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Abstract: Motors are the main driving power for equipment operation, and they are also a major
factor to promote the development of the motor and the load it drives and its motor control system
toward a low-carbon future, reduce carbon emissions, and improve the industrial economy and
social economic efficiency. Due to high-speed, long-period, and heavy-load operation, various faults
occur; since the existing integer-order Fourier transform methods have not enough able to detect
fractional-order faults and lack robustness, it is difficult to realize the fine diagnosis of motor faults,
which reduces the safety and reliability of the motor control system. For this reason, on the basis of
the powerful extraction ability of the fractional Fourier transform (FRFT) for micro fault features,
especially the extraction ability to fit fractional frequency domain faults, this paper intends to establish
a multilevel fine fault diagnosis method for fractional-order or integer-order faults. Firstly, this is
accomplished by performing the fractional Fourier transform on the acquired data with faults and
feature extraction in the multilevel fractional frequency domain and then optimizing the feature
extraction model. Secondly, one further step search method is established to determine the projection
direction with the largest fault feature. Thirdly, taking the extracted multilevel fault features as
input, a multilevel fine fault diagnosis method based on the SVM model is established. Finally, three
typical digital simulation examples and actual operating data collected by the ZHS-2 multifunctional
motor test bench with a flexible rotor are employed to verify the effectiveness, robustness, and
accuracy of this new method. The main contribution and innovation of this paper are that the
fractional Fourier transform method based on time domain and frequency domains is introduced.
This method can extract the small fault features in the maximum projection direction of the signal in
the fractional domain, but detection with other time–frequency methods is difficult; the extracted
multilevel fault features are used as input, and the corresponding fault diagnosis model is established,
which can improve the accuracy of fault detection and ensure the safe and reliable operation of
industrial equipment.

Keywords: fault diagnosis; motor; fractional Fourier transform; feature extraction

1. Introduction

As people’s demand for economy continues to grow, so does the demand for industrial
production. Electrical equipment will inevitably need to work for a long time during the
industrial production process. However, the possibility of equipment failure under long-
term high-load continuous operation is greatly increased. Because the motor is the main
driving force for the operation of the motor control system, once the electrical equipment
fails, the motor control system will have low motor conversion efficiency and paralysis
of the entire power system. In severe cases, it will even cause huge economic losses and
casualties. Therefore, real-time fault monitoring of electrical equipment during industrial
production is very necessary [1–6]. Fault diagnosis is an important technology to ensure
the safe and stable operation of industrial systems; when the diagnosis technology is more
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advanced, it can detect minor faults in an early and accurate manner. Minor faults usually
refer to the fault characteristics that are not obvious and are easily hidden by noise signals
in the working environment or refer to a failure that has a very small impact on the safe
operation of the industrial equipment system at the initial stage of the failure, but during
the operation of the equipment, it will cause a destructive effect on the safe operation of the
industrial equipment system. In 2012, Li et al. reviewed the research status of minor fault
diagnosis at home and abroad in the literature [7]; in the context of industrial big data, data-
driven fault diagnosis methods have gradually become a hot research direction. In 2016,
Wen et al. classified “data-driven fault diagnosis methods” into three categories: statistical
analysis methods, signal processing methods, and artificial intelligence methods [8]. The
fractional Fourier transform proposed in this paper is one of the important directions in
signal processing methods [9–11], and it was first widely used in radar, communications,
information security, and other fields [12–14]. In recent years, the FRFT has been researched
in the detection and parameter estimation of chirp signals [15,16], and in [17], FRFT was
used for early fault diagnosis of gearboxes.

The current analysis methods for motor faults are mainly based on feature extraction
in the time domain and frequency domain. The earliest method is the analysis of the fault
signal of a rolling bearing from the perspective of the time domain. It is complicated to
compare various complex parameters of the signal and analyze the given standard signal
and the detected signal to detect the fault characteristics. Since this method takes a lot of
time to compare, the final result is not good [18]. Frequency domain analysis methods,
such as the classic Fourier transform method, can more clearly reflect the characteristics of
the fault signal in the frequency domain, but it is not enough to analyze the fault signal
in the time domain or the frequency domain alone. The short-time Fourier transform
solves the above problems to a certain extent [19,20]. It can analyze the detected signal
from both the time domain and the frequency domain at the same time. However, the
detection of the fractional fault signal by this method is not obvious. It is difficult to find
the maximum projection direction for fractional fault characteristics, so the maximum fault
characteristic value under the optimal projection direction cannot be obtained. It takes
a lot of later work to detect the fractional fault. Wavelet transform is a new transform
analysis method. It inherits and develops the idea of localization of short-time Fourier
transform and at the same time overcomes the shortcomings of window size that does not
change with frequency and can provide a “time–frequency” window that changes with
frequency; it is an ideal tool for signal time–frequency analysis and processing [21–23].
The Hilbert–Huang transform method mainly consists of two parts: empirical mode
decomposition and Hilbert spectral analysis. The empirical mode decomposition method
is an adaptive and efficient data decomposition method, and since the decomposition is
based on a local time scale, it is suitable for nonlinear and nonstationary processes [24–27].
Important research on wavelet and Hilbert–Huang analysis for failure detection has been
conducted since 2008 by European and American researchers; by analyzing and improving
the principles of wavelet and Hilbert–Huang, they applied them to the field of fault
diagnosis, provided new diagnostic methods, and promoted the development of the field of
fault diagnosis [28–32]. When processing chirp signals, not only time-domain waveforms
but also spectrum analysis are used in signal processing, and related researchers have
proposed different solutions [33–35]. The fractional Fourier transform can not only analyze
the signal in the time domain and frequency domain, but also obtain the direction of
the maximum projection of the signal in the fractional domain by rotating the signal; a
multilevel fault diagnosis method is constructed with different transformation orders,
but due to the precision selection of the transformation order and the need for a lot of
calculations when transforming, there are still some problems in the application of this
method in real-time fault detection. In addition, the existing methods cannot achieve a
good effect when processing signals containing both integer-order faults and fractional-
order faults [36–38]. In multilevel fault diagnosis methods, new methods using adaptive
processing of signal samples have been proposed one after another, which can detect
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and locate multiple faults more efficiently and reliably than traditional fault diagnosis
methods [39,40]. As the structure of the neural network gets deeper and deeper, the
gradient descent algorithm can use the Kalman filter to adaptively update the neural
network. Big data causes a serious problem of rich data and lack of knowledge, that is,
although the number of samples is large, there are few labeled samples endowed with
knowledge. This phenomenon seriously hinders the promotion of deep convolutional
neural network models in real life [41–45].

