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Abstract: The paper proposes a novel post-filtering method based on convolutional neural networks
(CNNs) for quality enhancement of RGB/grayscale images and video sequences. The lossy images
are encoded using common image codecs, such as JPEG and JPEG2000. The video sequences are
encoded using previous and ongoing video coding standards, high-efficiency video coding (HEVC)
and versatile video coding (VVC), respectively. A novel deep neural network architecture is pro-
posed to estimate fine refinement details for full-, half-, and quarter-patch resolutions. The proposed
architecture is built using a set of efficient processing blocks designed based on the following con-
cepts: (i) the multi-head attention mechanism for refining the feature maps, (ii) the weight sharing
concept for reducing the network complexity, and (iii) novel block designs of layer structures for mul-
tiresolution feature fusion. The proposed method provides substantial performance improvements
compared with both common image codecs and video coding standards. Experimental results on
high-resolution images and standard video sequences show that the proposed post-filtering method
provides average BD-rate savings of 31.44% over JPEG and 54.61% over HEVC (x265) for RGB images,
Y-BD-rate savings of 26.21% over JPEG and 15.28% over VVC (VTM) for grayscale images, and 15.47%
over HEVC and 14.66% over VVC for video sequences.

Keywords: deep learning; post-filtering; quality enhancement; image compression; video coding

1. Introduction

In image compression, the main objective is to develop efficient algorithms that
minimize the amount of data required to represent the visual information. Nowadays, the
consumption of image and video content is constantly increasing which calls for the design
of novel compression methods with a highly increased coding performance.

Current compression methods employed on images include conventional image codecs
such as JPEG [1] and JPEG2000 [2], denoted here simply J2K. The JPEG codec [1] was
developed by the Joint Photographic Experts Group (JPEG), being the most common format
for image compression. The J2K standard [2] improves the compression performance over
its predecessor and offers several functionalities including resolution and quality scalability
and region of interest coding. JPEG and J2K lossy compressed images often suffer from
compression artifacts such as blocking artifacts, color bleeding, and ringing effects. JPEG
is designed based on the discrete cosine transform (DCT), the block-based nature of this
codec being associated with blocking effects at high compression ratios. The global nature
of the discrete wavelet transform (DWT) employed in J2K overcomes the blocking effects
typical for JPEG compression, but ringing effects and color bleeding are observed at high
compression ratios.

A common solution to enhance the quality of lossy images is to employ different filter-
ing techniques which reduce the effect of coding artifacts. In this work, we propose a novel
filtering method based on convolutional neural networks (CNNs) designed to enhance
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the quality of high-resolution images and video sequences by post-processing the de-
coded images and video frames without applying other modification to the corresponding
coding framework.

In our prior work, we propose to replace the built-in filtering module in HEVC [3]
with efficient deep learning (DL)-based filtering tools and enhance the quality of HEVC-
compressed video and light field (LF) images. In [4], we propose a frame-wise multiscale
CNN for quality enhancement of HEVC decoded videos, built based on inception and
residual learning blocks (IResLBs) [5], where additional information is extracted from the
HEVC decoder to guide the network. In [6], we propose a multiscale CNN to enhance
the quality of LF images using macro-pixel volumes. In this work, we introduce a novel
DL-based filtering method for enhancing the quality of high-resolution lossy compressed
RGB/grayscale images and video sequences. The proposed filtering method follows a sim-
ple post-processing approach where a neural network is employed to estimate refinement
details which are subsequently added to the decoded images/frames in order to enhance
their quality.

In summary, the novel contributions and findings of this paper are as follows: (1) an
efficient CNN-based post-filtering method is proposed, where the architecture is designed
based on the following concepts: (i) the multi-head attention mechanism for refining the
feature maps, (ii) the weight sharing concept for reducing the network complexity, and (iii)
novel block designs of layer structures for multiresolution feature fusion; (2) the current
resolution patch is processed using feature maps extracted from both input patch and
higher resolution patches; (3) the network is trained to estimate the refinement details at
full-, half-, and quarter-patch resolutions; (4) the complex experimental evaluation over
RGB/grayscale images and video sequences demonstrate that the proposed method offers
substantial performance improvements when filtering images encoded by common lossy
codecs and video sequences encoded by recent video coding standards, by reducing the
coding artifacts specific to each codec.

The remainder of this paper is organized as follows. Section 2 overviews the state-of-
the-art methods for image and video quality enhancement. Section 3 describes the proposed
filtering method. Section 4 presents the experimental validation on RGB images, grayscale
images, and video sequences. Finally, Section 5 draws the conclusions of this work.

2. Related Work

In recent years, machine learning (ML) techniques rapidly gained popularity and novel
DL-based tools were proposed to replace, in conventional frameworks, specific coding
modules such as transform [7], prediction [5,8-10], rate control [11], and interpolation [12],
to name a few.

The design of novel DL-based tools to integrate into HEVC became a hot research
topic, and filtering tools were proposed. In [13], an artifact reduction CNN (AR-CNN)
architecture is proposed to reduce the artifacts in the JPEG compressed images using a
sequence of four convolution layers. ARCNN was one of the first architectures that was able
to achieve more than 1 dB improvement in PSNR over the JPEG compression on classical
test images. In [14], the authors proposed a super-resolution CNN (SRCNN) to obtain high-
resolution images from the corresponding low-resolution images in an end-to-end manner
that outperforms the state-of-the-art in both reconstruction quality and computational
speed. In [15], the authors proposed the variable-filter-size residue-learning CNN (VRCNN)
architecture built based on ARCNN [13] and employed to replace the conventional HEVC
built-in filters, de-blocking filter (DBF) [16] and sample adaptive offset (SAO) [17], when
filtering the HEVC reconstructed intra-frames. In [18], a VRCNN architecture with batch
normalization is proposed, where the new method is called VRCNN-BN and provides
competitive results when enhancing the quality of HEVC decoded sequences. An iterative
post-filtering method based on an RNN design was proposed in [19]. In [20], the authors
employ a CNN-based autoencoder to estimate the radial blur and enhance the deblurred
image. In [21], an image enhancement algorithm based on image-derived graph for weak
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illumination images is proposed. In [22], a DL-based hue-correction scheme is proposed
based on the constant-hue plane in the RGB color space for image enhancement. In [23],
a post-filtering DL-based method for quality enhancement of brain images is proposed,
where the method operates on 3D volumetric data with a high dynamic range. In [24],
a dual-stream recursive residual network is proposed, which consists of structure and
texture streams for separately reducing the specific artifacts related to high-frequency or
low-frequency components in JPEG compressed images. The method is called STRNN
and it is the current state-of-the-art method for artifact reduction of JPEG compressed
grayscale images. In [25], a novel multilevel progressive refinement generative adversarial
network (MPRGAN) is employed to filter the intra-coded frames, where the generative
network refines the reconstructed frame progressively in order to maximize the error of the
adversarial network when distinguishing between the enhanced frame and the original
frame. In [26], the authors proposed the frame enhancement CNN (FECNN) architecture
which contains nine convolutional layers and introduces the residual learning scheme
for filtering intra-frames to achieve a fast convergence speed in network training and
also a higher filtering performance compared with VRCNN. In [27], a residual-based
video restoration network (residual-VRN) is proposed based on residual learning blocks
to enhance the quality of decoded HEVC intra-frames. In [28], a recursive residual CNN
(RRCNN) architecture is proposed based on the recursive learning and residual learning
schemes, which provides an important advantage over the state-of-the-art methods.

