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Abstract: In smart surveillance and urban mobility applications, camera-equipped embedded plat-
forms with deep learning technology have demonstrated applicability and effectiveness in identifying
various targets. These use cases can be found in a variety of contexts and locations. It is critical to
collect relevant data from the location where the application will be deployed. In this paper, we
propose an integrated vehicle type and license plate recognition system using YOLOv4, which con-
sists of vehicle type detection, license plate detection, and license plate character detection to better
support the context of Korean vehicles in multilane highway and urban environments. Using our
dataset of one to four multilane images, our system detected six vehicle classes and license plates
with mAP of 98.0%, 94.0%, 97.1%, and 84.6%, respectively. On our dataset and a publicly available
open dataset, our system demonstrated mAP of 99.3% and 99.4% for the detected license plates,
respectively. From 4K high-resolution images, our system was able to detect minuscule license plates
as small as 100 pixels wide. We believe that our system can be used in densely populated regions to
address the high demands for enhanced visual sensitivity in smart cities and Internet-of-Things.

Keywords: license plate detection; license plate recognition; make and model recognition; vehicle
type detection; YOLOv4

1. Introduction

Computer vision applications automate repetitive tasks that require the human ability
and attention to continuously monitor and make timely decisions. A profusion of such
applications has been developed to detect, identify, and track various objects of interest. Re-
cent advancements in smart city technologies [1] have enabled a plethora of visual sensors
to be installed in the intelligent environment and smart infrastructure, such as closed-circuit
television (CCTV), visual sensor networks [2], smart surveillance [3], intelligent traffic sys-
tems [1,4], security cameras, and black boxes in vehicles. A series of state-of-the-art deep
learning techniques for challenging computer vision problems [5] can detect and identify
a vast number of diverse objects across categories on a grand scale. Individuals and their
vehicles are significant subjects of interest in large cities and metropolitan regions, which
smart cameras try to recognize. A large number of license plate recognition (LPR) [6–8] and
make and model recognition (MMR) [9–11] systems have been developed to relieve human
operators of the tedious task of explicitly detecting, identifying, and recognizing a wide
range of cars, as illustrated in Figure 1.

In this regard, we are particularly motivated to recognize modern Korean vehicle
types (VT) and Korean license plates (LP) in areas with high vehicle density in South
Korea. The number of cars registered in South Korea exceeded 24 million in 2020, according
to the Korean Statistical Information Service, which is roughly equivalent to one car per
2.19 people or 456.6 cars per 1000 people. Furthermore, Seoul (i.e., the capital and largest
metropolis of South Korea) is one of the most surveilled cities in the world, boasting
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77,564 cameras for 234 square miles or 331.94 cameras per square mile (source: https:
//www.comparitech.com/vpn-privacy/the-worlds-most-surveilled-cities/, accessed on
7 December 2021). In an ever-increasingly complex urban environment, we propose an
all-in-one system named KVT-LPR which stands for Korean vehicle type and license plate
recognition system, capable of identifying both VTs and LPs in the same processing pipeline.

Figure 1. Pervasive visual sensors capture complex urban dynamics in smart cities.

Our contributions in this paper are as follows.

• We propose a two-phase architecture based on YOLOv4 [12] for detecting vehicle
types and recognizing Korean LPs in one pipeline.

• We collect and build a custom dataset for various Korean vehicle types and LPs
captured from multilanes to train and validate two custom detectors in the KVT-LPR.

• We show that the KVT-LPR effectively detects small license plates from 4K high-
resolution input images, which is an enhancement over previous detectors.

• We demonstrate the feasibility and applicability of the KVT-LPR’s practically deployed
detection performance in different settings across two datasets (i.e., a custom dataset
and a publicly open dataset) and two target platforms (i.e., from a high-end to an
embedded solution).

2. Related Work

There have been a series of attempts to build faster and more accurate LPR systems.
In recent years, deep learning-based approaches, such as single shot detector (SSD) [13]
and You Only Look Once (YOLO)-based models [12,14–16], have been used to detect and
recognize LPs. YOLO was first designed to provide fast detection speed, but it had low
accuracy [14]. Despite the fact that YOLOv2 enhanced the speed and accuracy of object
identification over its predecessor [15], the SSD still outperformed for smaller objects.
YOLOv3’s accuracy has improved since then, but its detection speed has slowed down [16].
YOLOv4 has improved performance in both speed and accuracy compared to YOLOv3 [12].
Hendry and Chen tweaked the original YOLO to create an automatic license plate recogni-
tion (ALPR) system that had a detection accuracy of 98.22% and a recognition accuracy of
78.22% [17]. Laroca et al. developed an ALPR system based on YOLO that outperformed
previous systems with a recognition rate of 96.9% when tested on public datasets [18].
Castro-Zunti et al. presented an SSD-based LPR system that accurately recognized 96.23%
of the Caltech Cars dataset and 99.79% of the UCSD-Stills dataset [19].

