth
et al. [16]

Test set 1: 260 images
Test set 2: 2600 images
Different weather and
illumination types

Single Texas Instruments
TM C64 fixed point
DSP with 1MB of cache,
Extra 16 MB SDRAM

96%
(daytime) 0.05211 s

Rezvi
et al. [17]

Italian rear LP with
788 crops

Quadro K2200, Jetson
TX1 embedded board,
Nvidia Shield K1 tablet

Det: 61%,
Rec: 92%
(daytime)

Det: 0.026 s,
Rec: 0.027 s
(Quadro K2200)

Izidio
et al. [18]

Custom dataset
with 1190 images,

Raspberry Pi3 (ARM
Cortex-A53 CPU)

Det: 99.37%,
Rec: 99.53%
(daytime)

4.88 s

Proposed high-
tier solution

CCPD (200,000 images),
Synthetic nighttime
dataset (CCPD),
Real nighttime
100 images

Raspberry Pi 3B+,
Intel® NCS2

Det: 90%,
Rec: 98.73%
(nighttime)

Det: 0.011 s
Rec: 0.02176 s

Moreover, as shown in Tables 5 and 6, the proposed higher-tier detection models
show performance close to the current state-of-the-art, RPNet [14]. At the same time,
all models except the lower-tier ones show superior performance to Yolo-V3 [46], which
is a popular general-purpose object detector that has been used in several LP detection
solution designed to execute on server-grade hardware [31,65]. Similarly, considering the
recognition models, the higher-tier models perform better than the lower-tier models. In
contrast to the detection stage, these higher-tier models outperform the current state-of-
the-art models such as RPNet [14]. Here, both RPNet [14] and TE2E [64] are single-stage
models that are designed to both detect and recognize LP with a single forward pass. This
shows that our models are competitive with the existing state-of-the-art solutions in terms
of accuracy which was the research objective.

Furthermore, our solution is tested for both daytime and nighttime performance, while
most of the other methods are limited to daytime performance only. We have also proved
the real-world usability of our system in the wild by holding a case study and has shown
the system’s robustness to the variations in the camera angle and different illumination
conditions. The model performance can be analysed further using a confusion matrix, as it
shows a summary of the number of correct and incorrect predictions with count values for
each class. Additionally, we validated our solution with a large and diverse dataset with
over 200,000 images in different conditions. Moreover, we have obtained lesser execution
time when compared to other embedded systems, thus showing that our solution is more
suitable for real-time applications. Furthermore, we have managed to maintain the peak
power consumption of the high-tier solution to 6.2 W and the average battery sustained
use time to 13.04 h even in the worst-case. In addition, the low-tier solution with 0.8 W
power consumption has shown a battery use time of 132.15 h. Thus, the proposed ALPR
solution is lightweight, energy efficient, low cost and works in real time.

However, the study has not been tested in different weather conditions and noisy
environments as the main focus of this study was to design and develop an ALPR model to
be deployed in low-resource settings. Additionally, this study has provided a solution to
be deployed in the wild, where there is no stable Internet connectivity or a direct power
grid, thus leaving SMS as the only possible communication method. Therefore, although
the cloud providers such as Amazon Web Services (AWS) provide edge computing services
for specific edge use cases such as this, still, they do not support the resource-constrained
environments as considered in this study.



