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Abstract: We use LSTM networks to forecast the value of the BTC and S&P500 index, using data from
2013 to the end of 2020, with the following frequencies: daily, 1 h, and 15 min data. We introduce our
innovative loss function, which improves the usefulness of the forecasting ability of the LSTM model
in algorithmic investment strategies. Based on the forecasts from the LSTM model we generate buy
and sell investment signals, employ them in algorithmic investment strategies and create equity
lines for our investment. For this purpose we use various combinations of LSTM models, optimized
on in-sample period and tested on out-of-sample period, using rolling window approach. We pay
special attention to data preprocessing in the input layer, to avoid overfitting in the estimation and
optimization process, and assure correct selection of hyperparameters at the beginning of our tests.
The next stage is devoted to the conjunction of signals from various frequencies into one ensemble
model, and the selection of best combinations for the out-of-sample period, through optimization
of the given criterion in a similar way as in the portfolio analysis. Finally, we perform a sensitivity
analysis of the main parameters and hyperparameters of the model .

Keywords: machine learning; recurrent neural networks; long short-term memory model; neural
network; algorithmic investment strategies; systematic trading systems; loss function; walk-forward
optimization

JEL Classification: C4; C14; C45; C53; C58; G13

1. Introduction

The main aim of this paper is to explore deep learning possibilities in time series
forecasting by applying buy/sell signals generated by the LSTM-type (Long Short-Term
Memory) recurrent neural network to algorithmic investment strategies, tested on various
frequencies of BTC (Bitcoin) and S&P500 index. We focus solely on LSTM networks,
and compare its performance on various datasets, frequencies, selected hyperparameters
and ensemble models, created by combining the aforementioned variables.

The main advantages and the novelty of our work can be divided into five important
points, listed below. Firstly, the use of the newest Machine Learning (ML) methods (LSTM
model) in algorithmic investment strategies (AIS) applied for cryptocurrency (BTC) and
traditional equity index market (S&P500 index). Secondly, the indication of often encoun-
tered drawbacks occurring in paper testing of various algorithmic strategies. Thirdly,
designing the proper architecture (initial hyperparameters tuning) of the LSTM model and
testing the performance of AIS with comparison to the traditional Buy&Hold model (B&H).
Fourthly, the use of various frequencies from daily to 15 min data in algorithmic investment
strategies. Finally, the construction of an ensemble model, based on the combination of
algorithmic investment strategies, on various frequencies applied for BTC and S&P500
index for separate and combined frequencies.
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The idea for this paper arise from never ending attempts to understand and beat
the market, through the construction of algorithmic investment strategies generating
abnormal returns, i.e., characterized with risk adjusted returns significantly higher than
the benchmark or other existing strategies. Moreover, none of the previous works covered
the topic of the performance analysis of signals from the LSTM model in algorithmic
investment strategies, with simultaneous focus on building a proper architecture of LSTM
network, testing in on various frequencies and various asset classes with rolling window
approach, enhanced with additional sensitivity analysis at the end. Although each year
researchers publish multiple papers devoted to testing numerous alternative approaches
employed in AIS, the results of these studies include numerous drawbacks and mistakes,
which, in practice, makes it impossible to use in real trading. Therefore, the chase for an
efficient algorithmic investment strategies continues.

The main research hypotheses verified in this paper are as follows:

Hypothesis 1 (H1). The signals from LSTM model employed in AIS are more efficient than
Buy&Hold approach, regardless of asset class tested.

Hypothesis 2 (H2). The signals from LSTM model employed in AIS are more efficient than
Buy&Hold approach, regardless of data frequency tested.

Hypothesis 3 (H3). The signals from LSTM model employed in AIS are more efficient in case of
BTC than in case of S&P500 index.

Hypothesis 4 (H4). The robustness of tested models to various hyperparameters does not depend
on asset class tested.

Hypothesis 5 (H5). The ensemble model constructed as a combination of models with various
frequencies and assets can produce better risk adjusted returns than single models.

Referring to software, libraries, hardware and the time of calculation we can say that
the results for LSTM model were obtained using R 4.1.0 along with Python 3.7.10. Deep
learning libraries used for design, training and testing the network are Keras 2.4.0 and
TensorFlow 2.5.0. The rest of the calculations, as well as graphs and tables were done using
only R and RStudio environment. Computer specification used in this research was as
follows: AMD Ryzen 7 3700X 3.6 GHz, 16 GB RAM, NVIDIA GeForce RTX 2060 Super with
270 tensor cores. One full training (number of rolling windows × 40 epochs) lasted around
20 min on 1 d frequency, 60 min on 1 h frequency, 180 min on 15 min frequency for S&P500
data, 80/240/720 min for BTC data.

The structure of this paper includes a short introduction with motivation and hypothe-
ses in the Section 1 and literature review in the Section 2. Methodology and data is covered
in the Section 3. The main results are presented in the Section 4. Then, the Section 5 covers
the sensitivity analysis and Section 6 combined strategies, and the Section 7 concludes
the research.

2. Literature Review
2.1. Most Common Drawbacks in Papers Testing AIS

Although literature review is very broad on this topic the main problem is that most
of the papers testing algorithmic investment strategies do not maintain proper structure
of testing, which is the reason why their results can not be treated as valid and robust.
Before we go to the main empirical part of this research it is important to list and describe
the most common drawbacks in papers testing various AIS, i.e.,:

• Only one in-sample and one out-of-sample period, causing that the results are heavily
dependent on the selected period. This is a very common issue, that can be seen in
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majority of research papers on this topic (Wiecki et al. (2016) [1], Lopez de Prado
(2013) [2], Bailey et al. (2016b) [3], Raudys (2016) [4]).

• Tests of AIS are performed on only one basis instrument, causing that results are
strictly dependent on the characteristics of the distribution of this instrument (Vo and
Yost-Bremm (2020) [5]).

• Over-optimization of ML models, (Lopez de Prado (2013) [2], Bailey et al. (2016b) [3]).
• Improper loss function or optimization criterion—in vast majority of the papers

authors do not use proper optimization criteria (RMSE, MSE, MAE, MAPE %OP, etc.)
and/or loss function, which makes it impossible to select the best techniques for
creating buy/sell signals (Di Persio and Honchar (2016) [6], Yang et al. (2019) [7]).

• Forward looking bias in buy/sell signals—it is usually caused by the use of future
macroeconomic data or errors in buy/sell signals definitions (Chan (2013) [8], Chan
(2021) [9], Jansen (2020) [10]).

• No sensitivity analysis—such analysis enables authors to refer to the main results of
the model, with regard to initially set parameters, and evaluate if they are robust (Di
Persio and Honchar (2016) [6], Zhang et al. (2018a) [11], Yang et al. (2019) [7]).

• Data snooping bias—authors publish only the set of the best results obtained by
the model, without consistent search among other of parameters and assumptions
(Bailey et al. (2016a) [12], Chan (2013) [8]).

• Survivorship bias—the most common example of this bias is the selection of current
constituents of the given index, in the research covering the last 20 years of data (Chan
(2021) [9]).

2.2. LSTM Research Literature

Papers describing various approaches to LSTM can be diveded on those referring to
the theoretical aspects of LSTM model and the ones focusing mainly on LSTM and various
ML models empirical properties, tested on various sets of data.