There are several related LPR systems targeting Korean LPs and sharing similar
approaches. Han et al. used the cascade structure with AdaBoost learning to offer a real-
time LPR identification method for high-resolution videos [20]. Park et al. developed a
multinational LPR system that recognizes multiple Korean LP styles (i.e., single-line, double-
line, various layout formats) using the K-nearest neighbors method [21]. By adding spatial
pyramid pooling to YOLOv3, Kim et al. developed a multiscale vehicle detection that

https://www.comparitech.com/vpn-privacy/the-worlds-most-surveilled-cities/
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outperformed other detectors [22]. For recognizing multinational LPs, including Korean
LPs, Henry et al. presented an ALPR system based on YOLOv3 [23]. LP detection, unified
character recognition, and multinational LP layout detection were all included in their
system’s architecture. Initially, they have collected and made public their own Korean
automobile plate dataset, known as KarPlate. However, due to legal issues, the dataset is no
longer available. Sung et al. showed Korean LP identification performance on the NVIDIA
Jetson TX2 board with their custom KETI-ALPR dataset that is not open to the public using
YOLOv3, YOLOv4, and SSD [24]. To recognize Korean car types, Kim et al. evaluated
faster-RCNN, YOLOv4, and SSD object identification approaches [25]. Their findings
revealed that YOLOv4 outperformed SSD and faster-RCNN in terms of F1 score, precision,
recall, and mAP. To deal with the problem of data sparsity in the training stage, Han et
al. synthesized LPs using an ensemble of generative adversarial networks (GAN) [26].
Wang et al. developed a Korean LPR approach using deep learning and KarPlate dataset
(when the dataset was still available) to recognize LPs under various conditions (i.e., fog
and haze) [27]. Lim and Park proposed an AI machine learning system that can use CCTV
images to check illegally parked cars with the LPR function [28].

In contrast to prior research, this study investigates the application of YOLOv4 for
LPR and vehicle type recognition in the Korean environment with multilanes and high-
resolution cameras. Table 1 compares previous studies in terms of their approaches, datasets,
and system support features. Our system aims to better support the Korean context by
using multilanes images collected from high-resolution cameras. The size of LPs will be
small in high-resolution images. We employ YOLOv4 to recognize small LPs and vehicle
types and to show that its performance is embedded-platform-ready.

Table 1. Comparison of recent Korean LPR systems.

System Approach Dataset (Resolution) Korean
LP Multilanes Small

LP
Vehicle

Type
Embedded

Platform

Han et al. (2015) [20] Cascade
Structure Custom (1624 × 1224) O X X X X

Park et al. (2019) [21] KNN Custom (1920 × 1080) O X X X X
Kim et al. (2019) [22] YOLOv3 UA-DETRAC (960 × 540) X O X X X
Henry et al. (2020) [23] YOLOv3 KarPlate (1920 × 1080) O X X X X
Sung et al. (2020) [24] YOLOv3 KETI-ALPR (3840 × 2160) O X O X O

Kim et al. (2020) [25] Faster-RCNN,
YOLOv4, SSD Custom (N/A) X X X O X

Han et al. (2020) [26] LP-GAN,
YOLOv2 Real + Synthetic (N/A) X X X X X

Wang et al. (2021) [27] YOLOv5,
WPOD-NET KarPlate (1920 × 1080) O X O X X

Lim and Park (2021) [28] DNN CCTV images (N/A) O X X X X

Proposed (2021) Two phase
YOLOv4 Custom (3840 × 2160) O O O O O

3. Proposed Methodology

The goal of a typical LPR system is to output numbers and characters on LPs as text.
Similarly, a typical MMR system identifies the vehicle’s make and model from several
candidates. Our goal was to create an LPR system that could identify Korean LPs and
recognize a variety of Korean vehicle types as defined by the Korean vehicle classification
criteria. We present an all-in-one Korean vehicle type and LP recognition system, named
KVT-LPR, that employs YOLOv4 as the underlying object detector model.

Figure 2 shows the overview of our KVT-LPR using YOLOv4. The KVT-LPR aims to
identify vehicle types and recognize license plates from high-resolution (i.e., 4K resolution)
and multilane images (i.e., one to four lanes). The details of the KVT-LPR system, including
YOLOv4-based object detector and data collection processes, are elaborated in the following
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subsections. Moreover, detailed procedures of the two custom detectors (VT_LP detector
and LPC detector) are visually illustrated in Section 4.