In one approach, DL-based filtering tools are introduced inside the main coding loop
to filter the inter-predicted frames. In [29], based on the SRCNN [14] structure, the authors
proposed a CNN architecture for in-loop filtering called IFCNN. IFCNN was designed to
replace the HEVC built-in SAO [17] filter and to perform frame filtering after DBF [16] in
the HEVC framework. In [30], the authors proposed a deep CNN architecture called DCAD
employed to perform quality enhancement for all intra- and inter-frames after applying the
traditional HEVC built-in DBF [16] and SAO filters [17]. In [31], the authors proposed a
CNN architecture called RHCNN which contains residual highway units designed based
on residual learning units to enhance the HEVC reconstructed frames. In [32], the authors
proposed to perform content-aware CNN-based filtering of the HEVC decoded frames.
In [33], a partition-aware architecture is proposed, where the CU partition size is used as
additional information. In [34], a GAN-based perceptual training strategy is employed to
post-process VVC and AV1 results. In [35], a novel architecture which exploits multilevel
feature review residual dense blocks is proposed.

In another approach, DL-based filtering tools were proposed to filter the current
inter-coded frame by making use of multiple previously reconstructed frames. In [36], the
authors proposed a DL-based multi-frame in-loop filter (MIF) to enhance the current frame
using several previously reconstructed frames. In [37], a multi-channel long-short-term
dependency residual network (MLSDRN) was proposed to perform quality enhancement
in addition to the DBF&SAO filtering. In [38], the authors proposed a filtering method
based on the Decoder-side scalable convolutional neural network (DS-CNN), where a
DS-CNN-I model is employed to enhance the intra-coded frames. In [39], the authors
proposed a DL-based filtering method, QENet, designed to work outside the HEVC coding
loop. However, the QENet still makes use of multiple frames considering the temporal
correlations among them when filtering the inter-coded frames. In summary, in recent years,
several deep-learning-based solutions were proposed to either replace the built-in HEVC
in-loop filtering methods or to further refine the reconstructed frame. This is in contrast to
the recent post-filtering deep-learning-based methods which prove that an improve coding
solution is ordained by simply removing the built-in HEVC in-loop filtering methods.

The research area of neural-network-based loop filtering is intensively studied at the
MPEG meetings. Many contributions [40-43] were recently proposed to enhance the VVC
quality. In recent years, the attention mechanism [44] has become a powerful tool for
improving the network performance. In [45], the attention module is used for low-light
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image enhancement. In [46], a new non-local attention module is proposed for low-light
image enhancement using multiple exposure image sequences.

In this paper, we follow an approach where no modifications are applied to the codec,
where the proposed CNN-based post-filtering method is employed to further filter the
reconstructed image or decoded video frame. The quality enhancement experiments are
carried out on three types of data: RGB images, grayscale images, and intra-predicted video
frames. The proposed filtering method enhances the quality of lossy images encoded using
traditional image codes, such as JPEG [1] and J2K [2], and of video sequences encoded
using the latest video coding standards, HEVC [3] and VVC [47].

3. Proposed Method

Figure 1 depicts the proposed CNN-based filtering method which is designed to
simply post-process a lossy image compressed using a traditional image or video codec.
One can note that no modifications are applied to the encoder—decoder framework. The
input image/frame is split into / X w blocks which are used as input patches for the deep

neural network.
Lossy Refined
Image Image

Figure 1. Flowchart of the proposed post-filtering approach.

Original
Image

Bitstream

Figure 2 depicts the proposed network architecture called attention-based shared
weights quality enhancement convolutional neural network (ASQE-CNN). ASQE-CNN is
designed based on the following three important concepts: (i) the attention mechanism,
where channel and spatial attention are employed to refine the feature maps, (ii) the weights
sharing concept, where a single convolutional layer is employed twice inside a specific
block of layer, (7ii) the novel multiresolution feature fusion block design used to fuse current
resolution feature maps with lower /higher resolution feature maps.

Input
Patch
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1) Pre-Processing 1) Multiresolution Feature Fusion 1) Multiresolution
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Figure 2. Proposed attention-based shared weights quality enhancement convolutional neural
network, which is built using the following blocks: convolutional Block (CB), deconvolutional block
(DB), attention-based shared weights block (ASB), attention-based shared weights residual block
(ASRB), multi-head attention block (MHA), low-resolution feature fusion (LFF), and high-resolution
feature fusion (HFF). The layer structure of each building block is presented in Figure 3.

ASQE-CNN operates at three patch resolutions (full, half, and quarter) and introduces
in its design new network branches used to extract feature maps from the input patch and
to estimate the refinement details at each resolution. ASQE-CNN is designed to operate
ath x w, % X %, and % X ¢ patch resolution. In the first part of ASQE-CNN, these three
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resolution feature maps are obtained by processing the input patch, which lies in contrast
to the general approach where the input patch is used only for processing the full-patch
resolution. In the last part of ASQE-CNN, the final refinement details are extracted from
the full-, half-, and quarter-patch resolutions, in contrast to the general approach where
only the full-patch resolution is used.
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Figure 3. The layer structure of the eight types of blocks used to build ASQE-CNN. (Top) The
attention mechanism implemented using the convolutional block attention module (CBAM) proposed
in [44]. (Middle) Simple building blocks (convolutional and deconvolutional blocks) and novel
attention-based blocks with weight sharing. (Bottom) Novel multiresolution feature fusion blocks:
(left) low-resolution feature fusion (LFF), (right) high-resolution feature fusion (HFF).
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3.1. Network Design

The ASQE-CNN architecture is built using eight types of blocks of layers that are
depicted in Figure 3.