The first introduction of LSTM was presented in the paper written by Hochreiter and
Schmidhuber (1997) [13]. By introducing Constant Error Carousel (CEC) units, LSTM can
deal with the exploding and vanishing gradient problems. The initial version of the LSTM
block included cells, input, and output gates. LSTM genuine feature was the ability to
preserve information through the chain of iterations during training. The next theoretical
advancement was introduced by Gers (1999) [14] who introduced the forget gate (also
called “keep gate”) into the LSTM architecture, enabling the network to reset its own state.
Next, Gers et al. (2000) [15] added peephole connections, which are connections from the
cell to the gates. Additionally, the output activation function was omitted. More recent
advancements cover putting forward a simplified variant called Gated Recurrent Unit
(GRU) by Chung et al. (2014) [16].

Another part of literature focuses on empirical research. Some studies provide either
a general review of ML applications in financial time series forecasting (Heaton at al.
(2016) [17], Tsantekidis et. al. (2017) [18], Rechentin (2014) [19]) or report performance of
specific non-LSTM tools in this area (Tay and Cao (2002) [20], Sun et. al. (2017) [21], Van
Gestel et. al. (2001) [22], Qu and Zhang (2016) [23]).

We can also find numerous studies presenting results of application the LSTM model,
mostly in predicting stock prices.

Chen et al. (2015) [24] implemented LSTM on China stock market. They collected
data from stocks and divided percentage returns of prices into seven groups: (−∞, −1.5],
(−1.5, −0.5], (−0.5, 0.4], (0.4, 1.4], (1.4, 2.5], (2.5, 4.3], (4.3, ∞). The main aim of the research
was tosuccessfully predict a proper group for the next day return. In addition to returns
data, they also used 10 different features: open, low, high, close prices and volume for a
given stock, and the same five features for Shanghai Securities Composite Index. Model
specification used in this research: 30 days sequence length, ‘RMSprop’ optimizer and
learning rate 0.001. The best results measured by accuracy of predicted return group were
given by model using all ten features achieving 27.2% accuracy, which is twice as much
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as randomly picked groups. M’ng et al. (2016) [25] also explored trading with the FFN
(Feedforward neural network) supported by the set of technical indicators (seven in total,
downloaded from the Bloomberg website) as input variables. Their target was to predict
close price changes of Kuala Lumpur Composite Index using historical data ranging from
2008 to 2014.

Roondiwala et al. (2017) [26] tried to predict stock returns of NIFTY 50 index. They
trained multivariate LSTM model using daily OHLC prices as features. Model used 2
hidden layers with 128 and 64 units, each. Dense layer activation function was ‘ReLU’
and optimizer ‘RMSprop.’ Sequence length of days for individual input was 15 days.
After testing different combinations of epochs and features the most accurate model in
terms of RMSE used all four features and used 500 epochs for model training. Nelson et.
al. (2017) [27], apply the LSTM model along with technical analysis indicators and get an
average of 56% of accuracy in predicting directions of stocks movements in the near future.
Bao et. al. (2017) [28] present a novel deep learning framework where wavelet transforms
(WT), stacked autoencoders (SAEs) and long-short term memory (LSTM) are combined for
stock price forecasting. Their model outperforms other similar models in both predictive
accuracy and profitability performance.

Vargas et al. (2018) [29] used LSTM with input variables as technical indicators,
but divided them into two sets. Both had a sequence length equal to period of 5. They
also used the text analysis of financial news, which divided the study into the next two
subgroups. Test was performed on the Chevron Corporation stocks between 2006 and 2013.
The test period covered the last 8 months of the total set, which was equal to approximately
11% of data. The hyperparameters used in that work included: 128 LSTM units, 1 LSTM
layer (LSTM as an input, no additional hidden layers), and SGD (stochastic gradient descent
algorithm) as optimizer. The overall result exposed a great advantage of the LSTM network,
supported by the news analysis and first set of TIs, over the standard LSTM model with
the same set of TIs. Nevertheless, both of them proved to generate higher returns than
buy-and-hold strategy.

Zhang et al. (2018b) [11] implemented LSTM model to predict the next day returns for
China stocks. A different approach using LSTM model was presented in Sang and Di Pierro
(2019) [30]. Instead of using prices or returns for predicting stock price movements, authors
decided to use well known technical analysis trading strategies signals as features. Selected
methods were: Simple Moving Average, Relative Strength Index and Moving Average
Convergence Divergence. Dataset used in empirical study contained five stocks with
highest capitalization in each from nine sectors of S&P500. Parameters used in final model
were: one hidden layer, learning rate 0.001, 15 days sequence length. LSTM outperformed
oscillators on six of nine sectors. Zhang et al. (2019) [31] presented AT-LSTM model which
is combination of LSTM and Attention based model and provided results for three index
datasets: Russell 2000, DJIA and NASDAQ. Kijewski and Ślepaczuk (2020) [32] compared
the performance of classical techniques with LSTM model for S&P500 index on daily
frequency from the last 20 years and showed that LSTM model results are not robust to
initial hyperparameters assumptions.

One of the last approach which tested various machine learning techniques for time
series forecasting problem was paper of Chlebus et al. (2020) [33] who applied the follow-
ing methods: SVR, KNN, XGBoost, LightGBM, LSTM, ARIMA, ARIMAX with features
coming from such classes like: technical analysis, fundamental analysis, Google Trends
entries, markets related to Nvidia. The best performance was obtained by SVR based on
stationary attributes.

At the end we have to say that many other authors have successfully verified that the
LSTM network is able to perform better than many other popular time series prediction
methods, examples include: (Gao and Chai (2018) [34], Dautel et al. (2020) [35], Fischer and
Krauss (2018) [36], Shynkevich et al. (2017) [37]).
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3. Methodology and Data
3.1. Terminology and Metrics

The main model used in this work is based on deep recurrent neural network, specifi-
cally on LSTM network. Performance of this type of networks proved to work very well
with financial time series, and there have been extensive research put into testing LSTMs
for stock returns forecasting and directional movements, as presented in literature review.

To train the network, a custom loss function had to be used as the base network
performance metric in the training process. Apart from that, a set of strategy performance
metrics was also calculated on the basis of equity line constructed from the investments
based on single Buy/Sell signals. Sensitivity analysis was also implemented to show
how changes in network hyperparameters and architecture affect the base case results.
Additionally, ensemble models built on strategies with various frequencies and assets were
tested at the end.

3.2. Lstm Model

LSTM networks are a type or recurrent neural networks (RNN) that can keep track of
long term dependencies in data, allowing to partially solve vanishing gradient problem,
typical for classic RNNs (Goodfellow et al. (2016) [38]). They are widely used to model
sequential data such as text, speech and time series data. LSTM units are composed of
memory cells, with each cell having three types of gates (input gate, output gate and forget
gate). These gates use tanh and sigmoid functions to regulate the flow of information
through the cell, deciding how much and which information should be stored in long term
state, passed on to another step, or discarded. In our research, the input vector for the
LSTM network (xt), was a series of past observations form BTC and S&P500 data, and the
output vector (ht) was a single value predicted for the next period.