Input :
Images from Smart Cameras

License Plate

Detection

Vehicle Type

Detection

Phase 1: YOLOv4

(VT_LP Detector)

Phase 2: YOLOv4 

(LPC Detector)

License Plate

Character Detection

Output :
Vehicle Type & License Plate Text

Cropped 

LP Images

Vehicle

Localization

Vehicle 

Type

Recognition

License 

Plate

Recognition

Figure 2. The overview of the KVT-LPR system.

3.1. YOLOv4-Based Vehicle Type and License Plate Recognition

The KVT-LPR system processes a high-resolution input image (i.e., 3840 × 2160)
decoded from a high-resolution video. We collected real Korean vehicle types and LPs to
build our custom dataset. Then, we used the custom dataset to train using YOLOv4 to build
two custom detectors. The first detector is a VT_LP detector, which detects seven classes
(i.e., six different Korean vehicle types and LPs) in the input image. The second detector is
an LPC detector, which detects 68 different numbers and characters on Korean LPs. The
character size of LPs is small in relation to the entire image on a high-resolution image,
making character identification more challenging. To overcome this problem, we included
an LP cropping procedure to the KVT-LPR, which gives the LPC detector segmented LP
regions. In phase 1, vehicle types and occurrences of LPs are detected by the VT_LP detector.
If LPs are found, the cropped LP image for each LP is passed into the LPC detector for
phase 2. To summarize, the VT_LP detector is called first to detect vehicle types and LPs,
followed by the LPC detector for each LP found. If the input image contains a large number
of LPs, the KVT-LPR’s overall turnaround time multiplies.

3.2. Dataset Collection and Preprocessing
3.2.1. Vehicle Types and LPs

We installed a camera on a highway overpass to manually record real traffic videos
in order to collect various vehicle types and LP images that represent the context and
environment of South Korea, as shown in Figure 3.

Figure 3. Data collection settings. Vehicles and LPs are captured using a camera fixed on a highway
overpass with a residing operator controlling the data collection station.

The camera overlooking the highway (i.e., two-lane, three-lane, and four-lane) cap-
tured traffic videos at 3840 × 2160. We also recorded videos with a smartphone camera at
3840 × 2160. Images including one or more vehicles were extracted from the recorded video
and used as training data for the custom detectors. Figure 4 shows examples of captured
raw images that qualify for training uses.
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Figure 4. Examples of captured raw images from the installed camera.

The collected dataset is manually labeled by using an open-source tool LabelImg (Tzu-
talin (TzuTa, Canada), LabelImg, Git code (2015). https://github.com/tzutalin/labelImg,
accessed on 7 December 2021) to annotate bounding boxes on the target objects. For ex-
ample, we annotated a bounding box on LPs and the front of a vehicle covering the front
window and the bumper, as shown in Figure 5.

Figure 5. Labeling of vehicle types and license plates to be used for phase 1.

To label different vehicle types, we referenced a vehicle classification according to the
vehicle size and passenger capacity used by the Korea Expressway Corporation (https:
//www.ex.co.kr/portal/usefee/selectUseFeeNList.do, accessed on 7 December 2021). We
classified vehicles into six categories based on the vehicle size and passenger capacity. The
smallest vehicles or compact cars were labeled as ‘compact’. Vehicles capable of holding
nine or fewer passengers were labeled as ‘car’. Vehicles with a capacity of 25 or fewer
passengers were labeled as ‘mini van’. Big vans with 25 or more passengers were labeled
as ‘bus (big van)’. Smaller two-axle freight vehicles were labeled as ‘mini truck’, and three-
or-more-axle freight vehicles were labeled as ‘truck’. The six vehicle types we labeled in
our dataset are shown in Figure 6. Table 2 shows the collected dataset of six vehicle types
and LPs.

https://github.com/tzutalin/labelImg
https://www.ex.co.kr/portal/usefee/selectUseFeeNList.do
https://www.ex.co.kr/portal/usefee/selectUseFeeNList.do
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Figure 6. Classification of six vehicle types.

Table 2. Our dataset of six vehicle types and LPs with corresponding distribution ratio.

Classes
Multilanes

Two Three Four Total Ratio (%)

License Plate 4063 2411 374 6878 57.1

Car 1757 1159 230 3146 26.1
Mini Truck 563 275 41 879 7.3
Compact 292 170 38 500 4.2
Mini Van 282 97 15 394 3.3
Truck 110 59 12 181 1.5
Bus 48 13 5 66 0.6

Total 7115 4184 715 12,044 100.0

3.2.2. LP Numbers and Characters

The recorded videos were also used to manually label Korean LP numbers and char-
acters. We also took additional pictures of LPs with a smartphone camera. LP areas were
segmented and used as training data from these sources. In the case of LPs, a bounding box
was drawn over the four vertices of an LP. Furthermore, bounding boxes were annotated
on each number or character on LPs, as shown in Figure 7.