Sensors 2022, 22, 1434 26 of 29

6. Conclusions

This paper presents the realization of an automatic license plate recognition system im-
plemented on embedded devices with limited resources. We exploited hardware-agnostic
and hardware-efficient neural architecture search strategies to discover a novel set of neural
networks for license plate detection and recognition that are efficient enough to execute
on edge platforms. Overall, the proposed system has shown robustness to variations in
angle, extreme illumination changes such as day and nighttime, and achieved competitive
results to the state-of-the-art server-grade hardware solutions. Therefore, our results are
significant while considering the restrictions of an embedded system. Additionally, the
proposed system is suitable to be deployed in a wild environment, since it does not rely on
the Internet connection for communication or a direct power grid for operation. Moreover,
we created a synthetic nighttime license plate data set with a widely used Chinese City
Parking Data set (CCPD) and a small-scale real nighttime dataset for Sri Lankan license
plates that reflects real-life conditions. Additionally, for a fair comparison with the existing
server-grade hardware solutions designed for daytime performance, we have evaluated
our system against a large daytime dataset. Furthermore, for the generalisability of the
solutions over different hardware configurations, we proposed models for three hardware
configurations as low, mid and high considering their computational capabilities and
the cost.

This study can be extended to customize the neural architecture search process for
different hardware platforms. With a one-shot model architecture search strategy such as
SMASH [75], the search time for discovering models optimized for any hardware platform
can be reduced to O(1) time. Regarding the accuracy of the detection and recognition
processes, even though our results are considered reliable, it would be compelling to
evaluate the system on different LP datasets for further refinement. Furthermore, the
proposed system can also be extended for applications such as illegal license plate identifi-
cation by compared to an external data source, which would be a promising direction to
further explore.

Author Contributions: All authors equally contributed to the study. D.M. and C.P. contributed to the
conceptualisation and design of the study. Material preparation, methodology, validation, analysis,
manuscript writing and original draft preparation were done by H.P. and J.S. D.M. supervised the
entire study and provided critical feedback and refined the manuscript with reviewing and editing.
C.P. also supported with supervision, reviewing and project administration. O.R. has supported
to come up with the research methodology and fine-tune the paper during review and editing the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: Charith Perera’s work is partially funded by EPSRC PETRAS 2 (EP/S035362/1). Charith
Perera’s and Omer Rana’s work is partially supported by EPSRC International Partnerships
(EP/W524219/1).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khan, L.U.; Yaqoob, I.; Tran, N.H.; Kazmi, S.M.A.; Dang, T.N.; Hong, C.S. Edge-Computing-Enabled Smart Cities: A Comprehen-

sive Survey. IEEE Internet Things J. 2020, 7, 10200–10232. [CrossRef]
2. Hossain, S.A.; Anisur Rahman, M.; Hossain, M. Edge computing framework for enabling situation awareness in IoT based smart

city. J. Parallel Distrib. Comput. 2018, 122, 226–237. [CrossRef]
3. Chakraborty, T.; Datta, S.K. Home Automation Using Edge Computing and Internet of Things. In International Symposium on

Consumer Electronics (ISCE); IEEE: Kuala Lumpur, Malaysia, 2017; pp. 47–49.

http://doi.org/10.1109/JIOT.2020.2987070
http://dx.doi.org/10.1016/j.jpdc.2018.08.009


Sensors 2022, 22, 1434 27 of 29

4. Gamage, G.; Sudasingha, I.; Perera, I.; Meedeniya, D. Reinstating Dlib Correlation Human Trackers Under Occlusions in Human
Detection based Tracking. In Proceedings of the 18th International Conference on Advances in ICT for Emerging Regions (ICTer),
Colombo, Sri Lanka, 26–29 September 2018; IEEE: Colombo, Sri Lanka, 2018; pp. 92–98. [CrossRef]

5. Padmasiri, H.; Madurawe, R.; Abeysinghe, C.; Meedeniya, D. Automated Vehicle Parking Occupancy Detection in Real-Time. In
Moratuwa Engineering Research Conference (MERCon); IEEE: Colombo, Sri Lanka, 2020; pp. 644–649. [CrossRef]

6. Wang, X.; Huang, J. Vehicular Fog Computing: Enabling Real-Time Traffic Management for Smart Cities. IEEE Wirel. Commun.
2018, 26, 87–93. [CrossRef]

7. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and
Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [CrossRef]

8. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge
Computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]