The convolutional block attention module (CBAM) was proposed in [44] and uses
both channel and spatial attention. CBAM is employed here in the design of the multi-head
attention block (MHA), where the input feature maps are channel split into K sets of feature
maps and processed separately by a different CBAM block. Hence, the MHA block is
designed based on the observation that the network architectures usually contain many
channels to process the current patch. Here, we propose to divide the attention into a few
dozen of channels by splitting the input channels into K sets of feature maps.

The convolution block (CB) contains a sequence of a 2D convolution (Conv2D) layer
equipped with a 3 x 3 kernel, N filters, and stride s; a batch normalization (BN) layer [48];
and a rectified linear unit (ReLU) activation layer [49]. Similarly, the deconvolution block
(DB) contains a sequence of a deconvolution (Deconv2D) layer equipped with a 3 x 3 kernel,
N filters, and stride s; a BN layer; and an ReLU activation layer. For simplicity, the strides
s =(2,2)and s = (4, 4) are denoted as “/2” and “/4”, respectively. DB is used to perform
a simple block processing and to increase the patch resolution.

The attention-based shared weights block (ASB) proposes a more efficient patch
processing design where an MHA block is inserted between a CB and a Conv2D layer and
trainable weights are shared between the two Conv2D layers. The skip connection branch
is added to the current branch after Conv2D, while BN and ReLU layers are used to further
process the feature maps. Moreover, the attention-based shared weights residual block
(ASRB) is introduced as a residual learning [50] bottleneck block build using ARB blocks.

The multiresolution feature fusion block design is implemented using the low-resolution
feature fusion (LFF) and high-resolution feature fusion (HFF) blocks. The blocks are
designed using a similar strategy as ARB, where the MHA block is replaced by an add
block which combines the current feature map with the processed low /high-feature maps.

The ASQE-CNN network contains three parts. The first part is called pre-processing
and is used to extract from the input patch N feature maps at three patch resolutions,
full, half (s = /2), and quarter (s = /4), by employing three CB blocks. The second
part is called multiresolution feature fusion (MFF), where the three resolution patches
undergo complex processing using multiresolution feature fusion based on ARBS, HFF,
and LFF blocks. To reduce the inference time, ASQE-CNN processes the full-resolution
blocks using MHA blocks with K = 1 and ARB blocks instead of ASRB blocks. The last
part is called multiresolution refinement, where two DB blocks and three Conv2D layers,
equipped with 3 x 3 kernels, are used to estimate the final refinement details corresponding
to each resolution. One can note that ASQE-CNN adopts a new strategy for processing
multiresolution patches, where the number of channels, N, remains constant throughout the
network, in contrast to the general approach where the number of channels is doubled when
the patch resolution is halved. Our experiments show that the increase in complexity for
lower resolution patches does not provide a good improvement in network performance.

The ASQE-CNN model is obtained using N = 64 and K = 4, and contains around
0.89 million (M) parameters. ASQE-CNN is designed to provide an improved performance
using a reduced number of parameters. Note that without applying the weight sharing
approach, 1.48 M parameters must be trained. Our experiments show that consecutive
Conv2D layers may contain similar weights and a too-complex architecture is affected by
the vanishing gradient problem; see Section 4.6.

3.2. Loss Function

The loss function consists of the summation of a mean squared error (MSE)-based
term and an ¢ regularization term, used to prevent model overfitting. Let us denote as
®ase-cNN the set of all learned parameters of the ASQE-CNN model, X; the ith input
patch in the training set, and Y; the corresponding original patch, both of size w x I X ¢,
where ¢ denotes the number of color channels, i.e., ¢ = 3 for RGB images and ¢ = 1 for
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grayscale images and video sequences. Let F(-) be the function which processes X; using
@asQE.CNN to compute the enhanced frame Y; = F(X;, ®asor.cnn)- The loss function is
formulated as follows:

cwh

1 R
L(®asge-cnn) = — - Y- llyi — 9ill3 + Al®@asqe-ennl 3, €))
i=1

where y; = vec(Y;) and 9; = vec(Y;) are the vectorized versions of Y; and Y;, respectively,
and A is the regularization term set here as A = 0.01. The Adam optimization algorithm [51]
is employed.

4. Experimental Validation

The experimental setup used to validate the proposed DL-based post-filtering method
is described in Section 4.1. The experimental results for quality enhancement of decoded
RGB images, grayscale images, and video sequences are reported in Sections 4.2—4.4, re-
spectively. The complexity of the proposed network architecture is discussed in Section 4.5.
Finally, an ablation study for the proposed network design is presented in Section 4.6.

4.1. Experimental Setup

The paper aims to provide an efficient post-filtering method for enhancing the quality
of high-resolution images and video sequences. The deep neural network models are
trained using input patches extracted from the DIV2K dataset [52,53]. The training dataset
in DIV2K is denoted DIV2K_train_HR and contains 800 high-resolution images. For each
point reported in each rate-distortion curve, 522,240 input patches of resolution w x h =
64 x 64 are extracted from DIV2K_train_HR. The training data is stored using 136 files,
where each file contains 3840 input patches. A % - % (92% — 8%) ratio is used for splitting
the training data into training—validation data. Each neural network model is trained

during 32 epochs. The learning rate at epoch i is set as 77,11 = (fy) L] n;,Vi=1,2,...,32,
where f; = 0.2 is the decay rate, ns = 5 is the decay step, and 7; = 5 x 10~*.

The experimental results for the proposed DL-based post-filtering method for qual-
ity enhancement of image and video sequences are reported on the following datasets:
(a) DIV2K _valid_HR, the validation dataset from the DIV2K dataset, which contains 100 high-
resolution images in the RGB color format (801.png, 802.png, ..., 900.png), see Table 1;
(b) LIVE1 [54,55], which contains 29 images in the RGB color format, denoted here (1.bmp,
2.bmp, ..., 29.bmp), see Table 1 and Figure 4.; (c) 15 video sequences from the Common-Test
Dataset [56], denoted here by HEVC-VTSEQ, which contains four different video classes
(see Table 2) in the YUV420 color format. In this work, the experimental validation is
performed using the following three different types of input data: (i) RGB images, extracted
from DIV2K_valid_HR and LIVEIT; (ii) grayscale images (Y800 color format), extracted from
DIV2K valid_HR and LIVE1, where the FFmpeg [57] framework is employed to color-
transform the images from RGB to YUV420 format and the grayscale images contains
the luminance channel (Y); (iii) video sequences, from HEVC-VTSEQ where the results are
reported only for encoding the Y channel.

