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Abstract: Wireless sensor networks can be used as cost-effective monitoring and automation plat-
forms in smart manufacturing and Industry 4.0. Maximizing the covered area and increasing the
network lifetime are two challenging tasks in wireless sensor networks. A feasible solution for
maximizing the coverage area and network lifetime is detecting and relocating the covered redundant
nodes. A covered redundant node is a node whose covered area is also covered by the other active
nodes in the network. After identifying the covered redundant nodes, putting them in sleep mode can
increase the network lifetime. In addition, moving the detected redundant nodes to the uncovered
locations can improve the overall covered area by the sensor nodes. However, finding the redundant
nodes is an NP-complete problem. In this paper, we propose a localized distributed algorithm for
identifying the redundant nodes based on the 2-hop local neighborhood information of the nodes.
The proposed algorithm uses the existing connections between the neighbors of each sensor node to
decide the redundancy of the node. The algorithm is localized and does not need the entire topology
of the network or the coordinates of the nodes.

Keywords: wireless sensor networks; coverage redundancy; Industry 4.0; redundant nodes

1. Introduction

Industry 4.0 and smart manufacturing can improve the efficiency and productivity
of the factories by automating the manufacturing operations, monitoring the events, and
making real-time intelligent decisions based on the received feedback from the devices.
Smart manufacturing can help to improve the quality of products, reduce pollution and
costs, and improve workplace conditions. Wireless sensor networks (WSNs) are among
the most promising platforms for monitoring and automation in smart manufacturing
and industry 4.0. A WSN may consist of thousands of low-cost small devices generally
called sensor motes. The sensor motes can sense different events and values, such as
temperature, pollution level, light, pressure, and environmental movements, and send
these data to a processing center. Old sensory units were expensive and had limited sensing,
communicating, and processing capabilities, but the current smart sensor motes can sense
different values, process and store data, or forward the collected data over radio messages
to the other nodes. Recent sensor nodes are usually equipped with one or more sensing
modules, a wireless communication module, memory, and a low-power processor.

WSNs can be used in many applications, such as smart manufacturing, agriculture,
target tracking, health care, and industrial applications [1,2]. Generally, in WSNs, the
sensing and radio communication range of sensor motes are limited, and many nodes
should be distributed in the environment to monitor the desired events or properties.
Using different medium access protocols [3], the motes may avoid packet collisions and
securely send their collected data to a base station. Figure 1a shows a sample WSN
where the dashed big circles are the coverage range and the edges between nodes are the
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communication channels. Because of the importance of real-time and complete monitoring
in most real-life applications, we need to ensure that all points in the target environment or
area of interest are within the sensing coverage of at least one sensor node. Covering the
entire area of the target region is generally known as the full coverage problem. Because of
the importance of full coverage in most applications, this problem has been the subject of
many studies from different perspectives, such as node deployment, power assignment,
coverage restoration, and coverage hole detection. Usually, some regions are not covered by
the sensor nodes due to different reasons, such as random distribution, sensor destruction,
or battery drain. These uncovered regions are called coverage holes. A feasible solution to
reduce the coverage holes with limited resources is detecting and relocating the redundant
nodes, which has a negligible effect on the overall coverage area. This paper proposes a
method to detect the redundant nodes whose covered area is fully covered by the other
nodes, so they do not affect the overall coverage area. For example, in Figure 1b, the
covered area of node 7 has been entirely covered by the other nodes. Therefore, in case of
node failure and coverage loss, we may move node 7 to the location of the damaged node
to restore the coverage. For example, in Figure 1b, if node 3 stops working for any reason,
we lose the coverage of a relatively wide area. In this case, moving node 7 to the location of
node 3 may eliminate or minimize the coverage loss. We use the 2-hop local subgraph of
nodes to estimate the other nodes’ covered area.
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After detecting the redundant covered nodes, we may put them in sleep mode to
save their energy for future tasks. In the case of failure in critical nodes, we may move the
nearest redundant node to the location of the damaged node to restore the coverage. In this
way, we may use the available resources more efficiently and maximize the coverage range
and lifetime of WSNs as much as possible. The remaining parts of this paper have been
organized as follows: Section 2 provides a survey about related works, Section 3 includes
the theoretical foundation of the proposed method, the proposed covered nodes detection
algorithm is presented in Section 4, Section 5 includes the performance evaluation, and
finally, Section 6 draws the conclusion.
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2. Related Works