Figure 7. Labeling of LP numbers and characters to be used for phase 2.

Over 60,000 occurrences of Korean LP numbers and characters were collected and
grouped into 68 classes (i.e., numbers 0 to 9: class 0 to 9, 41 Korean characters: class
10 to 50, and 17 local area prefixes: class 51 to 67). Figure 8 shows different Korean LP
styles, including single-line and double-line LPs. Area prefixes and predesignated Korean
characters can be found on older LPs and special-purpose vehicles. Tables 3 and 4 show
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the collected dataset for Korean LP numbers and characters. Note that we were not able
to collect all LP characters, and numerous local area prefixes were left out (highlighted in
gray in Table 4).

Figure 8. Different Korean LP styles, including single- and double-line LPs containing Korean
characters and numbers listed in Tables 3 and 4.

Table 3. Collected data for Korean LP numbers.

Class Character Training Validation Test Total

0 0 4560 871 686 6117
1 1 4978 966 744 6688
2 2 3850 680 583 5113
3 3 4171 789 608 5568
4 4 3644 657 510 4811
5 5 3775 718 558 5051
6 6 3431 598 510 4539
7 7 3544 710 487 4741
8 8 3449 635 473 4557
9 9 3081 577 434 4092

Total 38,483 7201 5593 51,277

Table 4. Collected data for Korean LP characters; classes 55, 57, 60, 61, 63, 64, and 67 were not
sufficiently collected (highlighted in gray).

Class Character Training Validation Test Total

10 가 (Ga) 137 31 25 193
11 거 (Geo) 150 36 26 212
12 고 (Go) 145 35 27 207
13 구 (Gu) 140 32 24 196
14 나 (Na) 151 35 26 212
15 너 (Neo) 151 35 27 213
16 노 (No) 141 31 26 198
17 누 (Nu) 144 32 26 202
18 다 (Da) 142 32 25 199
19 더 (Deo) 145 35 24 204
20 도 (Do) 142 32 26 200
21 두 (Du) 180 28 21 229
22 라 (Ra) 140 31 25 196
23 러 (Reo) 173 26 20 219
24 로 (Ro) 136 28 21 185
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Table 4. Cont.

Class Character Training Validation Test Total

25 루 (Ru) 217 35 27 279
26 마 (Ma) 185 26 20 231
27 머 (Meo) 154 35 27 216
28 모 (Mo) 182 26 20 228
29 무 (Mu) 153 35 27 215
30 바 (Ba) 656 168 120 944
31 배 (Bae) 33 10 6 49
32 버 (Beo) 141 32 26 199
33 보 (Bo) 164 19 16 199
34 부 (Bu) 163 15 13 191
35 사 (Sa) 106 27 21 154
36 서 (Seo) 126 11 9 146
37 소 (So) 124 12 9 145
38 수 (Su) 115 13 11 139
39 아 (A) 259 52 46 357
40 어 (Eo) 115 18 15 148
41 영 (Yeong) 54 12 9 75
42 오 (O) 124 17 15 156
43 우 (U) 132 8 8 148
44 자 (Ja) 264 53 37 354
45 저 (Jeo) 116 14 12 142
46 조 (Jo) 115 16 11 142
47 주 (Ju) 137 13 10 160
48 하 (Ha) 125 15 13 153
49 허 (Heo) 117 17 17 151
50 호 (Ho) 134 32 19 185
51 강원 (Gangwon) 136 35 22 193
52 경기 (Gyeonggi) 187 44 38 269
53 경남 (Gyeongnam) 106 25 16 147
54 경북 (Gyeongbuk) 51 11 9 71
55 광주 (Gwangju) 5 0 0 5
56 대구 (Daegu) 98 22 16 136
57 대전 (Daejeon) 0 0 0 0
58 부산 (Busan) 20 5 3 28
59 서울 (Seoul) 283 67 52 402
60 세종 (Sejong) 0 0 0 0
61 울산 (Ulsan) 3 0 0 3
62 인천 (Incheon) 165 39 29 233
63 전남 (Jeonnam) 5 0 1 6
64 전북 (Jeonbuk) 3 0 0 3
65 충남 (Chungnam) 331 76 60 467
66 충북 (Chungbuk) 11 1 1 13
67 제주 (Jeju) 0 0 0 0

Total 7832 1535 1180 10,547

4. Experiments

To evaluate the feasibility and effectiveness of the KVT-LPR system, we evaluated the
KVT-LPR system’s capability of detecting small LPs, detection speed, the performance of
vehicle type detection, and the performance of LPR.