The architecture of LSTM network can be described as follows:

ft = σ(U f xt + Vf ht−1 + b f ) (1)

C′t = ft ◦ Ct−1 (2)

it = σ(Uixt + Viht˘1 + bi) (3)

C+
t = tanh(Ucxt + Vcht−1 + bc) (4)

Ct = C′t + it ◦ C+
t (5)

ot = σ(Uoxt + Voht−1 + bo) (6)

ht = ot ◦ tanh(Ct) (7)

where ft, it and ot are activation vectors for three specific gates, ht is a hidden state (or
output) vector, Ct is a cell state vector, while b, U and V denote biases, input weights
and recurrent weights of the network cells. Figure 1 shows the a single cell of typical
LSTM network:

Figure 1. Architecture of LSTM cell. Source: Matsumoto F., (2019) [39].
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3.3. Specification of Our LSTM Model

Our model consists of three LSTM layers with 512/256/128 neurons respectively and
one single neuron dense layer on the output. Each of LSTM layers is using tanh activation
function, which allows to retain negative values. L2 kernel regularization (0.0005) and
dropout (0.02) are also applied to each of these layers. Input shape of the data for the
network was set to (sequence size, number of features), where only one feature was
used as the input data—the simple returns of the tested frequency. The first two layers
return sequences with the same shape as the input sequence (full sequence) and the last
LSTM layer returns only the last output. To be able to use GPU acceleration during the
training process, recurrent activation function was set to sigmoid and we did not use any
recurrent dropout.

To train the model, we used Adam optimizer (Kingma and Ba (2017) [40])—a stochastic
gradient descent optimizer with momentum (estimating first-order and second-order
moments). The learning rate of the optimizer was set to 0.0015 (after tuning). Data was
split into mini-batches (set to 80 after tuning), to allow the optimizer to work more efficiently.
Such architecture allowed us to use the model efficiently across both datasets, as well as test
it on different frequencies and apply sensitivity analysis to various hyperparameter settings.

3.3.1. New Loss Function

In order to avoid one of the most common drawbacks from papers testing AIS, we
introduced our authorship loss function, which improves the usefulness of forecasting
ability of LSTM model in algorithmic investment strategies (AIS).

Based on our previous research (e.g., Kijewski and Ślepaczuk (2020) [32]), and Vo
and Ślepaczuk (2022) [41], we concluded that popular error metrics like RMSE, MSE,
MAE, MAPE, %OP used in 99.9% of similar research are not proper error functions for the
evaluating the efficiency of forecasting ability of the models tested in AIS. The reason is that
the above mentioned error metrics evaluate only the accuracy of forecasts (i.e., difference
between forecasted and observed value), which is often confused with the forecasting
ability of investment signals in AIS built on these forecasts. It means that almost all these
error metrics (RMSE, MSE, MAE, MAPE) are penalized no matter if the forecast error
(forecast error = R̂i − Ri) was positive or negative while %OP metric does not take into
account the magnitude of forecast error, but only its direction. For this reason, researchers
in most of the other papers select not the most profitable combination of signals for the
strategy, but the combination which only optimizes the selected error metric.

Therefore, we propose new loss function called Mean Absolute Directional Loss
(MADL) that can be calculated using the following formula:

MADL =
1
N

N

∑
i=1

(−1)× sign(Ri × R̂i)× abs(Ri) (8)

where: MADL is the Mean Absolute Directional Loss, Ri is the observed return on interval
i, R̂i is the predicted return on interval i, sign{X} is the function which gives the sign of X,
abs{X} is the function which gives the absolute value of X and N is the number of forecasts.
This way, the value the function returns will be equal to the observed return on investment
with the predicted direction, which allows the model to tell if the prediction will yield
profit or loss and how much this profit or loss will be. MADL was designed specifically
for working with AIS’s. The function in our model is minimized, so that if it returns the
negative values the strategy will make a profit, and if it returns a positive value the strategy
will generate a loss.

MADL was the main loss function used in hyperparameters tuning and in the estima-
tion of the LSTM model.
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3.4. Hyperparameters Turning

During our research we conducted detailed hyperparameters tuning to ensure the best
possible results from our model. During the process we optimized the following parameters:

• The number of layers (1–5) and neurons in each layer (5–512).
• Dropout rate (0.001–0.2) and l2 kernel regularization (0.0001–0.01).
• Several different types of the optimizer (SGD, RMSProp and Adam variants).
• Learning rates (0.001–0.1) and momentum values (0.1–0.9).

As for the input data, we tuned the training and testing/rolling window sizes, se-
quence length (2–20), batch size (from 16 to test size) and training process duration, which
was set by the number of epochs (10–300), as well as callbacks functions of early stop-
ping and model checkpoint. Only the first window of data was used for tuning, and
the best hyperparameters were then used for the remaining iteration during the walk
forward predictions.

Most of the tuning was done using the KerasTuner framework (O’Malley et al.
(2019) [42]) allowing automated parameter selection using Hyperband search algorithm
(Li et al. (2018) [43]). This approach allowed us to test how changes to several parameters
at once would affect the network performance, instead of testing each hyperparameter
separately. Results are presented in Table 1. In addition, we also conducted a careful
manual sensitivity analysis on the parameters that had the most impact on the results.

Table 1. Values of hyperparameters selected after network tuning.

Hyperparameter Selected Value

No. hidden layers 3
No. neurons 512/256/128

Activation function tanh
Dropout rate 0.02
l2 regularizer 0.0005

Optimizer Adam
Learning rate 0.00015
BTC train/test 1371/90
S&P train/test 948/65

Batch size 80
Sequence length 14/20

Source: Own study.

3.5. Training Process

For training and prediction we used a walk forward predictions/rolling window
approach. This allowed us to make sure that the network will not overfit, as it was trained
and tested multiple times, across various sets of data. Model was trained on approximately
three years of data (equal to train set length) and then it was used for predictions over
the next 3 months (equal to test set length). During that period, a single return value was
predicted each time, based on the last 14/20 (sequence length) values. After making the
predictions, the window was moved ahead, by the number of periods equal to test set and
the model was retrained from scratch.

A single iteration was trained for 40 epochs. Model checkpoint callback function was
used to store the best weights (parameters) of the model, based on the lowest loss function
value from all trained epochs. These weights were then used for prediction on the test
set data.

3.6. Research Description

During this research the following steps were performed:

• The division into in-sample (training and validation) and into out-of-sample (test)
samples, set to 1371/90 observations for BTC and 948/65 observations for S&P500.
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• Hyperparameters tuning, described in Section 3.4.
• Buy/Sell signals definitions based on the next day forecasts.
• Tests for two types of strategies: Long/Short and Long only.
• New Loss function: MADL, described in Section 3.3.1.
• Walk-forward predictions.
• Equity lines and performance metrics according to Ślepaczuk et al. (2018) [44], results

provided in Section 4.
• Sensitivity analysis for various values of Dropout, Sequence length, Train Set length,

Batch size, results provided in Section 5.
• The combination of signals across different frequencies (1 d, 1 h and 15 min) and

asset classes (equity—S&P500 index and cryptocurrency—BTC), results provided in
Section 6.

3.7. Performance Metrics

In order to evaluate the efficiency of tested strategies we calculate the following
performance metrics based on Kosc et al. (2019) [45] and Bui and Ślepaczuk (2021) [46].

• Annualized Return Compounded (ARC), which shows annualized rate of return for
the given instrument (strategy), over the period (0, . . . , T):

ARC =
((

1 +
PT
P0

)S/T)
×100% (9)

where PT is the price of the given instrument at the end of interval T, P0 is its current
price and the scale parameter S is equal to the number of trading periods during a
year for a given frequency.

• Annualized Standard Deviation (ASD) is the most common risk measure showing the
annualized deviation of returns from their long-term average:

ASD =

√√√√ S
T

T

∑
k=0

(Rt−k − R̄)2 × 100% (10)

where R̄ is the average simple daily return of the given instrument and the scale
parameter S is equal to the number of trading periods during a year for a given fre-
quency.