Figure 4. Sample images from LIVE1 [54] dataset. (Left to right) 1.bmp, 2.bmp, 3.bmp, and 4.bmp.
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Table 1. Image datasets.

Usage Dataset Name Number of Images Megapixels
Training DIV2K_train_HR [52] 800 1.3-4 MP
Testing DIV2K _valid_HR [52] 100 1.6-4 MP
Testing LIVEL1 [54] 29 0.28-0.39 MP

Table 2. HEVC-VTSEQ: the Common-Test Dataset [56].

Video Sequence Number of Frame

ID Name Frames Class Resolution
Al Traffic 150

A2 PeopleOnStreet 150 A 2560 > 1600
Bl Kimono 240

B2 ParkScene 240

B3 Cactus 500 B 1920 x 1080
B4 BQTerrace 600

B5 BasketballDrive 500

C1 RaceHorses 300

C2 BQMall 600

C3 PartyScene 500 C 832 x 480
C4 BasketballDrill 500

D1 RaceHorses 300

D2 BQSquare 600

D3 BlowingBubbles 500 b 416> 240
D4 BasketballPass 500

The proposed method is employed to enhance the quality of both the lossy images
encoded using two traditional image codecs, JPEG [1] and J2K [2], and each frame in the
video sequence encoded using the previous and ongoing video coding standards, HEVC [3]
and VVC [47], respectively. No modifications are applied to the codec as ASQE-CNN is
employed as a post-filtering method. HEVC and VVC do apply their built-in post-filtering
method. In our prior works [4,6], we proved that such a built-in method can have a negative
effect on the HEVC final results if a CNN is employed.

The MATLAB implementation of the JPEG codec [1] is used to generate lossy images
for each of the following six quality factors points: g; € {90, 85, 70, 40, 20, 10}, where
i =1 : 6. Note that the same results can be obtained using the Python Imaging Library (PIL).
A neural network model is trained for each g; value and for each color format. Therefore,
6 + 6 = 12 neural network models are trained using DIV2K_train_HR to enhance the
quality of RGB and grayscale images in DIV2K_valid_HR and LIVEL.

The MATLAB implementation of the J2K codec [2] is used to generate lossy images
at the following six compression ratio points: cr; € {13, 16, 20, 30, 50, 100}. Similarly
to JPEG, a neural network model is trained for each cr; value and for each color format.
Hence, 12 models are trained using DIV2K_train_HR: six using RGB images and six using
grayscale images. All 12 models are employed to enhance the images quality in the
DIV2K _valid_HR [52] and LIVE1 [54] datasets.

The x265 library implementation of HEVC [3], available in the FFmpeg [57] frame-
work, is employed to encode single images and video sequences using all-intra pro-
file. For the RGB and grayscale images case, the lossy images are generated for each
of the following six constant rate factors (CRF), crf; € {16, 20, 24, 28, 32, 36}, i.e., the
-c:v 1ibx265 -preset veryslow -crf crf_i parameters are used to encode the images.
A neural network model is trained for each crf; value and for each color format. For
the video sequences case, the lossy images are generated for each of the following four
standard quantization parameter (QP) values, qp; € {22, 27, 32, 37}, where j = 1: 4, i.e,,
the -x265-params keyint=1:qp=qp_i parameters are used to encode the video sequences.



Sensors 2022, 22, 1353

9 of 25

A neural network model is trained for each gp; value. A total of 16 network models are
trained: six models are used to enhance the grayscale images and six models to enhance
the RGB images in DIV2K_valid_HR and LIVE1, and four models are used to enhance the
Y component in HEVC-VTSEQ.

In this work, the VVC Test Model (VIM) [58], which is the reference software imple-
mentation of VVC [47], is employed to encode single images and video sequences in all-intra
profile. Similarly to HEVC, the lossy images are generated for each of the four standard QP
values. Please note that the VVC runtime is extremely large, e.g., a single high-resolution im-
age is encoded in around 15 minutes (min), and 15 (min) x 4 (QP values) x 800 (images) =
48,000 (min) ~ 33 (days) are needed to generate training data. Four models are trained
using input patches extracted from the RGB images in DIV2K_valid_HR [52] and used
to report results for quality enhancement of RGB images. Four models are trained us-
ing patches extracted from the luminance channel after color transforming the images in
DIV2K _valid_HR [52] and used to report results for quality enhancement of both grayscale
images and video sequences. Hence, eight network models are trained: four models are
used to enhance grayscale images (DIV2K_valid_HR and LIVE1) and video sequences
(HEVC-VTSEQ), and four models to enhance RGB images (DIV2K _valid_HR and LIVE1).

The quality enhancement results of the proposed post-filtering method are obtained
using a total of 12 (JPEG) + 12 (J2K) + 16 (HEVC) + 8 (VVC) = 48 trained network models.
The results are obtained using the four tested codecs, JPEG [1], J2K[2], HEVC [3], VVC [47],
and by employing the proposed method to enhance the quality of the corresponding
decode image and video sequences, denoted here as JPEG+ASQE-CNN, J2K+ASQE-CNN,
HEVC+ASQE-CNN, and VVC+ASQE-CNN, respectively.

In our previous work [4], a frame-wise CNN-based filtering method is proposed for
video quality enhancement. In contrast to this approach, in this work, we propose a block-
based approach for quality enhancement. Due to its block-based nature, the enhanced
image may still be affected by blocking artifacts. The experiments show that we can further
reduce the effect of coding artifacts by applying, for a second time, the proposed method
on the same lossy compressed image whereby the top 16 lines and left 16 columns are
cropped, i.e., the input patches are extracted a second time from the cropped input image,
enhanced, and then concatenated to obtain the second enhanced image. The two enhanced
images are then fused to obtain the enhancement results using alpha blending in the RGB
image case and mean in the grayscale image case. Note that fusion is performed only over
the size of the second enhanced image, while the top 16 lines and left 16 columns area is
copied from the first enhanced image.

