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Abstract: Rotational observation is essential for a comprehensive description of the ground motion,
and can provide additional wave-field information. With respect to the three typical layered models
in shallow engineering geology, under the assumption of linear small deformation, we simulate the
2-dimensional radial, vertical, and rotational components of the wave fields and analyze the different
characteristics of Rayleigh wave dispersion recorded for the rotational and translational components.
Then, we compare the results of single-component inversion with the results of multi-component
joint inversion. It is found that the rotational component has wider spectral bands and more higher
modes than the translational components, especially at high frequencies; the rotational component
has better anti-interference performance in the noisy data test, and it can improve the inversion
accuracy of the shallow shear-wave velocity. The field examples also show the significant advantages
of the joint utility of the translational and rotational components, especially when a low-velocity
layer exists. Rotational observation shall be beneficial for shallow surface-wave exploration.

Keywords: rotation; translation; Rayleigh wave; dispersion; inversion

1. Introduction

Surface-wave exploration is an important method in the field of geophysics used
for the detection of the shallow shear-wave velocity structure of the earth, and includes
single-station method, two-station method [1], two-plane-wave method [2], ambient noise
tomography based on passive source [3], microtremor method [4–6], rotational seismic
method [7,8], and the most widely used method in the seismic exploration—multi-channel
analysis of surface waves (Rayleigh and Love waves) [9,10].

In recent years, numerous experimental studies have used high-speed railway vi-
bration signals for extracting the dispersion curves of the surface waves [11] and used
the surface waves detected by an urban telecommunication optic-fiber cable to obtain the
shallow velocity structure [12]. Due to the poor applicability of the fundamental-mode
surface waves for complex media (containing a low-velocity interlayer and a high-velocity
interlayer) [13], the joint utilization of the fundamental and the higher modes has attracted
extensive attention [14–17] and led to better applications [18–21]. However, the effective
identification and accurate extraction of different modes and overcoming the difficulty
of misidentification of Rayleigh-wave modes caused by the phenomenon of “mode kiss-
ing” has become the main problem faced by the traditional SPAC (spatial autocorrelation)
method [22–24]. The high-resolution linear Radon transform [25] and the complex vector
method, which jointly use the multi-component seismic data, show good results in extract-
ing the surface-wave dispersion curves of different modes [26]. The joint use of the radial
and vertical components of seismic translational motions to invert the shallow velocity
structure has also been widely used [27–31].

With the development of the rotational seismology, the joint use of translational and
rotational components to detect the shallow shear-wave velocity structure has become
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one of the hotspots in the field of engineering and shallow seismic exploration [32,33].
Six-component (translational- and rotational-component) geophones and seismometers
are gradually utilized in these fields [34,35]. However, rotational seismometers’ low sensi-
tivity, large background noise, narrow frequency bandwidths, and high cost still limited
their popularization and application [36–38]. They are expensive for oil and engineering
exploration. There are some methods to obtain the rotational motions indirectly, such as the
two-point difference method, which requires the dense seismic array or network [39]. More-
over, wireless seismic geophones make the dense seismic network efficient owing to small
logistic and sufficient flexibility [40–42]. Therefore, in the near field of strong earthquakes,
the rotational motions can be obtained by the wireless seismic geophone resultant.

The comprehensive observation of seismic motions has plenty of advantages on surface
wave inversion. The surface-wave phase velocity can be obtained using the rotational rate
measured by the rotational seismometers and the acceleration measured by the translational
geophone on a single location without an array of geophones [7]. The apparent shear-wave
speed, which is defined by the rms (root-mean-square) amplitude ratio of the translational
component and rotational component, can be used for single-station local S-wave velocity
tomography [32]. Additionally, the energy of surface waves is stronger than that of body
waves on the rotational components, which can be used for surface wave inversion [43].

However, compared with the translational seismic method, other advantages of the
rotational observation are attempted to be clarified in this paper. Aimed at three typical
layered models in shallow engineering geology, we analyze the Rayleigh-wave dispersion
characteristics of the rotational component differing from the translational components
through theoretical simulations. In addition, we compare the single-component inversion
with the multi-component joint inversion with the numerical and field data, which are
calculated with the two-point difference method by using the translational field seismic data.
It is demonstrated that the understanding and utilization of the surface-wave dispersion
curves on rotational components is helpful to improve the detection accuracy of the shallow
shear-wave velocity structure.