This paper uses the FRFT algorithm to analyze the chirp signal from a fault signal
in the time–frequency domain. The chirp signal is a frequently occurring fractional fault
signal. The prerequisite for detecting a fractional fault is the chirp signal also being able to
be detected. FRFT has a strong ability to detect chirp signals under strong noise and other
interference. The fault feature values in the detection signal are extracted and input into
the SVM model through FRFT, and a more accurate diagnostic model for fractional fault
detection in bearings can be obtained. The simulation experiment part of this paper further
demonstrates the effectiveness of this method for fractional fault detection, improves the
safety and reliability of the motor control system, saves energy and reduces consumption,
and achieves low carbon. The content of this article is arranged as follows: Section 2
introduces the chirp signal. Section 3 introduces the background and definition of FRFT
and then introduces the principle and method of FRFT extraction of target components and
the selection of the optimal transformation order of FRFT. Section 4 introduces the fault
diagnosis method based on SVM. Section 5 presents the experimental simulation results
and analysis. Section 6 is the summary and prospect.

2. Chirp Signal

A chirp signal can also be called a linear frequency modulation (LFM) signal, which
is a classic nonstationary signal. It is a professional term for coded pulse technology in
communication technology and is widely used in communications, radar positioning, sonar,
and other fields [46]. For example, in radar positioning technology, it can increase the width
of radiofrequency pulses, increase the average emission power, and increase the distance
between communications while maintaining sufficient signal spectrum width to maintain
the range resolution of the radar. When many industrial devices such as motor rotors are in
operation, the characteristic frequency of the fractional-order fault changes very slowly. It
tends to change linearly, which is very similar to the chirp signal. The basic mathematical
expression of the chirp signal is as follows:

x(t) = Aexp(j2π( f0t + 1/2 fmt2)), 0 ≤ t ≤ T (1)

where A is the amplitude of the chirp signal; j is the complex symbol; f0 is the starting
frequency and fm is the FM frequency, both of which are constants, with the unit of Hz/s;
T is the time width of the pulse; and x(t) is the final expression of the chirp signal. By
derivation of the phase term in Equation (1), the instantaneous frequency of the chirp signal
and the relationship of its frequency with time can be obtained, as shown in Equation (2),
where θ(t) is the twist angle function as the signal propagates over time.

f (t) =
1

2π

dθ(t)
dt

= f0 + fmt (2)

Figure 1 shows the time–frequency relationship diagram and waveform intent of the
chirp signal. As shown in Figure 1a, when the FM frequency u0 of the chirp signal is
positive, the signal is called a positive chirp signal. Within one cycle, the bandwidth of
the signal is B, and its instantaneous frequency increases from f0 to f0 + fmt; that is, the
frequency increases linearly with the increase in time, and the signal waveform appears
from sparse to dense in the time domain. As shown in Figure 1b, when the FM frequency
u0 of the chirp signal is negative, the signal is called a negative chirp signal. Within one
cycle, the bandwidth of the signal is B, and its instantaneous frequency is determined by f0
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decreasing to f0 + fmt; that is, the frequency decreases linearly with the increase in time,
and the signal waveform appears from dense to sparse in the time domain.

Figure 1. Time–frequency relationship diagram and waveform diagram of chirp signal: (a) positive
chirp signal; (b) negative chirp signal.

3. The Proposed Method
3.1. Background and Definition of FRFT

Fractional Fourier transform (FRFT) was not taken seriously from 1929 until 1980,
when V. Namias studied the Fourier transform from the perspective of eigenvalues and
eigenfunctions and defined the fractional power form of the traditional Fourier transform
as the fractional Fourier transform. The FRFT was first used to solve the Schrodinger
equation in quantum mechanics, and then it was introduced into the field of optics by
Mendlovic and others, and it was the first to be applied. Now the FRFT is used in Fourier
optics, signal analysis, and research on radar tracking-related fields and has attracted the
attention of scholars from various countries [47].

FRFT is a method of transforming a signal from the time domain to the fractional
domain. The mathematical expression of the positive and negative transformation is:

Xp(u) =
{

Fp[x(t)]
}
(u) =

∫ +∞

−∞
Kp(t, u)x(t)dt (3)

x(t) =
∫ +∞

−∞
K−p(t, u)Xp(u)du (4)

Equation (3) is a positive transformation, and Equation (4) is an inverse transformation.
Fp is the FRFT operator; x(t) is the input signal; u is the fractional domain; Xp(u) is the
value of the signal after FRFT; and Kp(t, u) is the kernel function of the FRFT, which can be
expressed as:

Kp(t, u) =


Apexp(jπ (u2+t2)

2 cot pπ
2 − jπ 2ut

sin pπ ) p 6= 2n
δ(t− u) p = 4n
δ(t + u) p = 4n± 2

(5)

In the above formula, Ap =
√

1− j cot pπ
2 is the amplitude of the FRFT; α = pπ/2 is the

rotation angle of the FRFT; p is the transform order of FRFT; when p = 4n, Kp(t, u) = δ(t− u);
when p = 4n + 2, Kp(t, u) = δ(t + u); n is an integer; δ(t + u) represents adding a phase; and
δ(t− u) represents subtracting a phase.