4.1. Implementation

To implement our proposed KVT-LPR system, we used YOLOv4 [12] as the underlying
object detector. We used an open-source darknet framework to train YOLOv4 to detect
our custom set of classes (i.e., vehicle types, LP, and LP characters). We had previously
experimented with several image input sizes before settling on a 256 × 256 image input
size for YOLOv4 [24]. We discovered a considerable performance decrease on the lower-
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end embedded platform, despite the fact that a bigger input size, such as 608, increased
accuracy.

Figures 9 and 10 show the training loss and the mean average precision at 50%
intersection-over-union threshold (mAP @ 0.5). For the VT_LP detector, the collected
dataset was used as 70% train, 17.5% validation, and 12.5% test sets for each class. For the
LPC detector, we used the collected dataset as 80% train and 20% test sets for all classes.

4.2. Minimum Detectable LP Size

The KVT-LPR aims to recognize multiple vehicle types and LPs in multilane highways.
This means that the size of LPs will be small even in high-resolution images (i.e., 4K
resolution) when multiple lanes are observed. To see how our system performs on multilane
images, we recorded the detected LPs’ sizes by running test images of one-lane, two-lane,
three-lane, and four-lane highways, respectively. The recorded LP sizes were sorted in
ascending order of width. For brevity of results, we calculated the average of the first
100 ordered LP sizes. Table 5 shows the smallest 20 LP sizes for each lane with the calculated
average. The average LP sizes in the different lanes are visualized in Figure 11.

Figure 9. Training loss (blue) and mAP @ 0.5 (red) of the VT_LP detector in phase 1.



Sensors 2022, 22, 921 10 of 18

Figure 10. Training loss (blue) and mAP @ 0.5 (red) of the LPC detector in phase 2.

Table 5. Successfully detected smallest LPs in ascending order of their widths.

One-Lane Two-Lane Three-Lane Four-Lane

Single-Line LP Double-Line LP Single-Line LP Double-Line LP Single-Line LP Double-Line LP Single-Line LP Double-Line LP

Width Height Width Height Width Height Width Height Width Height Width Height Width Height Width Height

1 286 94 250 137 149 49 119 72 96 32 102 36 113 36 106 59
2 309 34 258 149 159 48 125 70 96 25 102 44 113 36 106 43
3 364 90 258 137 164 40 133 75 97 32 102 59 115 35 106 51
4 372 54 261 140 164 34 133 65 99 22 102 54 115 33 108 52
5 372 87 262 138 165 36 133 77 99 26 102 50 118 35 108 58
6 374 96 262 143 165 38 134 75 100 30 102 44 118 32 111 44
7 378 90 266 126 166 38 136 65 100 25 102 50 119 35 112 65
8 382 35 267 133 166 44 137 75 100 26 102 46 119 37 116 54
9 384 81 270 142 166 27 137 68 101 27 103 55 119 35 116 67

10 384 89 270 147 166 37 137 70 101 26 103 53 119 35 117 62
11 384 96 272 119 167 32 139 73 101 27 103 41 120 37 117 54
12 387 52 273 118 167 38 140 68 101 26 103 55 120 27 118 44
13 388 89 274 153 168 33 140 70 101 16 103 52 121 35 119 75
14 391 95 276 156 169 34 140 67 102 32 103 56 121 34 119 58
15 391 89 278 155 169 41 140 69 102 33 103 37 121 35 119 60
16 392 84 278 156 170 39 140 63 102 29 103 54 121 37 122 75
17 393 98 280 136 170 35 141 75 104 27 103 57 121 34 122 65
18 393 91 280 143 170 35 141 68 104 21 103 52 121 36 123 64
19 395 95 280 151 170 40 142 90 104 28 103 51 121 29 124 71
20 395 65 280 152 171 38 143 71 104 27 103 48 122 32 124 58

Average 408 89 304 155 176 39 153 73 108 27 105 54 126 35 140 69
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Figure 11. License plate sizes in one-lane , two-lane , three-lane , and four-lane images, repre-
sented to scale on 3840 × 2160 resolution.

4.3. Detection Speed

To measure the detection speed of the KVT-LPR, we used images that contain one car
and one LP per lane. This means that one-lane test images (33 images) contained one car
and one LP, and two-lane test images (20 images) contained two cars and two LPs. Likewise,
three-lane test images (22 images) contained three cars and three LPs, and four-lane test
images (19 images) contained four cars and four LPs. Figure 12 shows the examples of test
images.