• Maximum Drawdown (MD) which informs us about maximum percentage drawdown
during the investment period:

MD(T) = max
τ∈[0,T]

(
max

t∈[0,τ]
(Ri,T − Ri,τ)

)
× 100% (11)

• Maximum Loss Duration (MLD) which informs us about maximum number of years
between the previous local maximum to the forthcoming local maximum:

MLD = max
mj −mi

S
(12)

for which Valmj > Valmi and j > i, where mj and mi are the numbers of days indicating
consecutive local maximum of equity line, Valmj and Valmi are the values of local
maximums in days mj and mi, respectively. The scale parameter S is equal to the
number of trading periods during a year for a given frequency.

• Information Ratio (IR∗) which describes the relation of the portfolio annualized rate
of return to its annualized standard deviation:

IR∗ =
ARC
ASD

(13)
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• Modified Information Ratio (IR∗∗) which takes into account the sign of the ARC
metric:

IR∗∗ = IR∗ ×ARC× sign(ARC)

MD
(14)

• Aggregated Information Ratio (IR∗∗∗) which we regard this as the most important in
evaluation of results of this study:

IR∗∗∗ =
ARC3

ASD×MD×MLD
(15)

• Number of observations (nObs) which is the length of the investment horizon in
trading days.

• Number of trades (nTrades).

3.8. Data Description

As input data for the network we used simple returns, based on one minute data for
both Bitcoin (BTC) and S&P500, from 1 April 2013 to 31 December 2020 (source for the
BTC data: Kraken, Bitfinex, BTC-e, CEX and Coinbase exchanges. Source for the S&P500
data: Interactive Brokers API). Lower frequency returns were aggregated from the minute
returns data. The descriptive statistics for time series on daily, hourly and 15 min frequency
are presented in Table 2.

For the size of the training set we used 1371 observations for BTC and 948 observations
for S&P500, (after tuning). Validation set size was 33% of the training set. Test sets, and also
rolling window, size was set to 90 for BTC and 65 observations for S&P500 (after turning).

Input sequence size for LSTM network was set to 20 for BTC and 14 for S&P500 and
the batch size was set to 80.

The output of the model was a single number predicting the next return value. Based
on the sign of the predicted return value we assigned −1, 0, 1 signals. However, the cases
where network predicted the 0 return value (resulting in a neutral signal) were negligible.

The hours of trading for S&P500 index were between 3.30 p.m. CET and 10.00 p.m.
CET, from Monday to Friday excluding official holidays, while BTC was traded 24 h per
day, 7 days a week.

Table 2. Descriptive statistics for BTC and S&P500 returns.

Daily Hourly 15 min

panel A: BTC
Min. −0.572057 −0.1790734 −1.321 × 10−1

1st Qu. −0.013333 −0.0027008 −1.507 × 10−3

Median 0.001667 0.0001258 3.835 × 10−5

Mean 0.003911 0.0001444 3.683 × 10−5

3rd Qu. 0.019457 0.0030950 1.648 × 10−3

Max 3.368390 0.2088179 1.915 × 10−1

Skew. 24.92251 0.02863625 0.1060641
Kurt. 1002.3 31.59648 62.33809

Norm. <2.2 × 10−16 <2.2 × 10−16 <2.2 × 10−16

panel B: S&P500
Min. −0.1202281 −9.533 × 10−2 −8.124 × 10−1

1st Qu. −0.0032111 −1.059 × 10−3 −5.424 × 10−4

Median 0.0006892 1.402 × 10−4 4.214 × 10−5

Mean 0.0005085 8.239 × 10−5 2.340 × 10−5

3rd Qu. 0.0051177 1.367 × 10−3 6.035 × 10−4

Max 0.0943437 5.680 × 10−2 5.309 × 10−2

Skew. −0.6935947 −1.575707 −3.019853
Kurt. 21.11677 61.30094 173.2111

Norm. <2.2 × 10−16 <2.2 × 10−16 <2.2 × 10−16

Note: These descriptive statistics were calculated for each time frequency separately in the period staring 1 April
2013 for daily frequency for both BTC and S&P500, BTC hourly data from 4 November 2016, 15 min data from 17
December 2016, S&P500 hourly data from 20 June 2016, 15 min data from 11 August 2016 and all sets finishing on
31 December 2020. Norm. is Pearson chi-square normality test p-value.



Sensors 2022, 22, 917 10 of 23

4. Results for the Base Case Scenario

Table 3 shows the results of strategies for BTC and S&P500 on daily frequency, using a
classic MSE loss function and our novel MADL loss function. MSE was used as our starting
point in comparing the performance of LSTM networks but after thorough consideration
placed in Section 3.3.1 and comparison placed in Table 3 we saw that results based on
MADL function are much better in terms of maximizing of our risk-adjusted return metrics
(IR∗, IR∗∗, and IR∗∗∗) for tested algorithmic investment strategies. Therefore, in the next
steps, we use our novel MADL function.

Table 3. Performance metrics for investment strategies on BTC and S&P500 in the base case scenario
with MSE and MADL loss functions.

aRC aSD MD MLD IR∗ IR∗∗ IR∗∗∗ nObs nTrades

panel A: BTC 1 d
BTC 132.41 78.98 83.23 2.96 1.68 2.67 1.19 1461 NA

MSE Long/Short 182.18 78.89 83.23 2.08 2.31 5.05 4.42 1461 4
MADL

Long/Short
190.47 78.88 48.59 0.85 2.41 9.47 21.23 1461 156

MSE Long only 159.07 77.46 83.23 2.85 2.05 3.92 2.19 1461 2
MADL Long only 200.49 57.83 50.79 1.40 3.47 13.69 19.56 1461 78

panel B: S&P500 1 d
S&P500 13.39 20.51 33.92 0.58 0.65 0.26 0.06 1005 NA

MSE Long/Short 0.44 20.53 28.61 2.04 0.02 0.00 0.00 1005 1014
MADL

Long/Short
6.13 20.48 25.09 2.56 0.30 0.07 0.00 1005 168

MSE only 7.90 14.18 16.31 1.47 0.56 0.27 0.01 1005 507
MADL Long only 11.20 12.35 13.08 1.74 0.91 0.78 0.05 1005 84

Note: BTC and S&P500 stand for the benchmark strategies, i.e., Buy&Hold applied for BTC and S&P500 prices,
respectively. MSE Long/Short and MADL Long/Short stand for the investment strategy with long and short
signals from models optimized with MSE and MADL loss functions, respectively. MSE Long only and MADL
Long only stand for the investment strategy with long only signals from models optimized with MSE and MADL
loss function. The table presents the results in the period between 1 January 2017 and 31 December 2020 for
daily frequency. The hyperparameters of LSTM model for the the base case scenario were set as it was described
in Table 1.

Table 4 presents the aggregated results for all frequencies for BTC and S&P500 index.
Panel A in Table 4 shows that the best results for BTC on daily frequency with regards to
aggregated IR were obtained by Long/Short strategy (IR∗∗∗ = 21.23), but Long Only had
very similar results (IR∗∗∗ = 19.56), which were much better than for Buy&Hold strategy on
BTC (IR∗∗∗ = 1.19). The best results for Long/Short and Long Only strategies were possible
mainly because the joint improvement of ARC, MD, and MLD indicators.