After selecting the specific parameters of the kernel function, the specific FRFT form
is also determined by transforming the order p and the rotation angle α. When p = 0,
according to the formula α = 0, Equation (3) becomes Xp(u) = x(t), that is, not rotated,
and it is still the signal itself; when p = 1, α = π/2, Aα = 1, and then Equation (3)
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becomes Xp(u) =
∫ +∞
−∞ exp(−j2πut)x(t)dt; according to Xp(u), it can be seen that this is

the classical Fourier transform (FT), so FRFT can be understood as a generalized Fourier
transform; when p = 4, α = 2π, and then Equation (3) becomes Xp(u) = x(t) again. In
order to simplify the calculation of the formula and unify the expression of variables, after
variable substitution u = u/

√
2π and t = t/

√
2π, Equation (3) can be further expressed as:

Xp(u) =


√

1−j cot α
2π

∫ +∞
−∞ exp(j (u

2+t2)
2 cot α− j ut

sin α )x(t) α 6= nπ

x(t) α = 2nπ
x(−t) α = (2n± 1)π

(6)

In the above formula, x(t) is the signal equal to the original signal after transformation,
x(−t) is the value of the signal after transformation, and the transformed signal and the
original signal are symmetrical at the origin. By deriving Equation (3), it can be seen that the
FRFT is defined by the transformation order p or the rotation angle α as a parameter, so the
definition with p (or α) as the parameter takes 4 or 2π as the period. Therefore, we only need
to examine the interval p ∈ [−2, 2] (or α ∈ (−π, π)). The definition of this segmentation
artificially makes the kernel function Kp(t, u) take the value of all continuous p.

3.2. The Method and Principle of Extracting Target Components by FRFT

When an industrial device such as a motor rotor has a fractional-order fault during
operation, due to the fractional-order fault being different from the integer-order fault, the
commonly used signal processing methods cannot find the maximum projection direction
and fault characteristic value in this optimal projection direction when extracting the charac-
teristics of the fractional fault. Therefore, under strong background noise, determining how
to extract the maximum fault characteristic value in a fractional-order fault will be a key
scientific problem studied in this paper. According to this technical problem, the industrial
fault signal data are analyzed by FRFT, and the characteristic value of the fractional fault
under the background of noise is extracted to achieve the effect of fractional fault analysis.

The chirp signal is obliquely elliptical in the time–frequency distribution. Since the
classical Fourier transform directly projects the time–frequency distribution of the chirp
signal on the frequency axis, this results in a wider projection signal spectrum of the LFM
signal on the frequency axis, and the signal energy cannot be gathered very well and
cannot detect the signal well, as shown in Figure 2 [48]. The time–frequency distribution
diagram of the two-component chirp signal is shown in Figure 3 [48]. The angle between
the time–frequency distribution of one component LFM signal and the time axis is β.
Point u0 in Figure 3 represents the peak at an energy gathering point obtained after FRFT
under the maximum projection direction of the signal in the fractional domain; it is the
extracted tiny fault feature value of the signal in the fractional domain. At this point,
according to the definition of the FRFT, the FRFT is equivalent to rotating the signal around
the origin on the time–frequency plane and then representing it in the fractional domain
formed after the rotation. The projection curve of the LFM signal can be obtained from
the mathematical expression of FRFT. FRFT can also be understood as a representation
method in the fractional domain formed by rotating the coordinate axis counterclockwise
around the origin by any angle in the time–frequency plane. As long as the rotation angles
α and β of FRFT are orthogonal, the LFM component can be gathered at the u0 point of
Figure 3 in the fractional Fourier domain, which is the maximum value obtained after FRFT
of the signal and the target components to be extracted. The fractional domain aggregation
point u0 is taken as the center for filtering processing to obtain a fractional Fourier domain
distribution with a high concentration of energy of the LFM component so that the chirp
signal can be separated in the presence of multiple components, and finally, through an
operation such as inverse transformation, the signal is extracted [48].
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Figure 2. Projection of chirp signal on Fourier domain [48].

Figure 3. FRFT extraction of LFM components [48].

The classical Fourier transform transforms the viewing angle from the time domain
to the frequency domain. The FRFT rotates the signal at any angle from the angle of
viewing the time–frequency plane and then analyzes the information from the perspective
of observing the fractional domain. It can be seen from the analysis that the reason for the
FRFT of information is that most of the information is a nonstationary signal, and the FT
alone is not enough to analyze its salient features. The use of fractional Fourier transform
is mainly to select the most concentrated angle for analysis. That is, the result with the
largest amplitude is selected from the results obtained by different fractional orders, and
then the fractional order in which this result exists is the optimal order. It can be seen from
Figure 3 that the relationship between the transformation order p, the rotation angle α, and
the frequency modulation frequency fm is:

β = arctan( fm)
α = π/2+β = π/2+arctan( fm)
p = 2α/π =1+2arctan( fm)/π

(7)

The fast algorithm is the basis for the successful application of the FRFT in signal
processing. This paper adopts an efficient and accurate calculation of the FRFT algorithm
proposed by Ozaktas [10]; the calculation process of the specific FRFT is decomposed as
follows: For convenience, here is the redefinition of the FRFT. The redefined fractional
Fourier transform formula is adopted here so that the calculation amount of each variable
can be simplified in the following calculation process. The specific formula is as follows:

Xp(u) = Aα

∫ +∞

−∞
exp(jπ(u2 cot α− 2ut csc α + t2 cot α))x(t)dt (8)

Here, Aα = exp(−jπsgn(sin α)/4 + jα/2)/|sin α|1/2, α = pπ/2. Assuming the order
p ∈ [−1, 1], the above formula is divided into the following four operations:
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Step 1: Select a chirp signal exp(−jπt2 tan(α/2)) to modulate the signal x(t) to obtain
the modulated signal g(t).

g(t) = exp(−jπt2 tan(α/2))x(t) (9)

Step 2: Choose another chirp signal exp(−jπt2 csc α) to convolve with the signal g(t)
to obtain the signal g′(u). The reason why another LFM signal is used to convolve the
signal is that the convolution of two signals of the same type can decompose the signal
into the sum of the impulse signals, and the impulse response of the system can be used to
solve the zero-state response of the system to a signal. At the same time, this method is
used to solve the problem of the existing fractional-order methods not being able to detect
integer-order faults well, and it is an indispensable step.

g′(u) =
∫ +∞

−∞
exp(−jπ(u− t)2 csc α)g(t)dt (10)

Step 3: Use the chirp signal exp(−jπu2 tan(α/2)) to modulate the signal g′(u) again:

x(u) = exp(−jπu2 tan(α/2))g′(u) (11)

Step 4: Multiply the intermediate result obtained in step 3 by the complex coefficient
Aα to obtain the final fractional Fourier transform value Xp(u).