The detection speed is defined as the time it takes to detect vehicle type and LP (phase
1, VT LP detector) and the time it takes to recognize LP characters from a cropped LP image
(phase 2, LPC detector). Two platforms running Ubuntu 18.04 were evaluated: a PC with an
RTX3090 graphics card (representing a high-end specification, GeForce RTX3090, NVIDIA
CUDA Cores 10496, memory 24 GB, AMD Ryzen 7 3700X 8-core processor, 16 GB main
memory) and a Jetson AGX Xavier (representing a low-end or embedded specification,
512-core NVIDIA Volta™ GPU with 64 tensor cores, 8-core ARM® v8.2 64-bit CPU, 8 MB L2
+ 4 MB L3, 32 GB 256-bit LPDDR4x | 137GB/s, 32GB eMMC 5.1). Tables 6 and 7 show the
measured detection speed on two platforms. The detection speed for the VT_LP detector or
phase 1 is comparable across different multilanes. However, the detection speed for the
LPC detector or phase 2 is significantly reduced. This can be explained by the fact that the
VT_LP detector detects only seven classes, whereas the LPC detector detects a magnitude
more classes.
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Figure 12. Examples of multilane test images for measuring detection speed.

Table 6. Detection speed on a PC with RTX3090.

One-Lane Two-Lane Three-Lane Four-Lane

Elapsed Time
(ms) FPS Elapsed Time

(ms) FPS Elapsed Time
(ms) FPS Elapsed Time

(ms) FPS

VT_LP detector 7.16 139.71 7.28 137.34 7.99 125.08 8.33 120.10
LPC detector 17.70 56.51 29.81 33.55 44.22 22.62 54.42 18.38
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Table 7. Detection speed on Jetson AGX.

One-Lane Two-Lane Three-Lane Four-Lane

Elapsed Time
(ms) FPS Elapsed Time

(ms) FPS Elapsed Time
(ms) FPS Elapsed Time

(ms) FPS

VT_LP detector 60.68 16.48 61.74 16.20 63.35 15.79 64.25 15.56
LPC detector 133.44 7.49 220.26 4.54 309.44 3.23 375.08 2.67

4.4. Vehicle Type and LP Detection Performance

In the KVT-LPR, the VT_LP detector detects seven classes (LP and six vehicle types).
To evaluate the performance of the VT_LP detector, we used typical metrics used for object
detection, including precision (Equation (1)), recall (Equation (2)), F1-score (Equation (3)),
average IOU (Equation (4)), average precision (Equation (5)), and mAP (Equation (6)).

Precision (P) =
TP

TP + FP
(1)

Recall (R) =
TP

TP + FN
(2)

F1-score =
2 × P × R

P + R
(3)

Average IOU =
TP

TP + FP + TN
(4)

Average Precision (AP) = ∑
n
(Rn − Rn−1)Pn (5)

mAP =
1
N

N

∑
i=1

APi (6)

We ran the VT_LP detector with 222 one-lane, 140 two-lane, 183 three-lane, and 133
four-lane test set images, respectively. The vehicle type and LP detection results are shown
in Tables 8 and 9. Our detector stably performed for one-lane, two-lane, and three-lane
test images, demonstrating mAPs of 98.0%, 94.0%, and 97.1%, respectively. The most
complicated scenario, four-lane, yielded an mAP of 84.6%. The most common cause of
failure on three- and four-lane highways is incorrect detection of partially contained vehicles
in the upper zone. This can be avoided by pushing the recognition area to the center of the
image.

Table 8. Vehicle type and LP detection, mAP at IOU = 0.5.

Class Average Precision
One-Lane Two-Lane Three-Lane Four-Lane

License Plate 99.4 99.9 98.1 95.2
Car 99.9 93.9 94.5 95.0
Mini Truck 99.4 99.6 97.2 98.4
Compact 87.5 75.0 98.1 75.0
Mini Van 99.4 90.0 94.6 69.4
Truck 100.0 100.0 100.0 75.0
Bus 100.0 100.0 100.0 100.0

mAP 98.0 94.0 97.1 84.6

Table 9. Performance of the VT_LP detector.

One-Lane Two-Lane Three-Lane Four-Lane

Precision 0.98 0.92 0.92 0.87
Recall 0.99 0.97 0.98 0.94
F1-score 0.99 0.95 0.95 0.90
Average IOU (%) 90.3 87.5 90.8 77.8
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Figure 13 shows examples of successfully detected vehicle types with the VT_LP
detector.

Figure 13. Examples of successfully detected vehicle types ( car , mini van , mini truck , truck ,
bus ) with the VT_LP detector in phase 1.