In wireless sensor networks, detecting the uncovered areas, finding the redundant
nodes, and maximizing the covered area are important and challenging problems. The cov-
erage holes detection approaches can be divided into geometrical, topological, and statisti-
cal methods. Geometrical approaches use the two-dimensional coordinate information of
nodes and various geometrical tools to identify the uncovered area. Some studies use the
Voronoi diagrams and Delaunay triangulation to identify the uncovered areas. Through the
Delaunay triangulation method, a Delaunay triangle is created by linking the three centers
of the neighbor sensor nodes. An empty circle of a Delaunay triangle is a wraparound
circle that does not contain any vertex of other Delaunay triangles. For example, Figure 2
shows a sample WSN where Rs is the radius of the sensing range of sensor nodes and Rc is
the radius of the resulting circle from nodes 1, 2, and 4. If Rc is bigger than Rs, we have
some uncovered area inside the established circle [4]. The proposed approach in [5] has
used Delaunay triangulation to locate the coverage holes under random deployment of
nodes and proposed an approach for estimating the nodes that are located on the boundary
of coverage holes by the Voronoi diagram. The proposed method in [6] estimates the cover-
age holes by establishing spanning trees on the network. This tree-based method creates
small empty circles within each Delaunay triangle to accurately determine the size of the
holes. The authors of [7] have proposed an algorithm based on Delaunay triangulation
that adds a virtual edge between nodes to approximate the coverage holes in a deployed
WSN. Qiu et al. have proposed another distributed algorithm that is based on Delaunay
triangulation. The algorithm is coordinate-free and can detect the uncovered area when
the accurate location coordinates of nodes are not available [8]. Ma et al. have proposed
another distributed method that benefits from computational geometry for detecting the
uncovered areas as a post-deployment process [9].
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Topological approaches use topological properties of the networks, such as connec-
tivity, centrality, and degree of nodes, to identify the coverage holes and boundary nodes.
Bi et al. have proposed two neighborhood-based algorithms for coverage hole detecting in
WSN without using the location information of the nodes [10,11]. Another topological hole
detection algorithm has been proposed in [12] that identifies the nodes near the boundary
of the sensor field and coverage holes. Beghdad et al. have used the topological methods
and existing connections between the nodes to detect the borders of uncovered areas in the
network [13]. Their proposed method uses a connected independent set algorithm to detect
the coverage holes in WSNs. The statistical approaches for coverage hole detection do not
require topological or location information but require dense sensor nodes deployed in
the target environment. For example, the proposed method in [14] uses a graph clustering
technique to divide the nodes in the network into small groups that reveal the connections
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and coverage holes. After identifying the groups, the nodes in the borders of each group
are detected using betweenness centrality scores, and clusters are grouped according to
their closeness. The nodes located at the border area of different groups will not be around
any coverage hole. Therefore, the algorithm allows the detection of nodes located at the
boundary of clusters. Amgoth et al. have proposed another distributed algorithm for
detecting and restoring the uncovered areas in the wireless sensor networks [15]. The nodes
create local clusters in their proposed algorithm and detect the coverage hole based on
local cluster information. Then, the nodes close to a coverage hole decide independently to
restore it by increasing their sensing range.

Finding the covered redundant nodes is another crucial problem that can help to
increase the network lifetime and coverage area of WSNs. In dense sensor networks,
activating only a subset of sensors at a time can increase the overall network lifetime.
However, determining all redundant nodes is an NP-complete problem [16]. Hence,
different approaches have been proposed for estimating a subset of covered redundant
nodes using different heuristics. For example, the proposed method in [16] finds the
spatially correlated nodes set to determine the subset of active nodes at a given time.
As another example, the proposed method in [17] presents a distributed node scheduling
mechanism to estimate the redundant nodes based on the positions of neighbor nodes.
After detecting the redundant nodes, the algorithm puts them in sleep mode to increase the
network lifetime. The algorithm can only detect a subset of redundant nodes and needs
the exact location and the sensing radius of nodes. A probabilistic method for detecting
the redundant nodes has been proposed in [18], which calculates a covering probability
for each node based on the coverage and density around a node. This method needs
the location information of the nodes and provides a probability model that calculates a
likelihood value for each node, which estimates its redundancy status.