Xp(u) = Aαx(u) (12)

The algorithm decomposes the complex integral expression of the FRFT into several
simple steps and then undergoes discretization processing to obtain a discrete convolution
expression and perform calculations. In order to show the algorithm more intuitively, its
flowchart is shown in Figure 4.

Figure 4. FRFT extraction of target components.
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3.3. Selection of Optimal Transformation Order of FRFT

The order change interval of the FRFT is (0,2). When the transformation order takes
different values in this interval, different transformation values will be obtained. There is a
maximum value among these transformation values; the transformation order correspond-
ing to the maximum value of the transformation is called the optimal transformation order.
FRFT can extract the maximum eigenvalue of the signal under the optimal transformation
order. When we use FRFT to extract the maximum fractional fault eigenvalue of the fault
signal, training a diagnostic model with these eigenvalues can greatly improve the diag-
nostic accuracy of the model compared with the traditional diagnostic model, especially
when detecting fractional-order faults. In this paper, the method of obtaining the optimal
transformation order is the step-by-step search method. There are two traditional search
algorithms: one is a two-dimensional search algorithm, and the other is a quasi-Newton
search algorithm. Although the quasi-Newton search algorithm is less computationally
expensive than the two-dimensional search algorithm, these two algorithms still cannot
meet the actual real-time processing requirements of engineering. Therefore, we use the
step-by-step search algorithm to replace the two-dimensional search algorithm, which
greatly simplifies the calculation, and through a specific case, we explain the advantages of
the step-by-step search method compared to other methods.

Case: The traditional two-dimensional search method uses the transformation order
p as a variable to perform the scan search process; when the estimation accuracy of the
parameter estimation is relatively high, in order to meet the accuracy requirements, a
relatively small step size must be selected in the scan search process, and this will increase
the computational complexity exponentially. For example, in the transformation order
interval (0,2), if the search is performed with a step size of 0.0001, tens of thousands of
FRFTs need to be performed, and the calculation amount is very large. Usually, we use
the step-by-step search algorithm; that is, the first stage search is performed with a larger
step size, and then the second stage search is performed with a smaller step size to find
the maximum point, and so on until the estimation accuracy of the node objective function
is satisfied. For example, we first searched for the maximum value in the transformation
order interval (0,2) with a step size of 0.01, and then searched for the maximum value with
a step size of 0.0001 in the interval corresponding to the maximum value after finding the
maximum value. The amount was nearly halved. The step-by-step search method requires
less computation and shorter computation time, so it has advantages over other methods. It
can be concluded from the summary of the case that the step search method can effectively
simplify the calculation amount and shorten the calculation time compared with other
calculation methods, thereby improving the real-time performance of fault detection.

The existing methods for fractional-order fault detection often weaken the ability of
traditional Fourier transform to diagnose faults. For this reason, this paper proposes an
improved step-by-step search method, which makes the processing include both fractional-
order faults and maintain better results in integer-order faults. The algorithm constructs an
objective function P(p, A, f0, fm); by solving the maximum point of the objective function,
the order corresponding to the maximum point is the optimal transformation order of the
FRFT. The objective function is essentially the peak value at the maximum energy concentra-
tion in the direction of maximum projection after the signal undergoes FRFT transformation.
The algorithm consists of two stages: the first stage is to search on the transformation order
interval (0,2) with a larger step size αl and obtain the maximum value Pmax1 under the step
size of αl , and the change order corresponding to the maximum value is p1; after finding the
maximum value, it enters the second stage and then calculates the maximum value of the
objective function on the transformation order interval [p1 − αl , p1 + αl ] with a smaller step
size αs, and the change order corresponding to the maximum value is p2, and so on, and
the interval is gradually optimized. When the transformation order meets the estimation
accuracy requirements, the transformation order at this time is the optimal transformation
order. The steps of the algorithm are given below:

Phase 1:
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(1) Let the initial interval of the transformation order p be (0,2);
(2) Construct the objective function P(p, A, f0, fm), and its expression is as follows:

P(p, A, f0, fm) = A

√
1− j cot pπ

2
2π

∫ +∞

−∞
exp(j

(u2 + t2)

2
cot

pπ

2
− j

ut
sin pπ

2
+ j2π f0t + jπ fmt2)dt

(3) Input signal amplitude A, starting frequency f0, and frequency modulation frequency
fm and set the estimation accuracy α f ;

(4) For p = 0 to 2, and choose a larger step size αl to traverse the interval (0,2);
(5) Calculate the value of the objective function P(p, A, f0, fm) and find the maximum

value Pmax1 and its corresponding transformation order p1;
(6) Calculate the value PF of the objective function P(p, A, f0, fm) when the transform

order of the signal p = 1;
(7) If the step size αl at this time meets the requirements of the estimation accuracy α f ,

compare the values of Pmax1 with PF. If PF is greater than Pmax1, then p = 1 is the
optimal transformation order; if Pmax1 is greater than PF, the transformation order in
step (5) is the optimal transformation order; otherwise, it goes to phase 2.