2. Theoretical Foundations
2.1. Calculation of the Rotational Component

The motion of a particle includes translation, rotation, and deformation. In space, the
motion of an arbitrary point can be expressed as three translational components along the
axis and three rotational components around the axis (Figure 1) [44]. In the traditional
linear elastodynamics theory, the rotational tensor is defined as follows:

→
r =

1
2
∇×→u (1)

where
→
r is the rotational tensor,

→
u is the displacement. It is obviously that the rotation

tensor is half of the curl of the displacement vector.Sensors 2022, 22, x FOR PEER REVIEW 3 of 19 
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In order to completely describe the ground motion, six degrees of freedom in a three
dimensional world are required, as shown in Table 1 [43]. In the two-dimensional case,
it becomes three components—the radial (ux), vertical (uz), and yaw (ry) components.
We analyze the wave-field characteristics of three components under the assumption of
two-dimensional linear small deformation and use the surface-wave dispersion curves
extracted from different components to predict shear-wave phase velocity.

Table 1. The ground motion.

Axis Translation Rotation

x Radial ux Roll rx

y Transverse uy Pitch ry

z Vertical uz Yaw rz

Since the actual rotational observation is mainly the rotational rate, it is necessary to
obtain the rotation rate in the numerical simulation by the derivative of Formula (1) with
respect to time (t). Further, the rotation rate Ry can be obtained through discrete difference
calculation by the wave-field velocity, which can be expressed as:

Ry(x, z, t) =
1
2
(

vx(x, z + ∆z, t)− vx(x, z, t)
∆z

− vz(x + ∆x, z, t)− vz(x, z, t)
∆x

) (2)

where Ry(x, z, t) is the calculated rotational value, which is used in our simulation analyses,
∆x and ∆z are 0.2 m, vx(x, z, t) and vx(x, z + ∆z, t) are the radial component velocities at
different depths, and vz(x, z, t) and vz(x + ∆x, z, t) are the vertical component velocities at
different points.

2.2. Rayleigh Wave Simulation

In this paper, the two translational components of surface wave are synthesized by the
convolution of the dispersion curves and eigenfunction (modal summation method) [45]
with the CPS (The Computer Programs in Seismology) software [46], because the method
is based on the analytical solution of the surface wave and the surface-wave fields are
considered as pure. Then, the rotational component wave fields are calculated with trans-
lational records according to the Formula (2), although the rotational components can be
simulated with the finite difference method [47,48]. While in the real data testing, we
use the two-point difference method [49] to obtain the rotational component Ry, since the
rotational seismometers are not popular and there is usually a lack of rotational observation
in the field of engineering seismic prospecting.

2.3. Method of Surface-Wave Dispersive Energy Imaging and Surface-Wave Inversion

High-resolution Radon transform is used to calculate surface-wave dispersive energy
in this paper. The Radon coefficients are obtained with formula [25]:(

λI + W−H
m LHWH

d WdLW−1
m

)
m̃ = W−H

m LHWH
d Wdd (3)

where m̃ = Wmm, Wd, and Wm are the weighted matrices, L and LH are the operator
matrices, λ is the regularization parameter, and I is the identity matrix. m is the Radon
coefficient in the frequency–velocity (f–v) domain, which is a complex number. d is the
seismic data in the frequency–offset domain.

The dispersive energy in the f–v domain can be imaged with the module of the Radon
coefficients [14]. Then, the imaged energy is normalized at each frequency, which can
remove the effect of the source wavelet spectrum [26].

Furthermore, we extract the surface-wave dispersion curves from different compo-
nents and inverse the shallow underground velocity structure using the Rayleigh wave
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inversion program of CPS software—the surf96 module. Under the smoothness constraint,
a damped least-square inversion method is used to find the most suitable model match-
ing the observed values and invert the velocity structure by the dispersion curves of
surface waves.

3. The Wave-Field Characteristics of the Typical Shallow Models

Considering the generality of the discussion, we define three typical models based
on the common geological structures in shallow engineering geology—horizontal layered
model with velocity increasing with depth and layered model containing low-velocity
interlayer or containing high-velocity interlayer. The model parameters are shown in
Table 2. We simulate the surface-wave fields with a vertical concentrated force source
(a 25 Hz Ricker wavelet) at the surface. With the sample interval of 0.5 ms, there are
49 receivers arrayed in line at the surface with 1 m intervals and the nearest offset is 5 m.