Panel B in Table 4 shows that the best results for BTC on hourly frequency, with regards
to aggregated IR, were obtained by Long Only strategy (IR∗∗∗ = 7.12), while Long/Short
and BTC had much worse results (IR∗∗∗ = 0.49) and (IR∗∗∗ = 1.13).

Panel C in Table 4 shows that the best results for BTC on 15 min frequency, with regards
to aggregated IR, were obtained by BTC strategy (IR∗∗∗ = 1.11) while Long/Short and Long
Only had much worse results (IR∗∗∗ = −0.05) and (IR∗∗∗ = 0.05).

Panel D, E and F in Table 4 summarize the results for strategies on S&P500 index.
Panel D for daily frequency shows that the best results were obtained for S&P500 and Long
Only (IR∗∗∗ = 0.09 and IR∗∗∗ = 0.09). Panel E for hourly frequency shows that the best
results were obtained for S&P500 (IR∗∗∗ = 0.05). Panel F for 15 min frequency shows that
the best results were obtained for Long Only (IR∗∗∗ = 0.38).
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Table 4. Performance metrics for investment strategies on BTC and S&P500 in the base case scenario,
compared with benchmarks.

aRC aSD MD MLD IR∗ IR∗∗ IR∗∗∗ nObs nTrades

panel A: BTC 1 d
BTC 132.41 78.98 83.23 2.96 1.68 2.67 1.19 1461 NA

Long/Short 190.47 78.88 48.59 0.85 2.41 9.47 21.23 1461 156
Long only 200.49 57.83 50.79 1.40 3.47 13.69 19.56 1461 78

panel B: BTC 1 h
BTC 134.66 87.01 83.94 2.96 1.55 2.48 1.13 35,063 NA

Long/Short 37.28 87.01 67.63 1.47 0.43 0.24 0.06 35,063 6398
Long only 115.62 62.77 56.33 1.40 1.84 3.78 3.11 35,063 3200

panel C: BTC 15 min
BTC 134.93 89.35 84.01 2.96 1.51 2.43 1.11 140,255 NA

Long/Short −44.04 89.35 96.51 2.13 −0.49 −0.22 −0.05 140,255 27,100
Long only 40.39 62.73 73.88 2.69 0.64 0.35 0.05 140,255 13,550

panel D: S&P500 1 d
S&P500 13.44 20.47 33.97 0.58 0.66 0.26 0.06 1005 NA

Long/Short 6.13 20.48 25.09 2.56 0.30 0.07 0.00 1005 168
Long only 11.20 12.35 13.08 1.74 0.91 0.78 0.05 1005 84

panel E: S&P500 1 h
S&P500 12.50 18.09 34.77 0.64 0.69 0.25 0.05 7041 NA

Long/Short −2.69 18.09 48.04 1.51 −0.15 −0.01 0.00 7041 1554
Long only 5.54 12.39 19.50 1.51 0.45 0.13 0.00 7041 777

panel F: S&P500 15 min
S&P500 13.56 19.08 35.34 0.59 0.71 0.27 0.06 26,155 NA

Long/Short 15.63 19.08 16.70 1.19 0.82 0.77 0.10 26,155 6444
Long only 15.74 12.87 8.25 0.97 1.22 2.33 0.38 26,155 3222

Note: BTC and S&P500 stand for the benchmark strategies, i.e., Buy&Hold applied for BTC and S&P500 prices,
respectively. Long/Short stands for the investment strategy with long and short signals. Long only stands for the
investment strategy with long only signals. The table presents the results in the period between 1 January 2017
and 31 December 2020 for daily frequency. The hyperparameters of LSTM model for the the base case scenario
were set as it was described in Table 1.

Figure 2 presents the equity lines for all frequencies for BTC and S&P500 index. Panel
A on Figure 2 shows the fluctuations of equity lines for tested strategies, and confirms the
results presented in Table 1. The equity lines for Long/Short and Long Only strategies
climb higher in a much smoother way than for BTC. The similar confirmation can be seen
in Panels B and C of Figure 2 for BTC and in Panels D, E and F of Figure 2 for S&P500 index.

Table 5 shows the results of a test of significance of α and β from the regression in
the form of Rt = α + βR∗t + εt, where Rt is the buy and hold returns, and R∗t returns
from Long/Short and Long Only strategies, and test whether α = 0 using standard tools
and additionally one paragraph with the interpretation of results. Generally, the results
presented in Table 5 confirm the ones presented in Table 4, while the slight differences
come from different approach to risk metrics, mainly MD and MLD.

Summarizing the results for investment strategies on BTC in the base case scenario, we
should underline that on the daily frequency the best results were obtained for Long/Short
and Long Only, on hourly frequency for Long Only, and 15 min frequency for BTC.
Therefore, we can note that in case of BTC the results worsen when we change the frequency
from daily to hourly and then to 15 min.

Slightly different situation can be observed for investment strategies on S&P500 index
in the base case scenario. We can notice that on the daily frequency the best results were
obtained for S&P500 and Long Only, on hourly frequency for S&P500, and 15 min frequency
for Long Only. Overall, we can note that in case of S&P500 index the best results were for
15 min, then for 1 d and lastly for 1 h. Additionally, we see that LO is much better than LS.
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Figure 2. Equity lines for investment strategies in BTC and S&P500 in the base case scenario, com-
pared with benchmarks. Note: BTC and S&P500 stand for the benchmark strategies, i.e., Buy&Hold
applied for BTC and S&P500 prices, respectively. Long/Short stands for the investment strategy with
long and short signals. Long only stands for the investment strategy with long only signals. The plot
presents the fluctuations of equity lines in the period between 1 January 2017 and 31 December
2020 for daily frequency. Panel (A) and panel (B) shows the results for daily frequency for BTC and
S&P500 index, respectively. Panel (C) and panel (D) shows the results for hourly frequency for BTC
and S&P500 index, respectively. Panel (E) and panel (F) shows the results for 15 min frequency for
BTC and S&P500 index, respectively.

Table 5. Results of regressions for returns: Long/Short and Long only strategies on BTC and S&P500
for three different frequencies

Alpha Std. Err. t pv Beta Std. Err. t pv

panel A: BTC 1 d vs.
Long/Short 0.0028 0.0011 2.5805 0.0100 ** 0.0613 0.0260 2.3596 0.0184 *
Long only 0.0018 0.0005 3.3295 0.0009 *** 0.5258 0.0130 40.3095 0.0000 ***

panel B: BTC 1 h vs.
Long/Short 0.0000 0.0000 0.6506 0.5153 0.0401 0.0053 7.5261 0.0000 ***
Long only 0.0000 0.0000 1.4969 0.1344 0.5190 0.0027 194.5037 0.0000 ***

panel C: BTC 15 min vs.
Long/Short 0.0000 0.0000 −1.2728 0.2031 −0.0126 0.0027 −4.7162 0.0000 ***
Long only 0.0000 0.0000 −0.3720 0.7099 0.4944 0.0013 370.3576 0.0000 ***

panel D: S&P500 1 d vs.
Long/Short 0.0004 0.0004 0.9501 0.3423 −0.2705 0.0302 −8.9672 0.0000 ***
Long only 0.0002 0.0002 1.2270 0.2201 0.3598 0.0152 23.7180 0.0000 ***

panel E: S&P500 1 h vs.
Long/Short 0.0000 0.0001 −0.2379 0.8120 −0.0551 0.0119 −4.6340 0.0000 ***
Long only 0.0000 0.0000 −0.0377 0.9699 0.4720 0.0060 79.3050 0.0000 ***

panel F: S&P500 15 min vs.
Long/Short 0.0000 0.0000 1.6450 0.1000 * −0.0874 0.0061 −14.2609 0.0000 ***
Long only 0.0000 0.0000 1.8525 0.0640 * 0.4537 0.0031 147.3734 0.0000 ***