Phase 2:

(1) Let the transformation interval of transformation order p be [p1 − αl , p1 + αl ];
(2) Then take the smaller step size αs and traverse on the transformation interval of

step (1);
(3) Calculate the value of the objective function P(p, A, f0, fm) and find the maximum

value Pmax2 of the objective function in the interval and its corresponding transforma-
tion order p2;

(4) If the step size αs at this time meets the requirements of the estimation accuracy α f ,
compare the values of Pmax2 with PF. If Pmax2 is greater than PF, then the transfor-
mation order in step (3) is the optimal transformation order; if PF is greater than
Pmax2, then p = 1 is the optimal transformation order. Otherwise, it is transferred to
the next phase according to the analogy of the previous two phases until the step
size in the phase satisfies the requirement of estimation accuracy α f , and the optimal
transformation order of the FRFT is obtained.

4. Fault Diagnosis Method Based on SVM

At present, machine learning models, such as using logistic regression and SVM
algorithms, are widely used to classify sample data [49]. Support vector machine, as a
representative of shallow machine learning models, shows better generalization ability
when classifying small sample data, and its model is relatively simple compared with other
machine learning models, which is more convenient and effective for the research and
model establishment of this article.

SVM is gradually developed based on the theory of statistical learning methods. It
is a classifier that performs binary classification of sample data in a supervised learning
manner. The goal of learning is to find a separating hyperplane in the feature space, which
can classify samples into different classes and minimize the error of all samples from the
hyperplane. When the sample to be classified is nonlinear, SVM uses a nonlinear mapping
from the input space to the feature space to map the input to a feature vector, solving the
problem of nonlinear sample space. The key point of the SVM is the determination of the
optimal separation hyperplane and how to solve the nonlinear problem of the original
sample space. The two key points will be introduced in detail below.

4.1. Determination of the Optimal Classification Hyperplane

Suppose given a training data set T on a feature space:
T = {(x1, y1), (x2, y2) · · · (xt, yt), (xN , yN)}, t = 1, 2, 3 . . . , N, where the sample xt ∈ Rn

is the t-th feature vector, n is the sample data dimension, and yt ∈ {−1,+1} is the category.
When yt = +1, call xt a positive example; when yt = −1, call xt a negative example, and
(xt, yt) are called sample points. Generally, when the training data set is linearly separable,
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there are countless multiple separating hyperplanes that can correctly separate the two
types of data, and the SVM uses the interval maximization strategy to find the optimal
separation hyperplane (the maximum separation hyperplane); at this time, the solution is
unique. The explanation of maximum interval is to find the hyperplane with the largest
geometric interval for the training data set, which means to classify the training data with
sufficient confidence and includes separating not only the positive and negative instance
points, but also the closest point to the hyperplane. There is also enough certainty to sepa-
rate them. Such a hyperplane has a good classification and prediction ability for unknown
new instances. As shown in Figure 5, the white hollow points in the figure are the first type
of instance points, representing the positive example points of yt = +1; the black solid
points in the figure are the other type of instance points, representing the negative example
points of yt = −1. H is a separating hyperplane, H1 and H2 are parallel and no instance
point falls between them, and the separating hyperplane H is parallel to them and located
in their center. These two parallel lines respectively pass through the sample points of the
two types of samples in the training data set that are closest to the separation hyperplane.
Such sample points are called support vectors. The distance between H1 and H2 is called
the interval, and H1 and H2 are called the interval boundary. The mathematical expression
of the separating hyperplane H in the figure is:

wTx + b = 0 (13)

Figure 5. Schematic diagram of the maximum separation hyperplane.

For the above linearly separable training data set T, construct and solve the constrained
optimization problem:

min
w,b

1
2
||w||2 (14)

The constraints are:

s.t.yt

(
wTxt + b

)
≥ 1, t = 1, 2, 3 . . . , N (15)

Find the optimal solution w and b, where w is the weight vector and b is the bias vector.
The distance interval between H1 and H2 is 1

2 ||w||2, so the maximum distance interval is
equivalent to the minimum value of ||w||2. In order to solve Equation (14), a Lagrangian
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function needs to be introduced. Through the corresponding variable conversion, the
formula is as follows:

L(w, b, a) =
1
2
||w||2 −

N

∑
t=1

at(yt(wTxt + b)− 1) (16)

In the above formula, at is the Lagrangian coefficient, at ≥ 0, t = 1, 2, 3 . . . , N, the
minimum value of Equation (16) is equivalent to the partial derivative w and b, and the
partial derivative is zero. The final classification decision function considering the above
constraints is:

f (x) = sgn(
N

∑
t=1

ytat(x·xt) + b0) (17)

4.2. Nonlinear Problems in the Original Sample Space

The situation discussed above is under the premise that the original sample space
can be linearly separable; when faced with the linear inseparability of the sample space,
the data in the original space are mapped to the new space by selecting the appropriate
nonlinear mapping. In the new space, the linear classification learning method is used to
learn the classification model from the training data. This nonlinear mapping is called the
kernel function, which is defined as follows:

K(xi, xt) = φ(xi)·φ(xt)(i, t = 1, 2, 3 · · · , N) (18)

The kernel function selected by the SVM algorithm in this paper is the Gaussian radial
basis function, and its mathematical expression is:

K(xi, xt) = exp(−|xi − xt|2/σ2) (19)

Then, the final nonlinear classification decision function is:

f (x) = sgn(
N

∑
t=1

at
∗K(x, xt) + b∗) (20)

In the face of linearly inseparable sample space, the original sample space data are
nonlinearly mapped to the high-dimensional feature space through the kernel function,
and at the same time, the problem of very large calculations in the high-dimensional space
is solved, successfully achieving the learning of the classification model from the training
data when the original sample space is linearly inseparable.

5. Experiments
5.1. Digital Simulation Test with Three Typical Signals

In order to verify that the FRFT has a strong ability to identify fractional-order faults
in noise and complex background signals, several different simulation signals were listed
in the experimental simulation. The following three basic signals were introduced:

The first signal is the classic chirp signal:
x1(t) = Aexp(j2π( f0t + 1

2 fmt2)) = exp(j2π(100t + 1
2 ∗ 5t2)), where the signal ampli-

tude A = 1, starting frequency f0 = 100 Hz, frequency modulation frequency fm = 5 Hz,
sampling frequency fs = 1000 Hz, and number of sampling points N = 10,000.