To reduce redundant sensing in WSNs, mathematical modelling has been proposed
in [19], which uses biologically inspired techniques to minimize the overlapped sensing
area. These models define an objective function for an overlapping area and use genetic
and ant colony algorithms as meta-heuristics to find optimal answers for objective func-
tion. Similarly, different objectives and a lexicographic evolutionary algorithm have been
proposed in [20] to minimize redundant coverage. The proposed approach in [21] detects
the redundant sensed data based on the pattern generation approach and reduces source
nodes’ sensing range. The proposed redundancy-aware topology control protocol in [22]
finds the redundant sensor nodes from connectivity. The proposed protocol identifies the
backbone nodes and turns of the other nodes to increase the network lifetime. The proposed
algorithm in [23] uses ant colony optimization to reduce the sensing cost while maintaining
the network’s coverage and connectivity. A sleep/awake schema based on redundant
data and duty cycling has been proposed in [24] that tries to reduce the overall energy
consumption of nodes and increase the network lifetime. Generally, the proposed methods
in [20–24] focus on discovering the redundant data or redundant covered area.

In contrast, we focus on detecting the redundant covered nodes in this paper. An-
other sleep/awake scheduling algorithm has been proposed in [25] that tries to identify
a set of nodes that cover the target area and put the remaining nodes in sleep mode until
the failure of an active node. The proposed algorithm is based on an optimization method
and needs the entire topology graph. Our proposed method is distributed and uses local
neighborhood information to identify the redundant nodes. The proposed method in this
paper does not need the location information of the nodes and only uses the local neigh-
borhood information. Unlike the probabilistic models, the proposed method’s detected
nodes are assuredly redundant in the network. Improving the coverage and connectivity
robustness between the nodes are two vital requirements for using WSNs in Industry
4.0 [26,27]. Therefore, detecting the redundant covered nodes may help to improve the
coverage performance of WSNs and increase their usability in Industry 4.0 applications.
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3. Theoretical Foundation

Generally, a WSN is modelled as a graph G (V, E), where V is the set of nodes and
E is the set of communication links between the nodes. We refer to the 1-hop neighbors
of node v with Γv and the 2-hop subgraph of node v with Gv. In addition, we show the
number of nodes and maximum degree of nodes with n and ∆, respectively. At the end of
the proposed algorithm, each node keeps its redundancy state in the status variable, where
the value of this variable can be covered or uncovered. Table 1 presents the used notations
and their meaning in this paper.

Table 1. Notations and their meaning.

Symbol Meaning

G(V, E) Topology graph including nodes set V and edges set E.

Γv 1-hop neighbor set of node v.

∆ Maximum node degree.

n The number of sensor nodes in the network.

statusv The covered or uncovered status of node v.

The nodes in the radio range of each other may have a communication link and can
send radio messages to each other. Besides the communication range, each node has a
sensing range that determines the covered area by the nodes. The range of communication
and sensing range of nodes depend entirely on the type of sensors and communication
channels. In the proposed algorithm, we have the following assumption about the network:

1. Each sensor node has a unique identifier.
2. The nodes may broadcast a message to their neighbors.
3. The communication range (radius) of all sensor nodes is almost equal.
4. The sensing range (radius) of all nodes is almost equal.
5. The sensing range (radius) of nodes is equal to or larger than their communication range.