Table 2. The model parameters.

Model 1 Model 2 Model 3

Thickness Vp Vs Den Vp Vs Den Vp Vs Den

5 600 200 1800 1100 300 1850 600 200 1800
5 1200 400 1900 600 200 1800 1800 800 2000

10 1800 800 2000 1800 800 2000 1300 600 1950
- 2900 1400 2100 2900 1400 2100 2900 1400 2100

Thickness, (m); Vp, the velocity of P-waves (m/s); Vs, the velocity of S-waves (m/s); Den, density (kg/m3).

The synthetic data for Model 2 are illustrated in this paper in Figure 2. It can be
clearly seen that there is strong Rayleigh wave energy in the shape of a broom on the three
components. The energy of Rayleigh waves is much stronger on the vertical and rotational
components than that on the radial component.
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Figure 2. Synthetic data for Model 2. (a) X component; (b) Z component; (c) Ry component.

In order to further analyze the Rayleigh wave characteristics on different components,
we use high-resolution linear Radon transform [25] to obtain the multi-mode surface-wave
dispersive spectra. The dispersions of three components are normalized at each frequency
and the theoretical dispersion curves of different modes are calculated for contrast, as
shown in Figures 3–5.
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It can be found that obvious fundamental and higher modes exist on the three compo-
nents, and the dispersion curves for different models basically correspond well with their
theoretical dispersion curves. The fundamental mode of Model 1 is dominant on all com-
ponents, and the fundamental mode on the vertical component has energy distribution at
15–18 Hz, while that on the other two components is discontinuous at the same frequencies.
The first higher mode on the radial and rotational components has comparative amplitude
responses at 10–15 Hz frequencies, while not all higher modes are present in the dispersion
images. The higher modes on the translational components have much weaker energy
than those on the rotational component at 15–100 Hz frequencies and the higher-mode
dispersion curves can hardly be extracted from the translational components. In contrast,
the higher modes, especially the third higher mode, have strong energy on the rotational
component and the dispersion information is relatively complete.

The fundamental modes of Model 2 on three components are similar while the higher
modes have different characteristics on different components. The first higher mode and
the second higher mode on the vertical component have much stronger energy than those
on the other two components at the frequencies of 25–40 Hz, while the third higher mode
is almost absent on the vertical component, but dominant on the radial and translational
components. The dispersion images on the rotational component are slightly better than
those on the radial component of Model 2, which is reflected in the energy of the first
higher mode at 20–30 Hz frequencies, the energy of the second higher mode at 32–40 Hz
frequencies, and the energy of the third higher mode at 40–52 Hz frequencies. It is obvious
that the rotation has wider spectral bands than the translations in the horizontal layered
model containing a low-velocity interlayer.

In Model 3, the higher modes on the vertical component have weaker energy than the
other components. It can be observed that the dispersive energy of the vertical component at
10–15 Hz frequencies is misidentified as the fundamental mode, which is the phenomenon
of mode misidentification. However, mode misidentification can be overcome using multi-
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component seismic data. The fundamental-mode and higher-mode dispersion curves on
the radial and rotational components match well with the theoretical dispersion curves.
The energy of the higher modes on the rotational component is much stronger than that
on the radial component. Furthermore, the dispersive energy of the higher modes on the
rotational component has wider frequency bands and more high-frequency information
than that on the radial component.

Therefore, we can deduce that the rotational components are helpful to pick up
dispersion curves of different modes, which is beneficial for the surface-wave inversion
and geological interpretation.

4. Rayleigh Wave Inversion

In order to verify the effect of rotations on the Rayleigh wave inversion, we pick
up the phase velocities with the maxima energy from the dispersion spectrum and use
the damped least-square inversion method to invert the shear-wave velocity of different
models. Because the inversion of Model 3 draws the similar conclusion to that of Model 2
in the middle low-velocity layer, we only display the results of Model 1 and Model 2. The
dispersion curves of Model 1 and Model 2 used for inversion are shown in Figure 6, and the
comparison of bandwidths among radial, vertical, and rotational data is shown in Table 3.
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Table 3. Comparison of bandwidths among the radial, vertical and rotational data.