The second signal is a sinusoidal signal x2(t) = sin(2π ∗ 100t), where the angular
frequency w = 100 Hz, sampling frequency fs = 1000 Hz, and number of sampling points
N = 10,000.

The third signal is a zero-mean Gaussian noise signal n(t). When FRFT of a specific
order is performed on the above signal, the peak energy concentration can appear in the
fractional Fourier domain; while the Gaussian noise is in the fraction of any order, there
will be no energy accumulation in the fractional Fourier domain. The above-mentioned
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characteristics of Gaussian noise can be used to simulate signal detection and parameter
estimation under the noise background in the actual industry.

Different linear combinations of the above three different signals were performed to
obtain three combined multicomponent signals:

s1(t) = exp(j2π(100t +
1
2
∗ 5t2)) + sin(2π ∗ 100t) + n(t) (21)

s2(t) = sin(2π ∗ 100t) + n(t) (22)

s3(t) = exp(j2π(100t +
1
2
∗ 5t2)) + n(t) (23)

Signal s1(t) simulates industrial fault signals that contain fractional signals, integer-
order faults, and noise; signal s2(t) simulates fault signals that only contain integer-order
faults and noise; and signal s3(t) simulates industrial fault signals that only contain frac-
tional signals and noise. Next, FRFT was performed on the three multicomponent signals
in sequence. The sampling frequency of the simulation signal used in the simulation
experiment was fs = 1000 Hz, and the number of sampling points was N = 10,000. Figure 6
shows the vibration analysis diagram of signals s1(t), s2(t), and s3(t) (from left to right).
The peak value of the signal after FRFT and FT is marked in the figure. After the signal s1(t)
is converted, there are both FT and FRFT values; after the signal s2(t) is converted, only the
FT value exists, because the signal itself does not contain a fractional signal; after the signal
s3(t) is converted, only the FRFT value exists, because the signal itself only contains the
fractional signal. Analysis of the experimental results shows that the FRFT can accurately
detect the chirp signal in a variety of mixed signals, which provides an effective feature
extraction method for our subsequent experiments.

Figure 6. From left to right, FRFT processing of signals s1(t), s2(t), and s3(t).

Then, for signal s1(t), the amplitude A of the chirp signal, the starting frequency f0,
and frequency modulation fm were changed, and the influence of each parameter change
on the FRFT was analyzed. The specific results are shown in Table 1; p is the optimal order
after FRFT, fp is the frequency at which energy is concentrated after FRFT, and Xp(u) is the
value after FRFT.

Table 1. The effect of chirp signal parameters on FRFT.

Chirp Signal Parameters Energy Concentration Position after FRFT (Peak Point)

A f0/Hz fm/Hz p Xp(u)/Hz fp/Hz

1 100 5 1.0320 75.1522 124.80
1.5 100 5 1.0320 112.8217 124.80
1 150 5 1.0320 69.8297 174.70
1 100 20 1.1260 48.1132 196.10
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It can be seen from Figure 7 that the three parameters of amplitude A, starting fre-
quency f0, and FM frequency fm are correspondingly changed for an LFM signal, which
has different effects on its FRFT. The change of A only affects the amplitude value at the
energy accumulation; changing the f0 parameter has an effect on the position of the energy
concentration point of the FRFT, making the frequency and amplitude values of the energy
concentration change; changing the fm parameter has an impact on the optimal order of
the FRFT and the location of the energy concentration.

Figure 7. (a) Original signal; (b) changing A; (c) changing f0; (d) changing fm.

5.2. Actual Operating Data Test

In order to verify the effectiveness of the algorithm proposed in this paper, we used
the ZHS-2 multifunctional motor test bench with flexible rotors to conduct comparative
simulation experiments. The motor test bench is shown in Figure 8. The parameters of the
DC motor in the motor test bench are as follows: the rated power was 185 W, the rated
voltage was 220 V, and the speed was 1500 r/min. A total of eight sensors were installed
in the vertical and horizontal directions of the base to collect the vibration signals of the
rotor. These vibration signals were transmitted by the HG-8902 data acquisition box, the
equipment comes from Tang Xia Seiko Instrument Factory in Dongguan City, China. Six
types of faults were considered in the experiment: rotor unbalance I (RU1), rotor unbalance
III (RU3), rotor unbalance V (RU5), rotor unbalance VII (RU7), broken blades (PPB), and
base loose (PL). In the specific diagnosis, the normal state and these six types of faults were
distinguished. The first four types of faults were simulated by installing different numbers
of screws on the rotor as shown in A in Figure 8, and the broken blades failure of the fan
was realized by installing a fan with broken blades on the roller as shown in B in Figure 8.

The rotation speed of the motor was 1500 r/min, the sampling frequency was 1280 Hz,
the acquisition time of each sample was 8 s, and 10,240 data points were recorded. In this
experiment, 400 consecutive vibration acceleration signals were defined as one sample,
300 samples were collected for each type of fault, and a total of 1800 samples were collected
to form a motor rotor data set. There were 300 samples of each type of failure data in the
experimental data, and then we used the cross-validation method to divide the samples
into the training set and the test set at a ratio of 2:1, and we selected 1200 sets of data as
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training samples for the construction of the classifier. The remaining 600 sets of data were
used as test samples to test the performance of the diagnostic device constructed by the
FRFT algorithm proposed in this paper.

Figure 8. ZHS-2 type multifunctional motor test bench.

During the experiment, we first performed the FRFT on the 1200 sets of samples of
the training data set, and we input the extracted fractional fault feature values into the
SVM model for training. The features of the fault diagnosis were the peak value of the
maximum energy gathering point under the maximum projection direction of the signal in
the fractional domain, that is, the small fault feature extracted by the FRFT of the signal
in the fractional domain. After the training was completed, 600 sets of test samples were
used to evaluate the accuracy of the constructed diagnostics model. The parameters of the
SVM model were as follows: the penalty coefficient was 1, the kernel function type was
RBF, the kernel function coefficient was auto, and the kernel function constant value was
0. At the same time, a comparison with the PCA processing of the fault data samples and
input into the SVM diagnosis model and the classical Fourier transform processing of the
fault data samples and input into the SVM model for training verified the effectiveness of
this method for fractional-order faults.