9. Shashirangana, J.; Padmasiri, H.; Meedeniya, D.; Perera, C. Automated License Plate Recognition: A Survey on Methods and
Techniques. IEEE Access 2021, 9, 11203–11225. [CrossRef]

10. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE
Access 2018, 6, 6900–6919. [CrossRef]

11. Xue, H.; Huang, B.; Qin, M.; Zhou, H.; Yang, H. Edge Computing for Internet of Things: A Survey. In 2020 International
Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics); IEEE: Rhodes, Greece,
2020; pp. 755–760. [CrossRef]

12. Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; Keutzer, K. FBNet: Hardware-Aware Efficient
ConvNet Design via Differentiable Neural Architecture Search. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; Computer Vision Foundation/IEEE: Long Beach, CA, USA,
2019; pp. 10734–10742.

13. Xu, Y.; Xie, L.; Zhang, X.; Chen, X.; Qi, G.; Tian, Q.; Xiong, H. PC-DARTS: Partial Channel Connections for Memory-Efficient
Architecture Search. arXiv 2020, arXiv:1907.05737.

14. Xu, Z.; Yang, W.; Meng, A.; Lu, N.; Huang, H.; Ying, C.; Huang, L. Towards end-to-end license plate detection and recognition: A
large dataset and baseline. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14
September 2018; pp. 255–271.

15. Lee, S.; Son, K.; Kim, H.; Park, J. Car plate recognition based on CNN using embedded system with GPU. In Proceedings of the
2017 10th International Conference on Human System Interactions (HSI), Ulsan, Korea, 17–19 July 2017; pp. 239–241. [CrossRef]

16. Arth, C.; Limberger, F.; Bischof, H. Real-Time License Plate Recognition on an Embedded DSP-Platform. In Proceedings of the
2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 18–23 June 2007; pp. 1–8. [CrossRef]

17. Rizvi, S.T.H.; Patti, D.; Björklund, T.; Cabodi, G.; Francini, G. Deep Classifiers-Based License Plate Detection, Localization and
Recognition on GPU-Powered Mobile Platform. Future Internet 2017, 9, 66. [CrossRef]

18. Izidio, D.; Ferreira, A.; Barros, E. An Embedded Automatic License Plate Recognition System using Deep Learning. In Proceedings
of the VIII Brazilian Symposium on Computing Systems Engineering (SBESC), Salvador, Brazil, 5–8 November 2018; pp. 38–45.;
[CrossRef]

19. Liew, C.; On, C.K.; Alfred, R.; Guan, T.T.; Anthony, P. Real time mobile based license plate recognition system with neural
networks. In Journal of Physics: Conference Series; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 1502, p. 012032.

20. Wu, S.; Zhai, W.; Cao, Y. PixTextGAN: Structure aware text image synthesis for license plate recognition. IET Image Process. 2019,
13, 2744–2752. [CrossRef]

21. Chang, I.S.; Park, G. Improved Method of License Plate Detection and Recognition using Synthetic Number Plate. J. Broadcast
Eng. 2021, 26, 453–462.

22. Barreto, S.C.; Lambert, J.A.; de Barros Vidal, F. Using Synthetic Images for Deep Learning Recognition Process on Automatic
License Plate Recognition. In Proceedings of the Mexican Conference on Pattern Recognition, Querétaro, Mexico, 26–29 June
2019; pp. 115–126.

23. Harrysson, O. License Plate Detection Utilizing Synthetic Data from Superimposition. Master’s Thesis, Lund University, Lund,
Sweden, 2019.

24. Björklund, T.; Fiandrotti, A.; Annarumma, M.; Francini, G.; Magli, E. Automatic license plate recognition with convolutional
neural networks trained on synthetic data. In Proceedings of the 2017 IEEE 19th International Workshop on Multimedia Signal
Processing (MMSP), Luton, UK, 16–18 October 2017; pp. 1–6. [CrossRef]

25. Zeni, L.F.; Jung, C. Weakly Supervised Character Detection for License Plate Recognition. In Proceedings of the 2020 33rd
SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Porto de Galinhas, Brazil, 7–10 November 2020; pp. 218–225.