4.5. License Plate Recognition Performance

Phase 2 of the proposed KVT-LPR system was evaluated according to the same metrics.
The LPC detector detects 68 classes (i.e., numbers 0 to 9, 17 local area prefixes, and 41
Korean characters). First, we used our custom dataset to evaluate the performance of
the LPC detector. As mentioned earlier, our dataset does not include several local area
prefixes (i.e.,광주 (Gwangju),대전 (Daejeon),세종 (Sejong),울산 (Ulsan),전남 (Jeonnam),
전북 (Jeonbuk),제주 (Jeju) ). Additionally, we used a publicly available LP dataset from AI-
Hub (https://aihub.or.kr/aidata/27727, accessed on 7 December 2021). This open dataset
includes 100,000 cropped car number plates in JPG format. We excluded local area prefixes
not collected in our dataset. We tried to gather another open dataset, such as KarPlate
dataset [23], but it was no longer available due to legal issues. There are other approaches,
such as synthetically generating LPs [26] and synthetic LP dataset (https://www.idai.or.
kr/user/data_market/detail.do?id=63af9c70-ce79-11eb-ba8d-eb1fdd80455f, accessed on 7
December 2021), but we only evaluated our detector with the real data. Figure 14 shows
LPR results on our custom dataset. Figure 15 shows LPR results on the AI-Hub dataset.

Table 10 shows the performance of the LPC detector according to the evaluation
metrics, and Table 11 shows the detailed per-class results. With relatively few false positives
and false negatives, the LPC detector had an adjusted mAP (i.e., eliminating classes with no
or sparse data) of 99.30% for our custom dataset and 99.41% for the publicly open AI-Hub
dataset.

Figure 14. Output examples of the LPC detector in phase 2 using our dataset which reads as ‘Yeong
Gyeonggi 06 Jo 6435’, ‘92 Gu 4772’, ‘07 Bo 7291’, ‘Seoul 81 Sa 7477’, and ‘28 So 8691’, respectively.

https://aihub.or.kr/aidata/27727
https://www.idai.or.kr/user/data_market/detail.do?id=63af9c70-ce79-11eb-ba8d-eb1fdd80455f
https://www.idai.or.kr/user/data_market/detail.do?id=63af9c70-ce79-11eb-ba8d-eb1fdd80455f
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Figure 15. Output examples of the LPC detector in phase 2 using the AI-Hub dataset which reads as
‘03 Ma 9890’, ‘158 Ma 5155’, ‘Yeong Gyeonggi 06 So 8683’, ‘Seoul 84 Ba 1930’, and ‘02 Na 2509’.

Table 10. Performance of the LPC detector.

Our Dataset AI-Hub Dataset

Precision 0.99 1.00
Recall 1.00 1.00
F1-Score 0.99 1.00
Average IOU (%) 92.84 99.41

Table 11. Performance of the LPC detector per class; classes highlighted in gray are excluded for
adjusted results.

Class
Our Dataset AI-Hub Dataset

AP TP FP AP TP FP

0 99.65 868 2 99.93 4470 3
1 99.82 965 14 99.94 5538 11
2 99.83 679 4 99.83 5051 26
3 99.87 788 4 99.95 5599 9
4 99.40 654 3 99.76 4451 5
5 98.68 718 8 98.80 4724 4
6 99.83 597 0 99.87 4742 5
7 99.86 709 9 99.80 4421 22
8 100.00 635 0 99.94 4824 6
9 99.83 575 1 99.86 4186 0

가 (Ga) 100.00 31 2 99.90 198 0
거 (Geo) 97.07 34 0 98.49 197 5
고 (Go) 100.00 35 1 99.00 198 0
구 (Gu) 100.00 32 0 97.50 195 0
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Table 11. Cont.

Class
Our Dataset AI-Hub Dataset

AP TP FP AP TP FP

나 (Na) 97.14 34 0 100.00 199 0
너 (Neo) 99.68 35 1 99.99 200 3
노 (No) 96.77 30 1 98.96 197 2
누 (Nu) 100.00 32 0 98.51 198 0
다 (Da) 100.00 32 0 99.49 199 2
더 (Deo) 97.06 33 0 96.50 193 0
도 (Do) 100.00 32 2 98.50 197 3
두 (Du) 100.00 28 0 99.85 200 10
라 (Ra) 100.00 31 0 100.00 198 0
러 (Reo) 100.00 26 0 99.47 196 6
로 (Ro) 89.70 25 11 96.26 193 2
루 (Ru) 92.14 32 9 98.92 198 13
마 (Ma) 100.00 26 0 99.00 198 1
머 (Meo) 99.86 35 0 96.05 195 4
모 (Mo) 100.00 25 0 98.79 197 3
무 (Mu) 100.00 35 0 98.17 197 1
바 (Ba) 100.00 168 1 98.80 249 2
배 (Bae) 100.00 10 0 0 0 0
버 (Beo) 100.00 32 0 99.99 200 4
보 (Bo) 100.00 19 0 99.99 200 4
부 (Bu) 100.00 15 0 99.99 201 5
사 (Sa) 99.87 26 0 93.73 198 2
서 (Seo) 100.00 11 0 99.98 200 22
소 (So) 100.00 12 0 99.99 199 4
수 (Su) 100.00 13 0 99.99 200 4
아 (A) 100.00 52 0 97.13 203 0
어 (Eo) 100.00 18 0 96.96 193 3
영 (Yeong) 98.81 11 2 0 0 0
오 (O) 100.00 17 0 97.66 198 17
우 (U) 100.00 8 0 98.99 197 1
자 (Ja) 100.00 53 0 90.04 208 0
저 (Jeo) 100.00 14 0 97.84 198 25
조 (Jo) 100.00 16 0 100 201 0
주 (Ju) 100.00 13 0 98.48 195 0
하 (Ha) 100.00 15 0 99.48 200 2
허 (Heo) 100.00 17 0 99.31 198 7
호 (Ho) 100.00 32 0 89.59 178 1