The image distortion is reported using both peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) [59], where the PSNR between an original image Y and a
reconstructed image Y is computed as follows:

. 2
PSNR[Y, Y] = 201og,, L, 2

MSE[L ]

where MSE[Y, Y] is the corresponding mean squared error. The SSIM index [59] for Y and
Y is computed as follows:

(2pypy +c1) (20yy +c2)

M) = a1 v e) (42 41

, ®)

where py and py are the mean of Y and Y respectively; o2 and 0'%/ are the variance of Y and
Y respectively; and ¢; = (kiL)?, c; = (kpL)? are used to stabilize the division with weak
denominator, with default values k; = 0.01,k, = 0.03, and L = 2% — 1 for b-bit precision.
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The quality enhancement results are compared using the two Bjentegaard metrics [60],
Bjontegaard delta-rate (BD-Rate) and Bjontegaard delta-PSNR (BD-PSNR). BD-PSNR was
introduced to evaluate the quality gains made by one video codec versus another video
codec at the equivalent bitrate. More exactly, when a specific amount of bits are spent
to encode the video using each codec, then BD-PSNR measures by how much one codec
provides a better quality than the other. Similarly, BD-rate measures the bitrate savings at
the equivalent quality. In this paper, we use the Python implementation publicly available
here [61]. The bitrate is measured as bits per channel (bpc), which is defined as the ratio
between the compresses image file size and the product between the number of image
pixels and the number of channels.

We note that in the considered experiments, we evaluate the proposed method on
several data types and coding standards. The proposed method functions as a post-
processing method, decoupled from the underlying coding methodology. In this sense,
in contrast to customized in-loop filtering methods which require modifications of the
standard implementation, the proposed method remains standard-compliant and can be
used as post-filtering tool on image and video data already encoded with existing coding
standards. To address the random access (RA) profile of existing video coding standards,
it is expected that the proposed method will need to be performed in-loop, to maximize
coding performance. Again, adapting it to in-loop filtering makes it codec-specific, and
departs from the basic idea of devising a CNN-based post-processing method followed in
this work. Investigating how the proposed post-filtering method can be adapted to the RA
configuration is left as a topic of further investigation.

4.2. Quality Enhancement of RGB images
4.2.1. Rate-Distortion Results

Figure 5 presents the rate-distortion results obtained for three randomly selected
images from DIV2K_valid_HR (801.png, 821.png, 849.png) and the average results over
DIV2K _valid_HR [52]. Figure 6 presents the rate-distortion results obtained for three
randomly selected images from LIVE1 (1.bmp, 11.bmp, 20.bmp) and the average results over
LIVEL1 [54]. The quality enhancement results are measured using PSNR (left column) and
SSIM (right column). One can note that the proposed method provides substantial perfor-
mance improvements for both the image codecs and video coding standards. Impressive
results are obtained compared with HEVC. Large BD-rate reduction is obtained compared
with the newest video coding standard, VVC.

4.2.2. Bjontegaard Metrics

Figure 7 presents quality enhancement results computed based on Bjentegaard met-
rics [60] for every image in DIV2K _valid_HR [52] and LIVE1 [54]. One can note that for
JPEG+ASQE-CNN, the BD-PSNR improvement varies between 0.57 dB and 5.65 dB and
the BD-rate savings vary between 12.71% and 60.34%. ]2K+ASQE-CNN achieves BD-PSNR
improvement of up to 4.11 dB and BD-rate savings of up to 45.9%. HEVC+ASQE-CNN
achieves BD-PSNR improvement of up to 5.47 dB and BD-rate savings of up to 65.26%.
VVC+ASQE-CNN achieves BD-PSNR improvement of up to 1.8 dB and BD-rate savings of
up to 35%.
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Figure 5. Rate-distortion results for three images, (a,b) Image 801.png, (c,d) Image 821.png, (e f) Image
849.png, and (g,h) over DIV2K _valid_HR [52]. (Left) bpc vs. PSNR results. (Right) bpc vs. SSIM

results.
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Figure 6. Rate-distortion results for three images, (a,b) Image 1.bmp, (c,d) Image 3.bmp, (e,f) Image
15.bmp, and over LIVE1 [54], (g/h). (Left) bpc vs. PSNR results. (Right) bpc vs. SSIM results.
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Figure 7. BD-PSNR results for every image in (a) DIV2K_valid_HR [52] and (c) LIVE1 [54]. BD-rate
(%) results for every image in (b) DIV2K_valid_HR [52] and (d) LIVE1 [54].

Table 3 presents the average BD-rate savings and BD-PSNR improvement over the two
test sets, DIV2K _valid_HR [52] and LIVE1 [54]. In the DIV2K_valid_HR case, ASQE-CNN
provides average BD-rate savings of 31.44% and an average BD-PSNR improvement of
2.006 dB compared to the traditional JPEG codec, and average BD-rate savings of 16.02%
and an average BD-PSNR improvement of 0.905 dB compared to the traditional J2K codec.
However, outstanding quality enhancement results are obtained compared with the HEVC
standard, average BD-rate savings of 54.61% and average BD-PSNR improvement of
3.448 dB, and compared with the VVC standard, average BD-rate savings of 19.39% and
average BD-PSNR improvement of 1.201 dB. In the LIVE1 case, ASQE-CNN provides (i)
average BD-rate savings of 31.44% and an average BD-PSNR improvement of 2.006 dB
for JPEG,; (ii) average BD-rate savings of 16.02% and an average BD-PSNR improvement
of 0.905 dB for J2K; (iii) average BD-rate savings of 52.78% and an average BD-PSNR
improvement of 3.7380 dB for HEVC; and (iv) average BD-rate savings of 18.79% and an
average BD-PSNR improvement of 1.3056 dB for VVC. One can note that the ASQE-CNN
provides impressive results over both test sets.

Table 3. Average Bjontegaard metrics for RGB images.