Note: BTC and S&P500 stand for the benchmark strategies, i.e., Buy&Hold applied for BTC and S&P500 prices,
respectively. Long/Short stands for the investment strategy with long and short signals. Long only stands
for the investment strategy with long only signals. The table presents the results of regressions in the form
of: Rt = α + βR∗t + εt, where Rt is the return for tested strategy in period t and R∗t is the return in of BTC or
S&P500 strategies. Regressions were calculated in the period between 1 January 2017 and 31 December 2020.
The hyperparameters of LSTM model for the the base case scenario were set as it was described in Table 1.
Asterisks *, ** and *** denote statistical significance at the 10%, 1% and 0.1%, respectively.
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5. Sensitivity Analysis

In order to properly refer to obtained results, we have to check their robustness with
regards to all crucial hyperparameters that were selected at the beginning. Therefore,
in this section we checked the sensitivity of results based on the changes to the following
hyperparameters: dropout rate, sequence length, train set length and batch size, changing
them one by one, ceteris paribus. Due to the very long time of computations, we were not
able to perform the analysis for all the frequencies (especially for 15 min data). Therefore we
decided to present it only for hourly frequency. We check the sensitivity of final investment
strategies to the changes of the following values of above mentioned hyperparameters:

• Dropout rate: from 2% to 1% and 4%.
• Sequence length.

– For BTC: from 20 to 10 and 40.
– For S&P500: from 14 to 7 and 28.

• Train set length.

– For BTC: from 1371 to 685 and 2742.
– For S&P500: from 948 to 474 and 1896.

• Batch size: from 80 to 40 and 160.

5.1. Sensitivity Analysis for 1 h Data—Dropout Rate

Table 6 presents the aggregated results of sensitivity analysis for 1 h data for BTC and
S&P500 for Long/Short and Long Only strategies.

Table 6. Sensitivity analysis for 1 h data with regard to the dropout rate.

aRC aSD MD MLD IR* IR** IR*** nObs nTrades

panel A: BTC LS
BTC 134.66 87.01 83.94 2.96 1.55 2.48 1.13 35,063 NA

dr001 29.13 87.01 71.82 2.91 0.33 0.14 0.01 35,063 6434
dr002 37.28 87.01 67.63 1.47 0.43 0.24 0.06 35,063 6398
dr004 58.26 86.97 62.96 2.96 0.67 0.62 0.12 35,063 6534

panel B: BTC LO
BTC 134.66 87.01 83.94 2.96 1.55 2.48 1.13 35,063 NA

dr001 111.01 61.28 51.13 1.41 1.81 3.93 3.10 35,063 3219
dr002 115.62 62.77 56.33 1.40 1.84 3.78 3.11 35,063 3200
dr004 134.11 62.38 56.15 2.41 2.15 5.13 2.86 35,063 3263

panel C: S&P500 LS
S&P500 12.50 18.09 34.77 0.64 0.69 0.25 0.05 7041 NA
dr001 −0.45 18.09 27.54 1.76 −0.02 0.00 0.00 7041 1574
dr002 −2.69 18.09 48.04 1.51 −0.15 −0.01 0.00 7041 1554
dr004 −1.43 18.09 45.17 1.51 −0.08 0.00 0.00 7041 1614

panel D: S&P500 LO
S&P500 12.50 18.09 34.77 0.64 0.69 0.25 0.05 7041 NA
dr001 6.78 12.19 14.10 0.96 0.56 0.27 0.02 7041 787
dr002 5.54 12.39 19.50 1.51 0.45 0.13 0.00 7041 777
dr004 6.32 11.65 26.61 1.03 0.54 0.13 0.01 7041 807

Note: BTC and S&P500 stand for the benchmark strategies, i.e., Buy&Hold applied for BTC and S&P500 prices,
respectively. LS stands for the investment strategy with long and short signals. LO stands for the investment
strategy with long only signals. dr001, dr002, dr004 is the abbreviation for dropout rates equal to 1%, 2%, and 4%.
The table presents the results in the period between 1 January 2017 and 31 December 2020 for daily frequency.
The hyperparameters of LSTM model for the base case scenario were set as it was described in Table 1.

The short summary of the sensitivity of tested strategies to the changes in dropout
rate is listed below. In case of Long/Short for BTC, the most efficient dropout was 2%, i.e.,
the one selected during hyperparameters tuning. The results of the model are not robust to
slight changes in dropout rate what can be additionally seen in Panel A of Figure 3.

The most efficient dropout in case of Long Only for BTC was 2%, i.e., once again the
one selected during hyperparameters tuning. The results of the model are rather robust to
slight changes in dropout rate (Panel B of Figure 3).

The results of sensitivity analysis to the changes in dropout rate differ when we take
into account the S&P500 index. The most efficient dropout in case of Long/Short strategy
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was 1%, while 2% selected during hyperparameters tuning was the least efficient. The
results of the model were quite robust to slight changes in dropout rate,

In the case of Long Only for S&P500 index, the most efficient dropout was 1%, but 2%
selected during hyperparameters tuning gives almost the same results. The results of the
model are robust to slight changes in dropout rate.

0

10,000

20,000

30,000

2017 2018 2019 2020 2021
panel A

BTC

dr001

dr002

dr004

2000

2500

3000

3500

2017 2018 2019 2020 2021
panel C

S&P500

dr001

dr002

dr004

0

10,000

20,000

30,000

2017 2018 2019 2020 2021
panel B

BTC

dr001

dr002

dr004

2500

3000

3500

2017 2018 2019 2020 2021
panel D

S&P500

dr001

dr002

dr004

Figure 3. Sensitivity analysis for 1 h data with regard to the dropout rate. Note: BTC and S&P500
stand for the benchmark strategies, i.e., Buy&Hold applied for BTC and S&P500 prices, respectively.
dr001, dr002, dr004 is the abbreviation for dropout rates equal to 1%, 2%, and 4%. The plot presents
the fluctuations of equity lines in the period between 1 January 2017 and 31 December 2020 for
daily frequency. The hyperparameters of LSTM model for the base case scenario were set as it was
described in Table 1. Panel (A) presents the results for Long/Short strategies on BTC. Panel (B)
presents the results for Long only strategies on BTC. Panel (C) presents the results for Long/Short
strategies on S&P500 index. Panel (D) presents the results for Long only strategies on S&P500 index

Summarizing sensitivity of tested strategies to the changes in dropout rate we can
say that strategies for BTC were not robust, while they were robust for S&P500 index.
Moreover, we noticed that the parameters selected during hyperparameters tuning were
still the best after sensitivity analysis in case of BTC strategies and it was not the case for
S&P500 index.

5.2. Sensitivity Analysis for 1 h Data—Sequence Length

Details of sensitivity analysis to the changes in sequence length are presented in
Table 7 and Figure 4.

Panel A of Table 7 and Figure 4 show that in case of Long/Short for BTC the most
efficient sequence length was 20, i.e., the one selected during hyperparameters tuning and
that the results of the model were not robust to slight changes in sequence length.