A total of six experiments were conducted in the whole simulation experiment. The
first experiment was to perform PCA processing on the fault data samples and then input
them into SVM for training. Experiment 2 was to perform FT processing on the fault data
samples and then input them into SVM for training. Experiment 3 was to perform FRFT
processing of transformation order p = 0.977 on fault data samples and input them into
SVM for training. Experiment 4 was to perform FRFT processing of transformation order
p = 1.133 on fault data samples and input them into SVM for training. Experiment 5 was
to perform FRFT processing of the optimal transformation order on fault data samples
and input them into SVM for training. Experiment 6 was a combined diagnosis method
that used FRFT processing for fractional-order faults and FT processing for integer-order
faults when processing signals that contain both fractional-order faults and integer-order
faults and then input them into SVM for processing. The six experiments finally trained six
models, namely model 1, model 2, model 3, model 4, model 5, and model 6, respectively,
and model 6 is the optimization model finally proposed by the algorithm in this paper.
Figure 9 shows the confusion matrix information obtained when the above six models were
used for fault diagnosis.
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Figure 9. Confusion matrix information for the six tested models.

In the experiment, six fault types and a type of normal data were used as the input
of the model. These data were collected in a normal environment containing noise. The
six fault types were RU1, RU3, RU5, RU7, PPB, and PL. Normal data were normal. From
the confusion matrix in the figure, it can be seen that when classifying fault type data, in
addition to accurately classifying the data, the model may misclassify the fault data as
other faults or fail to detect faults. However, when the model diagnoses normal data, it
will not misjudge the data as faulty data.

In addition, there are two important parameters for evaluating the model in the
confusion matrix, namely recall and precision indicators. Their calculation formulas are
as follows:

precision =
TP

TP + FP
(24)

recall =
TP

TP + FN
(25)

In the above formula, TP represents correctly predicting the instance as a positive
(true instance), FP represents mispredicting an instance as positive (false positive), and FN
represents incorrectly predicting an instance as a counterexample (false counterexample).
Through the specific confusion matrix information in Figure 9, we can obtain the specific
values of these two parameters of these confusion matrices, and the results are shown in
Table 2.

Table 2. Precision and recall information for six confusion matrices.

Test Model Precision Recall

Model 1 74% 69%
Model 2 79% 71.5%
Model 3 81% 72.5%
Model 4 82% 76.3%
Model 5 84% 79.5%
Model 6 92% 90.5%
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From the content of Table 2, we can better analyze the quality of the confusion matrix
through these two parameter indicators, so as to judge the quality of the trained model.
The recall and precision indicators of each model shown in the table are the average of
the recall and precision indicators of each class of the model. As a final result, it can be
concluded that both recall and precision indicators of Model 6 are the highest, and model 6
is the optimization model finally proposed by the algorithm in this paper.

Table 3 shows the accuracy rates of model 2 to model 5 on the test sets of various fault
data. Comparing the results of model 2 and model 5, it can be found that the diagnostic
accuracy for the first four types of faults in the model 5 pair table is higher than that of
model 2. The improvement on the data types RU7 and PL is not good. The reason is that
when dealing with both fractional-order and integer-order faults, model 5 only has a better
effect on fractional-order faults, while model 2 has a better effect on integer-order failures
but is worse than model 5 on fractional-order failures. Comparing the results of model 2,
model 3, and model 4, this paper added two sets of control experiments that used fixed
transformation order to process fault signals, and it is concluded that the fractional fault
diagnosis model under the nonoptimal transformation order is also better than the fault
diagnosis model using the classic Fourier transform, which makes the method applicable
to industry with better real-time performance.

Table 3. The accuracy of the test set in each model in the simulation experiment.

Fault Data Type Model 2 Model 3 Model 4 Model 5

RU1 81% 97% 100% 100%
RU3 79% 91% 96% 99%
RU5 71% 71% 76% 80%
PPB 79% 83% 72% 97%
RU7 82% 34% 45% 50%
PL 85% 59% 69% 51%

For this reason, model 6 proposed by the improved algorithm of this paper was added
to the experiment and compared with model 1, model 2, and model 5; the results are shown
in Table 4. Model 6 has relatively good effects on six different types of faults, indicating
that the improved method solves the problem of fractional-order fault detection that often
weakens the ability of traditional Fourier transform to diagnose faults.

Table 4. The accuracy of the test set in each model in the simulation experiment.

Fault Data Type Model 1 Model 2 Model 5 Model 6

RU1 70% 81% 100% 100%
RU3 72% 79% 99% 99%
RU5 68% 71% 80% 80%
PPB 71% 79% 97% 97%
RU7 69% 82% 50% 82%
PL 68% 85% 51% 85%

5.3. Conclusions

Table 5 shows the classification methods and classification accuracy of all models in the
experiment. The four fault types RU1, RU3, RU5, and RU7 in Table 5 contain integer-order
faults, while the two fault types PPB and PL contain fractional-order faults. The following
are the definitions and descriptions of models 1 to 6.

Model 1: The classification method is PCA + SVM. The model first performs PCA
processing on the input fault data to obtain the converted value and then inputs the
obtained value into the SVM for training to obtain the final model.
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Table 5. Classification accuracy of all experimental models.

Experimental Model Classification Method RU1 RU3 RU5 PPB RU7 PL

Model 1 PCA + SVM 70% 72% 68% 71% 69% 68%
Model 2 FT + SVM 81% 79% 71% 79% 82% 85%
Model 3 FRFT (p = 0.977) + SVM 97% 91% 71% 83% 34% 59%
Model 4 FRFT (p = 1.133) + SVM 100% 96% 76% 72% 45% 69%

Model 5 FRFT (p is optimal
transformation order) + SVM 100% 99% 80% 97% 50% 51%

Model 6 FRFT + FT + SVM 100% 99% 80% 97% 82% 85%

Model 2: The classification method is FT + SVM. The model first performs FT pro-
cessing on the input fault data to obtain the converted value and then inputs the obtained
value into the SVM for training to obtain the final model.