Method BD-Rate (%) BD-PSNR (dB)

etho DIV2K [52] LIVE1 [54] DIV2K [52] LIVE1 [54]
JPEG+ASQE-CNN ~31.44 ~26.59 2.006 1.7442
J2K+ASQE-CNN ~16.02 ~14.26 0.905 0.8190
HEVC+ASQE-CNN —54.61 5278 3.448 3.7380

VVC+ASQE-CNN —19.39 —18.79 1.201 1.3056
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4.2.3. Visual Results

Figure 8 presents a visual comparison between the following methods: JPEG operating
at the lowest quality parameter, g5 = 10, J2K operating at the highest compression ratio,
cre = 13, HEVC operating at the highest constant rate factor, crfs = 36, VVC operating
at gps = 37, and the proposed CNN-based post-filtering method, JPEG+ASQE-CNN,
J2K+ASQE-CNN, HEVC+ASQE-CNN, and VVC+ASQE-CNN, respectively. The figure
shows that the quality of the highly-distorted JPEG image, having a PSNR of only 27.87 dB
and SSIM of 0.7825, was substantially enhanced by JPEG+ASQE-CNN to 29.44 dB in PSNR
and 0.8374 in SSIM. The coding artifacts, such as color bleeding and blocking artifacts,
were reduced and most of the high details were estimated by the ASQE-CNN models, e.g.,
see the penguin’s beak and the rocky background. One can note that J2K offers a better
compression performance than JPEG; however, in the zoom-in area the coding artifacts are
still visible. Figure 8 depicts the J2K compressed image, having a PSNR of 29.77 dB and an
SSIM of 0.8548, while the proposed J2K+ASQE-CNN method is able to enhance the image
quality to 30.40 dB PSNR and 0.8676 SSIM, to reduce the coding artifacts and provide an
improved visual quality. Moreover, in the case of HEVC compression, the image quality
was improved from 25.30 dB in PSNR and 0.6571 in SSIM to 28.55 dB in PSNR and 0.8101 in
SSIM, while in the case of VVC compression the image quality was improved from 32.32 dB
in PSNR and 0.9046 in SSIM to 33.39 dB in PSNR and 0.9326 in SSIM.

4.3. Quality Enhancement of Grayscale Images
4.3.1. Rate-Distortion Results

Figure 9 presents the rate-distortion results obtained for two images, 801.png from
DIV2K _valid_HR and 11.bmp from LIVE], and over the two datasets, DIV2K_valid_HR [52]
and LIVE1 [54]. AEQE-CNN provides an enhanced quality for grayscale images com-
pared to both traditional image codecs, JPEG [1] and J2K [2], and both video coding
standards, HEVC [3] and VVC [47]. The image quality is improved over both tested
datasets, DIV2K_valid_HR and LIVE1, having different image resolutions, which proves
that the models do not overfit on the DIV2K_train_HR dataset. Moreover, impressive
results are obtained compared with the most recent video coding standard, VVC [47].

Table 4 presents the comparison with state-of-the-art methods designed to enhance
only lossy JPEG images: ARCNN [13], RED30 [62], DRRN [63], ARN [64], and STRNN [24].
Note that the proposed method provides the best results for all three quality factors, g4 = 40,
g5 = 20, and g¢ = 10.

Table 4. Average PSNR (dB) results over LIVE1 [54] for grayscale images.

) JPEG ARCNN RED30 DRRN ARN STRNN JPEG+
i [l [13] [621 [631] [64] [24] ASQE-CNN
10 27.77 28.73 2932 2921 2927 2938 29.42
20 30.07 30.89 31.69 31.19 31.34 31.72 31.79
40 32.35 33.63 - - 33.13 34.06 34.16

4.3.2. Bjentegaard Metrics

Figure 10 presents quality enhancement results computed based on Bjentegaard
metrics [60] for every image in DIV2K_valid_HR [52] and LIVE1 [54]. Note that both
the Y-BD-PSNR improvement and Y-BD-rate savings have a high variation over the two
datasets. Table 5 presents the average BD-rate savings and Y-BD-PSNR improvement over
DIV2K _valid_HR and LIVELI. In the DIV2K_valid_HR case, ASQE-CNN provides average
BD-rate savings of 26.21% and an average Y-BD-PSNR improvement of 1.826 dB compared
to the traditional JPEG codec, and average Y-BD-rate savings of 19.31% and an average
Y-BD-PSNR improvement of 0.896 dB compared to the traditional J2K codec. Outstanding
quality enhancement results are obtained compared with HEVC, average Y-BD-rate savings
of 21.34% and average Y-BD-PSNR improvement of 1.267 dB, and compared with VVC,
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average BD-rate savings of 16.18% and average Y-BD-PSNR improvement of 1.039 dB.
Similar results are obtained over the LIVE1 dataset. One can note that the ASQE-CNN
provides impressive results over both test sets of grayscale images.

5" o . — P - -
Image 801.png, Zoom in 0.1161 bpc, 27.87 dB, 0.7825  0.0795 bpc, 29.77 dB, 0.8548  0.0616 bpc, 25.30 dB, 0.6571  0.1205 bpc, 32.22 dB, 0.9046
JPEG+ASQE-CNN J2K+ASQE-CNN HEVC+ASQE-CNN VVC+ASQE-CNN

0.1161 bpc, 29.44 dB, 0.8374  0.0795 bpc, 30.40 dB, 0.8676  0.0616 bpc, 28.55 dB, 0.8101  0.1205 bpc, 33.39 dB, 0.9326

JPEG: 32.30%, Our: 78.66%  J2K: 36.45%, Our: 53.98%  HEVC:22.99%, Our:73.56%  VVC:32.20%, Our:57.49%
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JPEG+ASQE-CNN J2K+ASQE-CNN HEVC+ASQE-CNN VVC+ASQE-CNN
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Figure 8. Visual results for images 801.png from DIV2K_valid_HR [52] and 15.bmp from LIVE1 [54].
(Ist and 4th row) Original image and visual results of image and video codecs, JPEG [1], J2K [2],
HEVC [3], and VVC [47]. (2nd and 5th row) Quality enhancement results corresponding to each codec.
(8rd and 6th row) Pseudo-colored image comparison. Green marks the pixel positions where ASQE-
CNN achieves better performance. Blue marks the pixel positions where the methods have the same
performance. Red marks the pixel positions where the image/video codec (JPEG/J2K/HEVC/VVC)
achieves better performance.
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Figure 9. Rate-distortion results: (a,b) for Image 801.png from DIV2K_valid_HR [52], (c,d) over
DIV2K _valid_HR [52] dataset, (e,f) for Image 15.bmp from LIVE1 [54], (g,h) over LIVE1 [54] dataset.
(Left) bpc vs. PSNR results. (Right) bpc vs. SSIM results.
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Table 5. Average Bjontegaard metrics for grayscale images.