In the case of a Long Only strategy for BTC (Panel B of Table 7 and Figure 4 the most
efficient sequence length was 20, i.e., the one selected during hyperparameters tuning and
the results of the model were not robust to slight changes in sequence length.

The results for S&P500 index were slightly different because the sensitivity analysis
showed that the best sequence length for Long/Short (Panel C of Table 7 and Figure 4 and
Long Only (Panel D of Table 7 and Figure 4 was 7, while 14 selected during hyperparameters
tuning was the least efficient. Moreover, the results of the model were not robust to slight
changes in dropout rate.
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Table 7. Sensitivity analysis for 1 h data with regard to the sequence length.

aRC aSD MD MLD IR* IR∗∗ IR∗∗∗ nObs nTrades

panel A: BTC LS
BTC 134.66 87.01 83.94 2.96 1.55 2.48 1.13 35,063 NA

seq10 −60.61 87.01 98.67 3.94 −0.70 −0.43 −0.07 35,063 12206
seq20 37.28 87.01 67.63 1.47 0.43 0.24 0.06 35,063 6398
seq40 19.49 87.02 97.77 2.93 0.22 0.04 0.00 35,063 4616

panel B: BTC LO
BTC 134.66 87.01 83.94 2.96 1.55 2.48 1.13 35,063 NA

seq10 15.32 63.02 76.53 2.87 0.24 0.05 0.00 35,063 6106
seq20 115.62 62.77 56.33 1.40 1.84 3.78 3.11 35,063 3200
seq40 105.60 59.14 83.54 2.93 1.79 2.26 0.81 35,063 2308

panel C: S&P500 LS
S&P500 12.50 18.09 34.77 0.64 0.69 0.25 0.05 7041 NA
seq07 6.02 18.09 20.34 1.97 0.33 0.10 0.00 7041 2922
seq14 −2.69 18.09 48.04 1.51 −0.15 −0.01 0.00 7041 1554
seq28 2.65 18.09 34.83 0.86 0.15 0.01 0.00 7041 912

panel D: S&P500 LO
S&P500 12.50 18.09 34.77 0.64 0.69 0.25 0.05 7041 NA
seq07 10.14 12.57 12.65 0.91 0.81 0.65 0.07 7041 1461
seq14 5.54 12.39 19.50 1.51 0.45 0.13 0.00 7041 777
seq28 8.57 11.01 19.53 0.90 0.78 0.34 0.03 7041 456

Note: BTC and S&P500 stand for the benchmark strategies, i.e., Buy&Hold applied for BTC and S&P500 prices,
respectively. LS stands for the investment strategy with long and short signals. LO stands for the investment
strategy with long only signals. seq10, seq20, seq40, seq07, seq14, seq28 is the abbreviation for sequence lengths
equal to 10, 20, 40, 7, 14, and 28. The table presents the results in the period between 1 January 2017 and 31
December 2020 for daily frequency. The hyperparameters of LSTM model for the base case scenario were set as it
was described in Table 1.
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Figure 4. Sensitivity analysis for 1 h data with regard to sequence length. Note: BTC and S&P500
stand for the benchmark strategies, i.e., Buy&Hold applied for BTC and S&P500 prices, respectively.
seq10, seq20, seq40 is the abbreviation for sequence lengths equal to 10, 20, and 40. The plot presents
the fluctuations of equity lines in the period between 1 January 2017 and 31 December 2020 for
daily frequency. The hyperparameters of LSTM model for the base case scenario were set as it was
described in Table 1. Panel (A) presents the results for Long/Short strategies on BTC. Panel (B)
presents the results for Long only strategies on BTC. Panel (C) presents the results for Long/Short
strategies on S&P500 index. Panel (D) presents the results for Long only strategies on S&P500 index.

Summarizing the results of sensitivity analysis to the changes in Sequence length
we can say that strategies for BTC nor for S&P500 index were not robust. Moreover, we
noticed that the parameters selected during hyperparameters tuning were still the best
after sensitivity analysis in case of BTC strategies and it was not the case for S&P500 index.

5.3. Sensitivity Analysis for 1 h Data—Train Set Length

Table 8 and Figure 5 show the results of sensitivity analysis to the changes in train
set length.
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Table 8. Sensitivity analysis for 1 h data with regard to the train set length.

aRC aSD MD MLD IR∗ IR∗∗ IR∗∗∗ nObs nTrades

panel A: BTC LS
BTC 134.66 87.01 83.94 2.96 1.55 2.48 1.13 35,063 NA

tr0685 −40.19 87.02 94.91 2.98 −0.46 −0.20 −0.03 35,063 6370
tr1371 37.28 87.01 67.63 1.47 0.43 0.24 0.06 35,063 6398
tr2742 8.35 87.00 88.78 1.46 0.10 0.01 0.00 35,063 6178

panel B: BTC LO
BTC 134.66 87.01 83.94 2.96 1.55 2.48 1.13 35,063 NA

tr0685 43.78 60.89 73.21 2.99 0.72 0.43 0.06 35,063 3185
tr1371 115.62 62.77 56.33 1.40 1.84 3.78 3.11 35,063 3200
tr2742 93.18 60.37 69.59 1.48 1.54 2.07 1.30 35,063 3091

panel C: S&P500 LS
S&P500 12.50 18.09 34.77 0.64 0.69 0.25 0.05 7041 NA
tr0474 3.03 18.09 32.91 1.89 0.17 0.02 0.00 7041 1516
tr0948 −2.69 18.09 48.04 1.51 −0.15 −0.01 0.00 7041 1554
tr1896 8.04 18.09 26.19 0.44 0.44 0.14 0.02 7041 1474

panel D: S&P500 LO
S&P500 12.50 18.09 34.77 0.64 0.69 0.25 0.05 7041 NA
tr0474 8.67 11.90 27.25 1.02 0.73 0.23 0.02 7041 758
tr0948 5.54 12.39 19.50 1.51 0.45 0.13 0.00 7041 777
tr1896 11.44 10.63 13.81 0.38 1.08 0.89 0.27 7041 737

Note: BTC and S&P500 stand for the benchmark strategies, i.e., Buy&Hold applied for BTC and S&P500 prices,
respectively. LS stands for the investment strategy with long and short signals. LO stands for the investment
strategy with long only signals. seq10, seq20, seq40, seq07, seq14, seq28 is the abbreviation for sequence lengths
equal to 10, 20, 40, 7, 14, and 28. The table presents the results in the period between 1 January 2017 and 31
December 2020 for daily frequency. The hyperparameters of LSTM model for the base case scenario were set as it
was described in Table 1.

Panel A of Table 8 and Figure 5 presenting the results for Long/Short strategy for BTC
and panel B of Table 8 and Figure 5 presenting the results for Long Only strategy for BTC
informs us that the most efficient Train Set length was 1371, i.e., the one selected during
hyperparameters tuning. The results of the model were not robust even to slight changes
in sequence length.
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Figure 5. Sensitivity analysis for 1 h data with regard to the train set length. Note: BTC and S&P500
stand for the benchmark strategies, i.e., Buy&Hold applied for BTC and S&P500 prices, respectively.
tr0685, tr1371, tr2742, tr0474, tr0948, tr1896 is the abbreviation for train set lengths equal to 685, 1371,
2742, 474, 948 and 1896. The plot presents the fluctuations of equity lines in the period between
1 January 2017 and 31 December 2020 for daily frequency. The hyperparameters of LSTM model
for the base case scenario were set as it was described in Table 1. Panel (A) presents the results for
Long/Short strategies on BTC. Panel (B) presents the results for Long only strategies on BTC. Panel
(C) presents the results for Long/Short strategies on S&P500 index. Panel (D) presents the results for
Long only strategies on S&P500 index.