26. Saluja, R.; Maheshwari, A.; Ramakrishnan, G.; Chaudhuri, P.; Carman, M. Ocr on-the-go: Robust end-to-end systems for reading
license plates & street signs. In Proceedings of the 2019 International Conference on Document Analysis and Recognition
(ICDAR), Sydney, Australia, 20–25 September 2019; pp. 154–159.

27. Matas, J.; Zimmermann, K. Unconstrained licence plate and text localization and recognition. In Proceedings of the IEEE
Intelligent Transportation Systems Conference, Vienna, Austria, 13–16 September 2005; pp. 225–230.

http://dx.doi.org/10.1109/ICTER.2018.8615551
http://dx.doi.org/10.1109/MERCon50084.2020.9185199
http://dx.doi.org/10.1109/MWC.001.1900009
http://dx.doi.org/10.1109/JIOT.2020.2984887
http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1109/ACCESS.2020.3047929
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00130
http://dx.doi.org/10.1109/HSI.2017.8005037
http://dx.doi.org/10.1109/CVPR.2007.383412
http://dx.doi.org/10.3390/fi9040066
http://dx.doi.org/10.1109/SBESC.2018.00015
http://dx.doi.org/10.1049/iet-ipr.2018.6588
http://dx.doi.org/10.1109/MMSP.2017.8122260


Sensors 2022, 22, 1434 28 of 29

28. Zhang, X.; Shen, P.; Xiao, Y.; Li, B.; Hu, Y.; Qi, D.; Xiao, X.; Zhang, L. License plate-location using AdaBoost Algorithm.
In Proceedings of the 2010 IEEE International Conference on Information and Automation, Harbin, China, 20–23 June 2010;
pp. 2456–2461. [CrossRef]

29. Boonsim, N.; Prakoonwit, S. Car make and model recognition under limited lighting conditions at night. Pattern Anal. Appl. 2017,
20, 1195–1207. [CrossRef]

30. Xie, L.; Ahmad, T.; Jin, L.; Liu, Y.; Zhang, S. A New CNN-Based Method for Multi-Directional Car License Plate Detection. IEEE
Trans. Intell. Transp. Syst. 2018, 19, 507–517. [CrossRef]

31. Laroca, R.; Zanlorensi, L.A.; Gonçalves, G.R.; Todt, E.; Schwartz, W.R.; Menotti, D. An efficient and layout-independent automatic
license plate recognition system based on the YOLO detector. arXiv 2019, arXiv:1909.01754.

32. Montazzolli, S.; Jung, C. Real-Time Brazilian License Plate Detection and Recognition Using Deep Convolutional Neural
Networks. In Proceedings of the 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Rio de Janeiro,
Brazil, 17–20 October 2017. [CrossRef]

33. Wang, F.; Man, L.; Wang, B.; Xiao, Y.; Pan, W.; Lu, X. Fuzzy-based algorithm for color recognition of license plates. Pattern
Recognit. Lett. 2008, 29, 1007–1020. [CrossRef]

34. Anagnostopoulos, C.N.; Anagnostopoulos, I.; Loumos, V.; Kayafas, E. A License Plate-Recognition Algorithm for Intelligent
Transportation System Applications. IEEE Trans. Intell. Transp. Syst. 2006, 7, 377–392. [CrossRef]

35. Selmi, Z.; Ben Halima, M.; Alimi, A. Deep Learning System for Automatic License Plate Detection and Recognition. In Proceedings
of the 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, Japan, 9–15 November
2017; pp. 1132–1138. [CrossRef]

36. Luo, L.; Sun, H.; Zhou, W.; Luo, L. An Efficient Method of License Plate Location. In Proceedings of the 2009 First International
Conference on Information Science and Engineering, Lisboa, Portugal, 23–26 March 2009; pp. 770–773.