Y-BD-Rate (%) Y-BD-PSNR (dB)

Method DIV2K [52] LIVE1 [54] DIV2K [52] LIVE1 [54]
JPEG+ASQE-CNN —26.21 —24.29 1.826 1.7415
J2K+ASQE-CNN ~19.31 ~19.23 0.896 0.8436
HEVC+ASQE-CNN 2134 ~17.32 1.367 1.3539
VVC+ASQE-CNN ~16.18 ~15.28 1.039 1.1171

BR-PSNR per image in DIV2K_valid_HR (grayscale) BR-Rate per image in DIV2K_valid_HR (grayscale)

JPEG vs JPEG + ASQE-CNN JPEG vs JPEG + ASQE-CNN
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Figure 10. BD-PSNR results for every image in (a) DIV2K_valid_HR [52] and (c) LIVE1 [54]. BD-rate
(%) results for every image in (b) DIV2K_valid_HR [52] and (d) LIVE1 [54].

4.3.3. Visual Results

Figure 11 presents a visual comparison between JPEG (g6 = 10), J2K (cry = 13),
HEVC (crfs = 36), VVC (qps = 37), and the proposed CNN-based post-filtering method,
JPEG+ASQE-CNN, J2K+ASQE-CNN, HEVC+ASQE-CNN, and VVC+ASQE-CNN, respec-
tively. The quality of the traditional methods is substantially enhanced by ASQE-CNN. The
coding artifacts are reduced and most of the high details are estimated by the ASQE-CNN
models, e.g., see the penguin’s beak and the rocky background. The bottom row presents
the pseudo-color image compression between the above two image quality results, where
green marks the pixel positions where the proposed ASQE-CNN method provides an
improved performance, and red marks the pixel positions where it fails. The proposed
method estimates fine details for around 50% of the pixels and provides the same result for
around 20% of the pixels.
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Image 801.png, Zoom in 0.1334 bpc, 29.70 dB, 0.8167  0.2023 bpc, 32.79 dB, 0.8909

HEVC+ASQE-CNN VVC+ASQE-CNN

0.2811 bpc, 31.15 dB, 0.8606  0.0784 bpc, 28.18 dB, 0.7540  0.1334 bpc, 30.78 dB, 0.8418  0.2023 bpc, 33.81 dB, 0.9070

JPEG: 31.40%, Our: 53.29%  J2K: 34.99%, Our: 45.97% HEVC:33.95%, Our:50.66%  VVC: 31.19%, Our: 46.75%

Figure 11. Visual results for images 801.png in DIV2K_valid_HR [52]. (Top) Original image and the
results of traditional codecs. (Middle) Quality enhancement results corresponding to each codec.
(Bottom) Pseudo-colored image comparison. Green marks the pixel positions where ASQE-CNN
achieves better performance. Blue marks the pixel positions where the methods have the same
performance. Red marks the pixel positions where traditional codecs achieves better performance.

4.4. Quality Enhancement of Video Sequences
4.4.1. Bjontegaard Metrics

Table 6 presents the video quality enhancement results computed as Y-BD-rate savings
for HEVC-vTEQ [56]. The results are computed for all available frames in each video
sequence by employing ASQE-CNN to post-process the HEVC [3]-decoded videos and are
compared with the results of the six most recent state-of-the-art methods, VR-CNN [15],
FE-CNN [26], MLSDRN [37], RRCNN [28], VRCNN-BN [18], and FQE-CNN [4]. The
results obtained for the first 30 frames in each video sequence by employing ASQE-CNN
to post-process the VVC [47]-decoded videos are also reported in Table 6. ASQE-CNN
achieves an outstanding performance compared with the state-of-the-art methods for all
video sequences, except for B5, and provides 15.47% Y-BD-rate savings compared with
HEVC and 14.66% Y-BD-rate savings compared with VVC.

Table 7 presents quality enhancement results computed as Y-BD-PSNR improvement.
ASQE-CNN provides an improvement of around 1.13 dB compared with HEVC [3] and
0.88 dB compared with VVC [47].

4.4.2. Visual Results

Figure 12 presents the pseudo-colored image comparison between HEVC and VVC
at gps = 37 and HEVC+ASQE-CNN, and VVC+ASQE-CNN, respectively. ASQE-CNN
estimates fine details for ~45% of the pixels and provides the same result for ~25% of
the pixels.

4.5. Complexity

ASQE-CNN is designed to have a medium complexity and small inference time. It
is implemented in the Python programming language using the Keras [65] open-source
deep learning library, and is run on machines equipped with NVIDIA TITAN Xp GPU.
Each model is trained in around 34 h (1.42 days). The average inference time for a batch
of 32 input patches is 67 ms. For example, for filtering a lossy compressed image with a
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1356 x 2040 resolution, 704 input patches are extracted and an inference time of around

% - 67 = 1474 ms is required to enhance the lossy compressed image.

Table 6. Video quality enhancement results computed as Y-BD-rate (%) savings for HEVC-VTSEQ.

ID HEVC [3] Codec VVC [47]
(All Frames) (30 Frames)
VR-CNN FE-CNN MLSDRN RRCNN VI;(;\II\IN- FQE-CNN Proposed
[15] [26] [37] [28] [18] [4] ASQE-CNN
Al —5.6 —6.6 — —9.8 —8.7 —11.0 —18.46 —14.04
A2 —54 —5.8 —8.7 -9.3 —9.6 —17.09 —11.85
Bl —2.5 —57 —6.2 —6.6 —11.8 —8.4 —19.02 —16.32
B2 —4.4 —5.1 —6.5 —7.6 —8.7 —8.0 —18.12 —20.43
B3 —4.6 —4.9 —5.8 —7.0 —10.5 —7.7 —14.10 —15.46
B4 —2.6 —2.5 —3.7 -3.3 —7.7 —4.3 —12.87 —12.39
B5 —2.5 —5.2 —4.4 —6.7 —14.5 —8.5 —13.37 —14.35
C1 —4.2 —4.2 —4.7 —6.3 —6.7 —8.4 —14.65 —14.59
C2 —5.1 —54 —6.0 -99 —7.5 —11.8 —15.94 —15.87
C3 —3.6 —-3.6 —4.3 -59 —4.0 —6.5 —13.43 —14.45
C4 —6.9 —8.6 —8.3 —15.1 —8.5 —14.7 —19.54 —16.34
D1 —7.6 —7.7 -89 —10.0 —6.6 —-9.6 —14.20 —14.93
D2 —3.8 —4.2 —4.3 —74 —34 —6.8 —11.61 —12.82
D3 —49 -5.0 —57 —6.8 —4.3 -7.0 —12.32 —15.05
D4 —53 -59 —6.6 —10.0 —74 —10.6 —12.74 —15.55
A —55 —6.2 — -9.3 —-9.0 —-10.3 —17.77 —12.95
B -3.3 —4.7 —-53 —6.2 —10.6 —7.4 —15.51 —15.79
C -5.0 -55 -5.8 -93 —6.7 —-104 —15.89 —-15.31
D —54 —5.7 —6.4 —8.6 —54 —85 —12.72 —14.59
All —4.8 —5.5 —8.4 —8.3 —-9.2 —15.47 —14.66