To achieve the maximum covered area, we have to deploy the nodes as far as possible
from each other. However, the communication range of the nodes limits the maximum
distance between the nodes. Furthermore, in some applications, the nodes are randomly
distributed in the environment, leading to many coverage holes or redundant nodes. If all
nodes in Γv connect to every other node in Γv, then removing v may create a coverage hole.
For example, in Figure 3, we have Γ5 = {1, 2, 3, 4}, and each node in Γ5 has a link to all
other nodes in Γ5. In this network, removing node 5 can lead to a coverage hole.
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Generally, if most of the nodes in Γv are connected, then the neighbors of nodes are
close to each other, which means that multiple nodes cover some area around node vs, and
some other area may only be covered by node v. If the neighbors of node v are far from
each other, they may cover more area around node v. This paper proposes two rules for
estimating the covered area by more than one node and finding the covered redundant
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nodes. The first rule is based on the number of interconnected neighbors of node v. If node
v has at least four neighbors in Γv without a direct edge between each other, then the
covered area of v is completely covered by its neighbor nodes. For example, Figure 4a
presents an example network where V = {1, 2, 3, 4, 5} and E = {(1, 3), (2, 3), (4, 3), (5, 3)}.
The dashed big circles in Figure 4a show the radio and sensing range of the nodes. In this
figure, node 3 has four neighbors, and none of them have a link to each other. Figure 4a
shows that all area covered by node 3 has also been covered by its 1-hop neighbors. If the
sensing and communication range of all nodes is equal, and node u has at least four non-
adjacent neighbors, then its neighbors are far enough from each other to remain out of
communication range and close enough to u to be its neighbor. This implies that each
neighbor of node u covers at least a disjoint quarter of the area covered by node u, which
means that all area covered by node u is covered by its non- adjacent four neighbors.
Therefore, we may conclude that if a node has at least four non-connected neighbors,
its covered area is completely covered by the other nodes. In this case, the node can be
considered a covered redundant node and may be moved to the location of other nodes or
go into sleep mode to minimize its energy consumption.
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nodes ID).

Our proposed second rule is based on the number of detected covered neighbors
of each node. If node v has at least two detected covered neighbors, then v is a covered
redundant node. Figure 4b presents a sample network in which nodes 2 and 7 may decide
that they are redundant using rule 1. Therefore, node 1 will have two covered redundant
neighbors, which means that its 2-hop neighbors are far enough from each other to cover
the area of node 1. Figure 4b shows that in this case, the covered area of node 1 will
be fully covered by its 1- and 2-hop neighbors. Therefore, if a node has at least two
covered redundant neighbors, it may mark itself as covered redundant. After detecting
the redundant covered nodes, we may put some of them into sleep mode or move them
to the location of other failed nodes to increase the general coverage of the WSN. Note
that some of the redundant nodes may have a critical role in keeping the connectivity
between other nodes in the network. Therefore, before moving or sleeping a redundant
node, we need to ensure that the network remains connected without that node. To do
this, we may start a distributed critical nodes detection [28] or a distributed minimum cut
detection algorithm [29] to identify the nodes whose removal divides the network to the
disconnected partitions. In this way, we may keep the redundant critical nodes at their
initial location and move the other redundant nodes.

Additionally, removing redundant nodes may generate some network coverage holes.
For example, in Figure 4b, if we remove nodes 2 and 7, as they are redundant by rule 1,
node 1 will not be redundant anymore. Therefore, after identifying the redundant nodes,
we may select a subset of redundant nodes for moving such that they are at least 2-hop
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from each other. In this way, removing the redundant nodes will not generate any holes in
the network.

4. Proposed Algorithm

In the proposed algorithm, each node explores its 2-hop local subgraph and then
decides whether it is a covered redundant node based on the links between its 1 and 2-hop
neighbor nodes. Initially, all nodes broadcast a “Hello” message, allowing each node to
identify its 1-hop neighbors. After finding the list of 1-hop neighbors, each node broadcasts
an NGB message, allowing its neighbor nodes to construct their 2-hop local subgraph. After
receiving NGB from all neighbors, each node detects its status (covered or not covered)
using the proposed first rule. Then, the covered nodes broadcast a “Covered” message,
which allows its neighbors to check the second rule.