Component Fundamental
Mode (Hz)

First Higher
Mode (Hz)

Second Higher
Mode (Hz)

Third Higher
Mode (Hz)

Model 1
radial 10–15, 18–100 12–15 - 50–58

vertical 10–100 44–50 68–72 -
rotational 10–15, 18–100 12–15, 22–42 32–42, 60–84 48–86, 92–100

Model 2
radial 8–32 32–54 44–75 30–36

vertical 8–32 26–54 36–75 -
rotational 8–32 22–28, 32–54 44–75 28–52

It is obvious that the dispersion curves on the rotational components are more complete
than those on the translational components. The results of the inversion, terminated after
20 iterations, are shown in Figure 7. Limited by space of the paper, we only show the
single-component inversion results for clearer comparison, since there are great similarities
between the rotational component inversion results and the joint multi-component (radial,
vertical, and rotational components) inversion results in the numerical test.

It can be found that the results of the inversion using the rotational component
are much better than those using translational components, especially in the deep layer.
The S-wave velocity of Model 1 inverted by the rotational component is close to the
theoretical model at the depth of 0–5 m and 10–20 m, while that inverted by the translational
components has a relatively greater deviation from the theoretical model. In addition, the
inversion result using the rotational component almost consists of the theoretical S-wave
velocity at the depth of 5–10 m and in the deep layer. The S-wave velocity of Model 2
inverted by the three components approximates the theoretical S-wave velocity within
10 m depth, but is quite different in the deep layer. The inversion results using translational
components show a much greater velocity in the deep layer while the inversion using
rotational component is close to the theoretical model. The comparison demonstrates that
the inversion results using the rotational component are more accurate than those using
the translational components.
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5. Noisy Synthetic Data Test

Considering field applications, we add different level white noises to the seismic data
of the Model 1 and Model 2. The signal-to-noise ratio (SNR) is 2.8 and 1.7, respectively. The
normalized dispersion images of different components are shown in Figures 8 and 9.
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(e) Ry component; (f) Ry component.
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It is obvious that there is only the fundamental-mode energy on the translational
component noisy synthetic data of Model 1, and the higher modes are masked by the
noise, while the third higher mode is relatively strong on the rotational component, as
well as the fundamental mode. Reducing the signal-to-noise ratio has a great influence on
the dispersive energy at low frequencies, especially at the frequencies of 10–15 Hz. The
fundamental mode on the radial component noisy data of Model 2 is dominant while the
higher modes are discontinuous. In contrast, the first and second higher modes on the
vertical component have comparative energy and the widest frequency bands since they
are less affected by noise. The first higher mode exists at the 20–25 Hz frequencies on the
rotational component, but is absent on the translational components. The third higher mode
is relatively stronger on the rotational component than that on the other components. This
comprehensive comparison illustrates that the Rayleigh waves on the rotational component
have stronger anti-noise performance and more complete higher-mode information.

We extract the dispersion curves of different components from the noisy synthetic
seismic data and invert the S-wave velocity of Model 1 and Model 2, respectively, as shown
in Figure 10:
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Figure 10. Inversion results of the noisy data using the radial (red line), vertical (green line), and
rotational (blue line) components, respectively. The black thick line is the theoretical S-wave velocity
and the black thin line is the initial S-wave velocity. SNR of the left column is 2.8 and SNR of the right
column is 1.7. (a) Model 1; (b) Model 1; (c) Model 2; (d) Model 2.
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The S-wave velocity inverted by the radial component is quite different from the
theoretical model in the shallow layer, while that inverted by the vertical component has
a great deviation from the real model in the deep layer. In contrast, the S-wave velocity
inverted by the rotational component is the closest to the theoretical velocity. Reducing the
signal-to-noise ratio has a minimal influence on the inversion results with rotation, while
increasing the error of the results inverted with the translations.