Model 3: The classification method is FRFT (p = 0.977) + SVM. The model first performs
FRFT processing with transformation order p = 0.977 on the input fault data to obtain the
converted value and then inputs the obtained value into the SVM for training to obtain the
final model.

Model 4: The classification method is FRFT (p = 1.133) + SVM. The model first performs
FRFT processing with transformation order p = 1.133 on the input fault data to obtain the
converted value and then inputs the obtained value into the SVM for training to obtain the
final model.

Model 5: The classification method is FRFT (p is optimal transformation order) + SVM.
The model first performs FRFT processing with optimal transform order on the input fault
data to obtain the converted value and then inputs the obtained value into the SVM for
training to obtain the final model.

Model 6: The classification method is FRFT + FT + SVM. The model performs FT
processing on the fault data including integer-order faults, performs FRFT processing on
fractional-order faults with the optimal transformation order, and then inputs the value
obtained after processing into the SVM model to obtain the final model.

The classification method used in model 1 is PCA + SVM. It can be seen from the table
that the diagnostic accuracy of this method for integer-order faults and fractional-order
faults is relatively general, indicating that the PCA method has a general diagnostic effect
on integer-order and fractional-order faults. The classification method used in model 2
is FT + SVM. It can be seen from the table that this method has improved the diagnostic
accuracy for integer-order faults and fractional-order faults compared with model 1, and it
can have a good effect on diagnosing whether the fault is fractional-order or integer-order.
The classification method used in model 3 is FRFT (p = 0.977) + SVM, and the transformation
order of this method is fixed at 0.977 when FRFT is performed on the fault data. It can be
seen from the table that the diagnostic accuracy of this method for fractional-order faults
is higher than that of model 2, but the accuracy for integer-order faults is worse than that
of model 2. The classification method used in model 4 is FRFT (p = 1.133) + SVM, and the
transformation order of this method is fixed at 1.133 when FRFT is performed on the fault
data. It can be seen from the table that the diagnostic accuracy of this method for fractional-
order faults is higher than that of model 2, but the accuracy for integer-order faults is worse
than that of model 2. The FRFT transformation orders adopted by model 3 and model 4 are
not optimal transformation orders. The reason for comparing model 2, model 3, and model
4 is to verify that the FRFT method under the nonoptimal transformation order can also
have a better diagnosis effect than the PCA and FT methods in diagnosing fractional-order
faults, so as to verify that the FRFT method has a certain real-time fault diagnosis. The
classification method used in model 5 is FRFT+SVM, and the transformation order of this
method is the optimal transformation order when FRFT is performed on the fault data. It
can be seen from the table that the diagnostic accuracy of this method for fractional-order
faults is higher than that of model 2, but the accuracy for integer-order faults is poorer than
that of model 2, indicating that the traditional FRFT method has certain defects; it has a
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better detection effect on fractional-order faults, but the detection effect on integer-order
faults is not as good as that of the FT method. The classification method used in model 6
is the new method proposed in this paper, namely FRFT + FT + SVM. When diagnosing
fault signals containing both integer-order faults and fractional-order faults, the method
combines the two methods, using the FRFT method to handle fractional-order faults and
the FT method to handle integer-order faults to obtain a model that has good detection
performance for all fault types. Comparing model 2, model 5, and model 6 in the table, it
can be found that model 6 has a greater improvement in handling fractional-order faults
and integer-order faults than model 2 and model 5, and the same is true for other models.
Therefore, we can conclude that the classification method proposed in this paper makes
up for the deficiency of the traditional FRFT method having a good detection effect on
fractional-order faults but a poor detection effect on integer-order faults. In the face of fault
signals containing both integer-order faults and fractional-order faults, the whole has a
good diagnostic effect.

6. Summary and Prospect

Summary: The new method built in this paper has provided a new idea for the mixed
fault of a motor in the time domain and frequency domain. Motor equipment is often
interfered with by complex environmental noise during operation. The fault characteristic
frequency is often a nonstationary signal, and the fractional-order small fault signals
are easily hidden in strong noise, which makes the existing frequency domain diagnosis
methods dominated by integer-order methods which are unable to detect fractional-order
fault signals effectively. The new method introduces the fractional Fourier transform
method based on the time domain and the frequency domain, which can transform the
signal in the maximum projection direction in the fractional domain and obtain the peak
energy concentration in the projection direction, which is the signal in the maximum
projection direction. The tiny fault features in the fractional domain effectively separate
the fault feature signal from the strong noise, which cannot be detected by other methods.
The fault diagnosis method built in this paper firstly inputs the extracted fault features
and the prior information of the corresponding fault category into the SVM classification
model and then trains a more accurate and efficient fault classifier through the set cost
function. It not only has a strong detection ability for fractional-order tiny faults but also
has a good detection effect on traditional integer-order faults, so it has strong robustness to
the classification ability of both integer-order and fractional-order frequency domain faults.

Prospect: While constructing the optimal projection direction model in this paper,
more prior information is needed to determine the optimal projection direction. Therefore,
determining how to reduce the dependence on prior information during determining the
optimal direction and constructing a data-driven multilevel and multilayer fault detection
classification method according to the size of the fault, in order to ensure the online
detection and classification of motor faults, is a research direction to be focused on in the
future. At the same time, industrial motors often show the phenomenon of multiple types
of faults occurring at the same time; electrical equipment not only has frequency domain
type faults, but also amplitude type and phase type faults. The concurrent occurrence
of these multiple types of faults causes great difficulties in motor fault diagnosis. When
the structure of the neural network is getting deeper and deeper, the gradient descent
algorithm can be replaced by the Kalman filter, and the Kalman filter is used to adaptively
update the neural network [50–53]. Therefore, this is also an important direction for future
research in the field of faults.
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