37. Busch, C.; Domer, R.; Freytag, C.; Ziegler, H. Feature based recognition of traffic video streams for online route tracing.
In Proceedings of the VTC ’98 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat.
No.98CH36151), Ottawa, ON, Canada, 21–21 May 1998; IEEE: Ottawa, ON, Canada, 1998; Volume 3, pp. 1790–1794.

38. Sarfraz, M.; Ahmed, M.; Ghazi, S.A. Saudi Arabian license plate recognition system. In Proceedings of the 2003 International
Conference on Geometric Modeling and Graphics, London, UK, 16–18 July 2003; pp. 36–41.

39. Sanyuan, Z.; Mingli, Z.; Xiuzi, Y. Car plate character extraction under complicated environment. In Proceedings of the 2004 IEEE
International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), The Hague, The Netherlands, 10–13
October 2004; Volume 5, pp. 4722–4726.

40. Yoshimori, S.; Mitsukura, Y.; Fukumi, M.; Akamatsu, N.; Pedrycz, W. License plate detection system by using threshold function
and improved template matching method. In Proceedings of the IEEE Annual Meeting of the Fuzzy Information, Banff, AB,
Canada, 27–30 June 2004; Volume 1, pp. 357–362.

41. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

42. Laroca, R.; Severo, E.; Zanlorensi, L.; Oliveira, L.; Gonçalves, G.; Schwartz, W.; Menotti, D. A Robust Real-Time Automatic
License Plate Recognition Based on the YOLO Detector. In Proceedings of the 2018 International Joint Conference on Neural
Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–10.

43. Hsu, G.S.; Ambikapathi, A.M.; Chung, S.L.; Su, C.P. Robust license plate detection in the wild. In Proceedings of the 2017 14th
IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy, 29 August–1 September
2017; pp. 1–6.

44. Das, S.; Mukherjee, J. Automatic License Plate Recognition Technique using Convolutional Neural Network. Int. J. Comput. Appl.
2017, 169, 32–36. [CrossRef]

45. Yonetsu, S.; Iwamoto, Y.; Chen, Y.W. Two-Stage YOLOv2 for Accurate License-Plate Detection in Complex Scenes. In Proceedings
of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; pp. 1–4.
[CrossRef]

46. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
47. Berg, A.; Öfjäll, K.; Ahlberg, J.; Felsberg, M. Detecting Rails and Obstacles Using a Train-Mounted Thermal Camera. In

Proceedings of the Scandinavian Conference on Image Analysis, Copenhagen, Denmark, 15–17 June 2015; pp. 492–503. [CrossRef]
48. Siegel, R. Land mine detection. IEEE Instrum. Meas. Mag. 2002, 5, 22–28. [CrossRef]
49. Zhang, L.; Gonzalez-Garcia, A.; van de Weijer, J.; Danelljan, M.; Khan, F.S. Synthetic Data Generation for End-to-End Thermal

Infrared Tracking. IEEE Trans. Image Process. 2019, 28, 1837–1850. [CrossRef]
50. Isola, P.; Zhu, J.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976.
51. Zhu, J.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks.

In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
pp. 2242–2251.

52. Ismail, M. License plate Recognition for moving vehicles case: At night and under rain condition. In Proceedings of the 2017
Second International Conference on Informatics and Computing (ICIC), Jayapura, Indonesia, 1–3 November 2017; pp. 1–4.
[CrossRef]

http://dx.doi.org/10.1109/ICINFA.2010.5512276
http://dx.doi.org/10.1007/s10044-016-0559-6
http://dx.doi.org/10.1109/TITS.2017.2784093
http://dx.doi.org/10.1109/SIBGRAPI.2017.14
http://dx.doi.org/10.1016/j.patrec.2008.01.026
http://dx.doi.org/10.1109/TITS.2006.880641
http://dx.doi.org/10.1109/ICDAR.2017.187
http://dx.doi.org/10.5120/ijca2017914723
http://dx.doi.org/10.1109/ICCE.2019.8661944
http://dx.doi.org/10.1007/978-3-319-19665-7_42
http://dx.doi.org/10.1109/MIM.2002.1048979
http://dx.doi.org/10.1109/TIP.2018.2879249
http://dx.doi.org/10.1109/IAC.2017.8280649