6. Field Seismic Data Test

Wanshousi Station, with a complex underground structure, is a key station of the
Beijing No. 16 subway [50]. Beijing Petrosound Geoservices Stock Corp. was entrusted
to carry out the two-dimensional three-component seismic observation and to detect the
underground structure. They drop an iron hammer onto a solid fixture vertically to
excite the seismic waves. There are 81 shots along one line and 15 three-component (3C)
geophones with 1 m intervals. The nearest offset is 5 m and the time sample interval is
4 ms. Due to the lack of the rotational observation, we calculate the rotational component
Ry with the two-point difference method. The translational and rotational components of
the field data are illustrated in Figure 11.
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It can be seen that there are obvious surface waves on the three components. The
normalized dispersion images of three components are shown in Figure 12.
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Figure 12. Normalized dispersion images of the field data, where the red color represents the
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It can be found that the fundamental mode has strong energy on the translational
components, but not all higher modes are present on the three components. The first
higher mode is dominant on the radial and rotational components, while the second higher
mode and the third higher mode are obviously strong on the vertical component. The
fundamental mode and the first higher mode on the rotational component have more
low-frequency information while the radial component has richer dispersion information
at high frequencies, as shown in Figure 13. Furthermore, the vertical component has higher
dispersion modes. It can be demonstrated that the translation and rotation are comple-
mentary to each other, and more surface-wave dispersion information can be obtained by
jointly using the three components.

There are three shafts in the construction area of Wanshousi station, and the lithologic
histogram drawn according to the drilling core is shown in the Figure 14a. Based on
the surface-wave dispersion curves in Figure 13, we invert the shallow S-wave velocity
structure of 20 m underground by different components respectively, and then jointly use
the translational and rotational components to obtain the underground S-wave velocity,
as shown in Figure 14b. It can be found that the S-wave velocity inverted by the radial
component has a great deviation in the shallow layer, which is the same as that inverted
by the vertical component. The S-wave velocity inverted by the rotational component is
slightly better than that inverted by the translational components, especially in the shallow
layer. It is obvious that the S-wave velocity inverted by the rotational component has a
smaller error than that inverted by the translational components, as shown in Table 4. The
error of inversion results is calculated by:

E =

√
1
n

n

∑
i=1

e2
i (4)
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where E is the error of inversion results, n is the number of the layers, and ei is the error of
each layer, which is the deviation from the actual layer velocity.
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Table 4. Error of the inversion results using the radial (X), vertical (Z), rotational (Ry), and multi-
component (X + Z + Ry) seismic data.

Depth (m) X Z Ry X + Z + Ry

ei

0~2 0.435 0.638 −0.001 −0.021
2~4 0.105 −0.301 0.016 0.005
4~6 −0.401 −0.224 −0.278 −0.061
6~8 −0.135 −0.022 −0.299 −0.023

8~10 0.024 −0.012 −0.103 0.075
10~12 −0.005 0.045 −0.019 −0.002
12~14 0.020 0.122 −0.053 0.016
14~16 0.058 0.146 −0.040 0.053

- −0.193 0.108 −0.257 −0.052

E - 0.205 0.245 0.158 0.040

The error of the S-wave velocity inverted by multi components is the smallest. The
inversion results using the translational and rotational components jointly are close to
the actual velocity, which shows the significant advantages of the multi-component joint
inversion in the soft interlayer identification. It is demonstrated that the joint inversion of
the translation and rotation can provide more accurate shear-wave velocity.

7. Discussion and Conclusions

We analyze the Rayleigh wave dispersion characteristics of translational and rotational
components for three typical layered engineering models, compare the inversions of differ-
ent components for synthetic noise-free and noisy data, and perform a test with a subway
seismic prospecting case. The synthetic and field examples demonstrate the following:

1. The rotational component has more higher-mode dispersive energy and wider
bandwidths than the translational components, particularly richer high-frequency infor-
mation. The rotational and translational components supplement each other in terms
of dispersion curves, which can provide more reliable dispersion information without
mode misidentification.

2. The rotational component has stronger anti-noise capability than the translational
components. Because there are wider frequency bands and more modes in noisy data, it
can improve the inversion accuracy of the shallow shear-wave velocity.

3. The rotation can provide extra dispersion information in practical application.
The joint utilization of the translational and rotational components has a considerable
improvement on the weak layer identification and shows significant advantages in the
shallow inversion.

It is obvious that the rotation is essential for a comprehensive description of the ground
motion and that it can provide more accurate underground physical parameters by surface-
wave inversion since the additional wave-field information can be obtained. Rotation is
beneficial for shallow engineering exploration and surface-wave exploration.

There are still some deficiencies in this paper, since the rotational seismometers are not
widely employed in the field observation, and there are non-ignorable differences between
the array-derived and observed rotations, especially in the near-earthquake area [51,52].
However, in the future, it is worth popularizing the application of rotational seismometers
in shallow seismic engineering and to identify high-precision surface-wave inversion by
jointly using the translation and rotation.
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