Table 7. Video quality enhancement results computed as Y-BD-PSNR improvement over HEVC-

VTSEQ [56].
Class HEVC [3] VVC [47]
(Average) (All Frames) (30 Frames)
A 1.2007 dB 0.7551 dB
B 0.7827 dB 0.6743 dB
C 1.2006 dB 1.0315dB
D 1.3279 dB 1.0689 dB

ALL 1.1280 dB 0.8824 dB
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VVC vs VVC+ASQE-CNN

HEVC vs HEVC+ASQE-CNN

ID
Al
HEVC: 27.96%, Our: 44.01% VVC: 29.26%, Our: 41.25%
B2
HEVC: 28.01%, Our: 40.76% VVC: 27.57%, Our: 40.13%
C3
HEVC: 32.47%, Our: 50.23% VVC: 33.32%, Our: 48.13%
D3

VVC: 32.24%, Our: 45.59%

HEVC: 32.08%, Our: 46.77%

Figure 12. Pseudo-colored image comparison. Green marks the pixel positions where ASQE-CNN
achieves better performance. Blue marks the pixel positions where the methods have the same
performance. Red marks the pixel positions where HEVC/VVC achieves better performance. The
bottom-right corner of each image presents the zoom in of the Rol marked by the cyan rectangle.
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4.6. Ablation Study

The ASQE-CNN architecture is designed based on the following three main concepts:
(a) the attention mechanism; (b) the weight sharing approach; and (c) the proposed MFF
modules. Here, we study how important is to integrate each one of these concepts in
ASQE-CNN. The first version is designed without the use of the attention mechanism,
where all the MHA blocks are removed. This version is called noAttention. The second
version is designed without the use of the weight sharing approach. Therefore, the ASB
and LFF and HFF blocks are designed using two convolutional layers with sparely trained
weights instead of a single convolutional layer employed twice inside the block. This
version is called noWeighSharing. The third version is designed without the use of the MFF
modules, i.e., by following the classical multiresolution patch processing design (U-Net).
In this case, the following branches in the proposed ASQE-CNN architecture are removed:
(1) the half- and quarter-resolution branches which extract feature maps from the input
patch in the first part of the architecture; and (2) the half- and quarter-resolution branches
which provide the extra refinement in the last part of the architecture. This version is called
noMFF (or U-Net).

Figure 13 presents the average performance results over DIV2K_valid_HR [52], while
Table 8 presents the average Bjontegaard metrics and the runtime using batch size (bs)
of 100 input patches. All three versions are affected by a performance drop compared
with the proposed architecture. The following conclusions can be drawn: (1) the attention
mechanism has the highest influence in the network design of around 12% BD-rate savings
compared with the proposed architecture; (2) although noWeighSharing is more complex
(contains more parameters), it provides a small improvement of around 11.45% BD-rate
savings compared with the proposed architecture; (3) the classical multiresolution patch
processing design (U-Net) was improved using the proposed MFF modules, which provides
around 11.54% BD-rate savings compared with the proposed architecture.

Average performance over DIV2K_valid_HR (RGB)

Average performance over DIV2K_valid_HR (RGB)

37

o 32 2
o
z 3
@
& 31

30

& — A - JPEG — A —JPEG
29 Ve —&— noAttention —&— noAttention
- 7 —®— noWeightSharing 0.86 —®— noWeightSharing
Yy =d noMFF noMFF
7 —&— Proposed A —&— Proposed
27 &K . . . I 0.84 . . . . I
0.1 0.15 0.2 0.25 0.3 0.35 04 0.1 0.15 0.2 0.25 0.3 0.35 0.4
bitrate (bpc) bitrate (bpc)

(a) (b)

Figure 13. Ablation study of the ASQE-CNN architecture. Average performance over the
DIV2K_valid_HR [52] dataset: (a) bpc-vs-PSNR results; (b) bpc vs. SSIM results.

Table 8. Average Bjontegaard metrics for RGB images.

Method BD-Rate BD-PSNR #param Time (bs = 100)
noAttention —19.51% 1.1400 dB 0.83 M 144 ms
noWeightSharing —20.10% 1.1772 dB 148 M 169 ms
noMFF (U-Net) —20.01% 1.1701 dB 0.56 M 113 ms
Proposed —31.55% 2.0166 dB 0.89 M 165 ms
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5. Conclusions

The paper introduces a novel CNN-based post-filtering method for enhancing the
quality of lossy images encoded using traditional codecs and video sequences encoded
using recent video coding standards. A novel deep neural network architecture is proposed
to estimate the refinement details. ASQE-CNN incorporates in its design three concepts:
the attention mechanism implemented using a multi-head attention block, the weights
sharing concept, where a single convolutional layer is employed twice in a specific block,
and the proposed MFF blocks, LFF and HFF, designed to fuse current resolution feature
maps with lower/higher-resolution feature maps. It operates at three resolutions and
uses new network branches to extract feature maps from the input patch and to estimate
refinement details at each resolution. Experimental results demonstrate substantial average
BD-rate and BD-PSNR improvements over traditional image and video codecs. The paper
demonstrates the potential of CNN-based post-filtering methods for widely-used codecs.
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JPEG Joint Photographic Experts Group

HEVC High-efficiency video coding

VvC Versatile video coding

CNN Convolutional neural network

MPEG Moving Picture Experts Group

ASQE-CNN Attention-based shared weights quality enhancement CNN
CB Convolutional block

DB Deconvolutional block

CBAM Covolutional block attention module

ASB Attention-based shared weights block

ASRB Attention-based shared weights residual block
MHA Multi-head attention block

LFF Low-resolution feature fusion

HFF High-resolution feature fusion
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