Sensors 2022, 22, 1434 29 of 29

53. Mahini, H.; Kasaei, S.; Dorri, F.; Dorri, F. An Efficient Features - Based License Plate Localization Method. In Proceedings of the
18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; Volume 2, pp. 841–844.
[CrossRef]

54. Chen, Y.-T.; Chuang, J.-H.; Teng, W.-C.; Lin, H.-H.; Chen, H.-T. Robust license plate detection in nighttime scenes using multiple
intensity IR-illuminator. In Proceedings of the 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, China,
28–31 May 2012; pp. 893–898. [CrossRef]

55. Azam, S.; Islam, M. Automatic License Plate Detection in Hazardous Condition. J. Vis. Commun. Image Represent. 2016, 36.
[CrossRef]

56. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.
[CrossRef]

57. Shashirangana, J.; Padmasiri, H.; Meedeniya, D.; Perera, C.; Nayak, S.R.; Nayak, J.; Vimal, S.; Kadry, S. License Plate Recognition
Using Neural Architecture Search for Edge Devices. Int. J. Intell. Syst. Spec. Issue Complex Ind. Intell. Syst. 2021, 36, 1–38.
[CrossRef]

58. Hochstetler, J.; Padidela, R.; Chen, Q.; Yang, Q.; Fu, S. Embedded deep learning for vehicular edge computing. In Proceedings of
the 2018 3rd ACM/IEEE Symposium on Edge Computing, Bellevue, WA, USA, 25–27 October 2018; pp. 341–343. [CrossRef]

59. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:cs.CV/1704.04861.

60. Yi, S.; Hao, Z.; Qin, Z.; Li, Q. Fog computing: Platform and applications. In Proceedings of the 3rd Workshop on Hot Topics in
Web Systems and Technologies, HotWeb 2015, Washington, DC, USA, 12–13 November 2016; pp. 73–78. [CrossRef]

61. Ha, K.; Chen, Z.; Hu, W.; Richter, W.; Pillai, P.; Satyanarayanan, M. Towards wearable cognitive assistance. In Proceedings of the
Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, Bretton Woods, NH,
USA, 16–19 June 2014; pp. 68–81. [CrossRef]

62. Chun, B.G.; Ihm, S.; Maniatis, P.; Naik, M.; Patti, A. CloneCloud: Elastic execution between mobile device and cloud. In
Proceedings of the EuroSys 2011 Conference, Salzburg, Austria, 10–13 April 2011; pp. 301–314. [CrossRef]

63. Luo, X.; Xie, M. Design and Realization of Embedded License Plate Recognition System Based on DSP. In Proceedings of the
2010 Second International Conference on Computer Modeling and Simulation, Sanya, China, 22–24 January 2010; Volume 2;
pp. 272–276. [CrossRef]

64. Li, H.; Wang, P.; Shen, C. Toward End-to-End Car License Plate Detection and Recognition with Deep Neural Networks. IEEE
Trans. Intell. Transp. Syst. 2019, 20, 1126–1136. [CrossRef]

65. Jamtsho, Y.; Riyamongkol, P.; Waranusast, R. Real-time Bhutanese license plate localization using YOLO. ICT Express 2020,
6, 121–124. [CrossRef]

66. Francis-Mezger, P.; Weaver, V.M. A Raspberry Pi Operating System for Exploring Advanced Memory System Concepts. In
Proceedings of the International Symposium on Memory Systems; Association for Computing Machinery: New York, NY, USA, 2018;
MEMSYS ’18; pp. 354–364. [CrossRef]