Figure 5 shows the broadcasted messages by the nodes in a sample network. Initially,
each node in a network broadcasts a “Hello” message, which allows the nodes to find their
1-hop neighbor list (Figure 5a). When node v receives a “Hello” message from node u, it
adds the ID of node u to its local Γv set. For example, after receiving “Hello” messages,
we will have Γ3 = {1, 2, 4, 5} and Γ1 = {3}, Γ2 = {3}, Γ3 = {3} and Γ5 = {3}. After
creating the 1-hop neighbor list, each node sends its neighbor set in an NGB message
(Figure 5b). After receiving the NGB messages, each node constructs its 2-hop subgraph in
its memory and checks the number of connections between its 1-hop neighbors. If at least
four neighbors of node v have no connection to any other node in Γv, node v marks itself
as a covered redundant node and broadcasts a “Covered” message (Figure 5c). Figure 6
shows the broadcast messages by the nodes in another network. In the first step, all nodes
broadcast a “Hello” message and find their 1-hop neighbor list (Figure 6a). In the second
step, all nodes broadcast their 1-hop neighbor list in an NGB message (Figure 6b). Then,
each node that has at least four neighbors without direct connections marks itself as covered
redundant and broadcasts a “Covered” message (Figure 6c). Finally, each node that receives
at least two “Covered” messages from its neighbors marks itself as covered redundant and
broadcasts a “Covered” message (Figure 6d).
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Figure 5. (a) All nodes broadcast a “Hello” message; (b) all nodes broadcast their neighbor list;
(c) node 3 marks itself as a covered redundant node and broadcasts a “Covered” message (1–5 are the
nodes ID).
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Algorithm 1 presents the main steps of the proposed distributed method. In this
algorithm, we refer to the sender node as node u and the receiver node of a message as
node w. Initially, all nodes broadcast a “Hello” message (line 1). Each node that receives
a “Hello” message from a neighbor inserts the sender’s ID to a local set (line 3). After
receiving the first “Hello” message, each node sends its neighbor set after t time unit.
This time ensures that the nodes receive all broadcast “Hello” messages (lines 4,5). After
receiving an NGB message from node u, node w updates its local graph by adding u and
its connected neighbors to the graph (lines 7,8). After receiving an NGB message from all
neighbors, the receiver node w calls the DetectStatus procedure to detect its status (lines
9,10). The DetectStatus procedure follows our proposed rules to detect the status of each
node. If the receiver node has at least four neighbors in the 1-hop neighbor set, and they
have no direct link to the other three nodes, then the node sets its status as a covered node
and broadcasts a “Covered” message (lines 11–14). If an uncovered node receives at least
two “Covered” messages from its neighbors, it changes its status to covered and broadcasts
a “Covered” message (lines 16–18). After detecting the covered redundant nodes, we may
identify the critical redundant nodes, whose removal disconnects the network, and put
the remaining non-neighbor redundant nodes in sleep mode to save their energy or move
them to the location of the other failed nodes.

Algorithm 1: Covered Redundant Nodes Detection.

1: All nodes broadcast a “Hello” message.

2: Upon receiving a “Hello” message from u in w:
3: Γw ← Γw ∪ {u} .
4: If |Γw | = 1 then
5: Broadcast NGB (Γw ) after t time unit

6: Upon receiving NGB(Γu) from u in w:
7: G.V ← G.V ∪ {Γu}.
8: ∀s ∈ Γu : G.E← G.E ∪ (u, s).
9: if the number of received NGB(Γw) = |Γw| then
10: calls DetectStatus(w) procedure.

11: Procedure DetectStatus(w):
12: if ∃p = {a, b, c, d} ∈ Γw s.t ∀ (u, v) ∈ p : (u, v) /∈ G.E then
13: statusw ← covered.
14: Broadcast “Covered.”

15: Upon receiving “Covered” message in w:
16: if number of received “Covered” messages > 2 and statusw 6= covered then
17: statusw ← covered.
18: Broadcast “Covered.”

To evaluate the message and space complexities of the proposed algorithm, we assume
that the network has n nodes, and each node has a maximum degree of ∆. In our proposed
algorithm, each node sends a “Hello” and an NGB message. Since the “Hello” messages
contain only the ID of the sender node, the size of these messages is log2n bits. Each NGB
message contains the sender’s 1-hop neighbor list and can have at most ∆ items. Therefore,
the size of each NGB message is ∆ log2n. The size of each “Covered” message is log 2n bits,
and up to n “Covered” messages can be sent in the network. Thus, the overall message
complexity of the proposed algorithm is O(n ∆ log2 n). Each node should keep a 1-hop
neighbor list and a 2-hop local sub-graph in its memory in the proposed method. The 1-hop
neighbor list can contain up to ∆ items. The 2-hop local sub-graph can have up to ∆2 nodes.
In the worst case, if each node in the local sub-graph has a link to all other nodes, we will
need O

(
∆4) memory units. Therefore, the space complexity of the proposed algorithms

is O(∆4).
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5. Performance Evaluation