강원 (Gangwon) 97.14 34 0 0 0 0
경기 (Gyeonggi) 100.00 44 3 96.36 159 0
경남 (Gyeongnam) 99.70 24 1 0 0 0
경북 (Gyeongbuk) 100.00 11 0 0 0 0
광주 (Gwangju) 0 0 0 0 0 0
대구 (Daegu) 100.00 22 0 0 0 0
대전 (Daejeon) 0 0 0 0 0 0
부산 (Busan) 100.00 5 0 0 0 0
서울 (Seoul) 99.98 66 1 97.83 724 2
세종 (Sejong) 0 0 0 0 0 0
울산 (Ulsan) 0 0 0 0 0 0
인천 (Incheon) 100.00 39 0 0 0 0
전남 (Jeonnam) 0 0 0 0 0 0
전북 (Jeonbuk) 0 0 0 0 0 0
충남 (Chungnam) 96.00 74 3 0 0 0
충북 (Chungbuk) 100.00 1 0 0 0 0
제주 (Jeju) 0 0 0 0 0 0

Total 89.08 8703 83 73.87 56,648 251
Adjusted 99.30 8703 83 99.41 56,648 251
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4.6. Discussion

Typical LPR systems use the camera view to monitor and check the LP of a single
vehicle. The throughput (i.e., the number of LPs detected) of an LPR system can be enhanced
and the deployment cost can be decreased if it can check multiple vehicles in several lanes.
The proposed KVT-LPR showed that using multilane high-resolution images for LPR and
vehicle type detection is possible. Table 5 shows how our system successfully detected
small LP sizes of about 100 pixels. The KVT-LPR can be deployed on an embedded platform
such as Jetson AGX. Table 7 shows that a standalone KVT-LPR configuration is feasible,
but a networked-system (i.e., sending images to servers for recognition) approach can
compensate for its shortcomings.

Our approach has some limitations. First, not all possible Korean LP styles and charac-
ters were collected in our dataset. Due to the geographical distance between other regions
(i.e., cities and provinces) and our data collection location, several LPs with local area
prefixes were left out. More data on those missing locations can be collected to improve
our dataset. Second, the vehicle type detection can be improved by disregarding partially
visible vehicles in images. In three-lane and four-lane images, those partially visible vehicles
often resulted in failure cases. Third, our method assumes that the front view of the vehicle
is captured. When the vehicle’s rearview is used for recognition, vehicle type detection
using the VT_LP detector is not possible due to this constraint. Regardless, LPR via the LPC
detector works in both frontal and rear views. Lastly, as with many previous LPR studies,
our dataset is not disclosed for legal reasons (i.e., obtaining the vehicle owner’s consent for
distribution and reuse).

5. Conclusions

This paper proposed KVT-LPR, a two-phase LPR system based on YOLOv4 for Korean
vehicles and LPs. Using 4K high-resolution input images, six vehicle types and LPs are
detected by the VT_LP detector, followed by the LPC detector for LPR. The KVT-LPR is
applicable to settings (i.e., highly populated and multilane highways in Korea) where the
size of LPs is small. Across two datasets (our custom dataset and an open public dataset)
and two target systems (RTX3090 and Jetson AGX), two custom detectors in the KVT-LPR
demonstrated LPR performance suitable for both high-end and embedded platforms.

Our approach has limitations and drawbacks discussed in previous sections that
deserve further research. For example, our dataset can be extended to include national cov-
erage and special purpose vehicles. Moreover, to optimize LPR performance in designated
settings (i.e., standalone, over-the-network, on edge devices), various network parameters,
including image input size for YOLOv4 or other object detectors, can be compared, and
trade-offs can be analyzed. Nonetheless, we have demonstrated the merits of our proposed
KVT-LPR to effectively address Korean LPR with vehicle type detection that can be used in
various complex smart city applications.
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