67. Tolmacheva, A.; Ogurtsov, D.; Dorrer, M. Justification for choosing a single-board hardware computing platform for a neural
network performing image processing. IOP Conf. Ser. Mater. Sci. Eng. 2020, 734, 012130. [CrossRef]

68. Pagnutti, M.; Ryan, R.; Cazenavette, G.; Gold, M.; Harlan, R.; Leggett, E.; Pagnutti, J. Laying the foundation to use Raspberry Pi 3
V2 camera module imagery for scientific and engineering purposes. J. Electron. Imaging 2017, 26, 013014. [CrossRef]

69. Win, H.H.; Thwe, T.T.; Swe, M.M.; Aung, M.M. Call and Send Messages by Using GSM Module. J. Myanmar Acad. Arts Sci. 2019,
XVII, 99–107.

70. Odat, E.; Shamma, J.S.; Claudel, C. Vehicle classification and speed estimation using combined passive infrared/ultrasonic
sensors. IEEE Trans. Intell. Transp. Syst. 2017, 19, 1593–1606. [CrossRef]

71. Zappi, P.; Farella, E.; Benini, L. Tracking motion direction and distance with pyroelectric IR sensors. IEEE Sens. J. 2010,
10, 1486–1494. [CrossRef]

72. Hwang, S.; Park, J.; Kim, N.; Choi, Y.; Kweon, I.S. Multispectral Pedestrian Detection: Benchmark Dataset and Baselines. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

73. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June
2018; pp. 4510–4520. [CrossRef]

74. Padmasiri, H.; Shashirangana, J. Lite-LPNet. 2021. Available online: https://github.com/heshanpadmasiri/Lite-LPNet (accessed
on 20 October 2021).

75. Brock, A.; Lim, T.; Ritchie, J.M.; Weston, N. SMASH: One-Shot Model Architecture Search through HyperNetworks. arXiv 2018,
arXiv:1708.05344.

http://dx.doi.org/10.1109/ICPR.2006.239
http://dx.doi.org/10.1109/ISIE.2012.6237207
http://dx.doi.org/10.1016/j.jvcir.2016.01.015
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1002/int.22471
http://dx.doi.org/10.1109/SEC.2018.00038
http://dx.doi.org/10.1109/HotWeb.2015.22
http://dx.doi.org/10.1145/2594368.2594383
http://dx.doi.org/10.1145/1966445.1966473
http://dx.doi.org/10.1109/ICCMS.2010.90
http://dx.doi.org/10.1109/TITS.2018.2847291
http://dx.doi.org/10.1016/j.icte.2019.11.001
http://dx.doi.org/10.1145/3240302.3240311
http://dx.doi.org/10.1088/1757-899X/734/1/012130
http://dx.doi.org/10.1117/1.JEI.26.1.013014
http://dx.doi.org/10.1109/TITS.2017.2727224
http://dx.doi.org/10.1109/JSEN.2009.2039792
http://dx.doi.org/10.1109/CVPR.2018.00474
https://github.com/heshanpadmasiri/Lite-LPNet

	Introduction
	Background and Related Studies
	Overview of LP Recognition Approaches
	LP Recognition in Constrained Environment
	ALPR Using Edge Devices
	ALPR with Synthetic and Nighttime Images

	System Design and Methodology
	Design Aspects of the Proposed ALPR System
	Cost-Effective Mobile-Sensing Data Communication Specifications
	Input Module
	Main Processing Module
	Communication Module

	Environment Simulation Techniques
	License Plate Detection and Recognition Algorithms
	Search Space
	Search Strategy
	 Lite LP-Net Architectures
	Performance Estimation Strategy


	System Evaluation
	Data Set
	Experiment Setup 
	Model Performance
	Hardware Performance

	Discussion and Lessons Learned
	Study Contributions
	Solution Assessment

	Conclusions
	References