We evaluated the performance of the proposed algorithm by implementing it in Python
language using the Shapely and MathPlot libraries. We generated different topologies
with 100 up to 800 (stepping 100) nodes deployed randomly in the network area. We set
the width and height of the network area to 1000 m and selected the x and y coordinates
of nodes uniformly between 0 and 1000. If the selected random position was already
assigned to another node, we selected a new random position for the current node. We set
the sensing range of the sensor nodes between 20 and 100 m and counted the number
of detected redundant covered nodes by the algorithm. Figure 7a–d, respectively, show
sample generated networks with 100, 300, 500, and 700 nodes and the detected covered
nodes in these networks. In this figure, the sensing range of all nodes is 40 m, the size
of the area is 1000 m × 1000 m, and the nodes with thick borderlines are the detected
covered nodes.

Figure 8a shows the number of detected covered nodes in a different sensing radius
than the node count in the network. This figure shows that increasing the number of nodes
and the sensing range increases the number of detected covered nodes. In networks with
800 nodes, almost no covered node is detected when the sensing range of nodes is 20 m.

However, in the same network, when we increase the sensing range to 100 m, about
700 nodes are entirely covered by the other nodes. Figure 8b shows the sum of the uncov-
ered areas in the network for different sensing ranges against the number of nodes. This
figure shows that increasing the number of nodes or sensing ranges reduces the network’s
uncovered area. In the networks with 100 nodes, the uncovered area of the network reaches
about 87,000 m2 when the sensing range of nodes is 20 m. For the same sensing range, the
total size of the uncovered area decreases to about 21,000 m2 when we add 800 nodes to
the network. In the networks with more than 200 nodes and a sensing range higher than
60 m, almost the entire network area is covered by the nodes.

Figure 9a illustrates the relation between the number of detected covered nodes and
the number of nodes and sensing ranges. In this figure, dark colors are small, and light
colors indicate numerous detected redundant nodes. This figure shows that increasing the
number of nodes and the sensing range increases the number of covered redundant nodes.
Figure 9b illustrates the relationship between the uncovered area in the network and the
number of sensor nodes and sensing ranges. In this figure, the dark colors show fewer
coverage holes, and the light colors show more coverage holes. Figure 9b indicates that
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increasing the number of sensor nodes or sensing ranges rapidly decreases the network’s
uncovered area.
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Figure 8. (a) Number of detected covered nodes against the node count; (b) the uncovered are of the
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Figure 10a illustrates the detected covered nodes against the number of nodes and
the sensing range of nodes. This figure indicates that in the networks with more than
400 nodes and a sensing range of more than 60 m, at least 200 nodes are detected as covered
redundant nodes. Finally, Figure 10b shows the total uncovered area of the network against
the number of nodes and sensing range of nodes. The figure shows that when the sensing
range of nodes is 20 m, more than 20,000 m2 of the network remain uncovered. When we
increase the sensing range to more than 40 m and the number of nodes to more than 300,
the nodes cover most of the network.
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6. Conclusions

This paper proposed a localized distributed algorithm to find the covered redundant
nodes in the wireless sensor networks. The proposed algorithm can be used to detect
the redundant covered nodes in the applications that require many sensor nodes to cover
relatively large areas. Especially in harsh environments or in scenarios where regular
node deployment is hard or impossible, detecting the redundant covered nodes after a
random node distribution can considerably improve the covered area. A covered redundant
node is a node whose neighbor sensor nodes entirely cover its covered area. Detecting
the covered redundant nodes may increase the network’s coverage area by moving the
detected covered nodes to the uncovered area of the network. Additionally, putting the
covered redundant nodes into sleep mode may save their energy and increase the network
lifetime. The proposed algorithm uses the connectivity between nodes in the 2-hop local
subgraph of each node to find the fully-covered other nodes. The simulation results show
that the proposed algorithm can find the most redundant nodes in the dense network.
In the proposed algorithm, each sensor node sends a few short messages that reduce the
total consumed energy to detect the redundant covered nodes.

The proposed algorithm relies on the local neighborhood information; therefore, it may
miss some redundant nodes. After detecting the redundant nodes, we need to identify the
critical nodes that keep the network’s connectivity and select the non-critical non-neighbor
redundant nodes for sleeping or relocating. As for the future works of this research, we
plan to propose efficient algorithms for detecting the uncovered area of the network and
optimal moving of the detected covered nodes to uncovered areas to maximize the total
coverage area.
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