The results for S&P500 index are once again slightly different. In case of Long/Short
(Panel C of Table 8 and Figure 5) and Long Only (Panel D of Table 8 and Figure 5) the
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most efficient train set length was 1896, while 948 selected during hyperparameters tuning
was the least efficient. The results of the model were not robust to slight changes in train
set length.

Summarizing the results of sensitivity analysis to the changes in Train set length
we can say that strategies for BTC nor for S&P500 index were not robust. Moreover, we
noticed that the parameters selected during hyperparameters tuning were still the best
after sensitivity analysis in case of BTC strategies and it was not the case for S&P500 index.

5.4. Sensitivity Analysis for 1 h Data—Batch Size

The last part of sensitivity analysis is summarized in Table 9 and Figure 6.
The results of sensitivity analysis to the changes in Batch size for BTC for Long/Short

(Panel A of Table 9 and Figure 6) and Long Only (Panel B of Table 9 and Figure 6) show
that the most efficient Batch Size was 80, i.e., the one selected during hyperparameters
tuning. The results of the model were not robust to slight changes in batch size.

Table 9. Sensitivity analysis for 1 h data with regard to the batch size.

aRC aSD MD MLD IR* IR** IR*** nObs nTrades

panel A: BTC LS
BTC 134.66 87.01 83.94 2.96 1.55 2.48 1.13 35,063 NA

bs040 6.67 87.02 76.87 3.33 0.08 0.01 0.00 35,063 6160
bs080 37.28 87.01 67.63 1.47 0.43 0.24 0.06 35,063 6398
bs160 54.61 87.02 71.63 2.02 0.63 0.48 0.13 35,063 6436

panel B: BTC LO
BTC 134.66 87.01 83.94 2.96 1.55 2.48 1.13 35,063 NA

bs040 95.33 57.81 50.23 1.35 1.65 3.13 2.21 35,063 3081
bs080 115.62 62.77 56.33 1.40 1.84 3.78 3.11 35,063 3200
bs160 128.70 62.61 46.02 1.37 2.06 5.75 5.41 35,063 3218

panel C: S&P500 LS
S&P500 12.50 18.09 34.77 0.64 0.69 0.25 0.05 7041 NA
bs040 0.76 18.09 32.77 2.17 0.04 0.00 0.00 7041 1582
bs080 −2.69 18.09 48.04 1.51 −0.15 −0.01 0.00 7041 1554
bs160 −5.83 18.09 42.30 1.51 −0.32 −0.04 0.00 7041 1562

panel D: S&P500 LO
S&P500 12.50 18.09 34.77 0.64 0.69 0.25 0.05 7041 NA
bs040 7.53 10.77 12.64 1.20 0.70 0.42 0.03 7041 791
bs080 5.54 12.39 19.50 1.51 0.45 0.13 0.00 7041 777
bs160 3.95 11.43 21.45 0.90 0.35 0.06 0.00 7041 781

Note: BTC and S&P500 stand for the benchmark strategies, i.e., Buy&Hold applied for BTC and S&P500 prices,
respectively. LS stands for the investment strategy with long and short signals. LO stands for the investment
strategy with long only signals. bs040, bs080, bs160 is the abbreviation for batch sizes equal to 40, 80 and 160.
The table presents the results in the period between 1 January 2017 and 31 December 2020 for daily frequency.
The hyperparameters of LSTM model for the base case scenario were set as it was described in Table 1.

The results of sensitivity analysis to the changes in Batch size for S&P500 index
for Long/Short (Panel C of Table 9 and Figure 6) and Long Only (Panel D of Table 9
and Figure 6) show that the most efficient Batch Size was 40, while 80 selected during
hyperparameters tuning was the least efficient. The results of the model were not robust to
slight changes in batch size.

Summarizing the results of sensitivity analysis to the changes in Batch size we can say
that strategies for BTC nor for S&P500 index were not robust. Moreover, we noticed that
the parameters selected during hyperparameters tuning were still the best after sensitivity
analysis in case of BTC strategies and it was not the case for S&P500 index.

Overall the results of sensitivity analysis inform us that it is possible that hyperparam-
eters tuning procedure was correct for BTC but should be improved for S&P500.
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Figure 6. Sensitivity analysis for 1 h data with regard to the batch size. Note: BTC and S&P500
stand for the benchmark strategies, i.e., Buy&Hold applied for BTC and S&P500 prices, respectively.
bs040, bs080, bs160 is the abbreviation for batch sizes equal to 40, 80 and 160. The plot presents
the fluctuations of equity lines in the period between 1 January 2017 and 31 December 2020 for
daily frequency. The hyperparameters of LSTM model for the base case scenario were set as it was
described in Table 1. Panel (A) presents the results for Long/Short strategies on BTC. Panel (B)
presents the results for Long only strategies on BTC. Panel (C) presents the results for Long/Short
strategies on S&P500 index. Panel (D) presents the results for Long only strategies on S&P500 index.

6. Combined Model on Different Frequencies and Different Assets

In order to smooth our equity lines and use limited correlations between AIS on
various frequencies and various types of assets, we decided to create ensemble models
built from three frequencies (1 d, 1, and 15 min) and/or two types of assets (BTC and
S&P500).

We have tested two ways of combinations of signals across frequencies used(1 d, 1 h
and 15 min):

• Approach #1: three signals {1, −1, 1} in the same interval are combined as {1/3}.
• Approach #2: three signals {1, −1, 1} in the same interval are combined as {1}.

However, due to very similar results, we have decided to present the results only for
approach #1. Other aspects of construction of equity lines stays as it was for the base case
in the main results section.

Table 10 and Figure 7 summarize the result of ensemble models for BTC and S&P500
index. Panel A of Table 10 with ensemble model for combined frequencies on BTC, shows
that the most efficient results can be obtained for Long Only strategies and for BTC strategy.
The similar results are presented in Panel B of Table 10 for S&P500 index. Overall, we can
notice that models ensembled across frequencies results in lower volatility and smoother
equity lines.

Summarizing the results for ensemble model built on different frequencies and differ-
ent assets presented in Panel C, D, E, and F of Table 10 we can stress the following:

• The combination of weights equal to {S&P500 = W20%, BTC = 80%} was always better
than {S&P500 = W10%, BTC = W90%}.

• The length of rebalancing period equal to RB6m was always better than RB3m.
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Table 10. Performance metrics for the combined model fir different frequencies and different assets

aRC aSD MD MLD IR* IR** IR*** nObs nTrades

panel A: BTC combined frequencies
BTC 134.93 89.35 84.01 2.96 1.51 2.43 1.11 140,255 NA

Long/Short 7.70 54.02 62.07 2.90 0.14 0.02 0.00 140,255 16902
Long only 81.89 52.65 49.55 1.47 1.56 2.57 1.43 140,255 4048

panel B: S&P500 combined frequencies
S&P500 13.56 19.08 35.34 0.59 0.71 0.27 0.06 26,155 NA

Long/Short 5.99 14.06 21.27 0.76 0.43 0.12 0.01 26,155 4262
Long only 10.61 10.88 11.74 0.42 0.98 0.88 0.22 26,155 1134

panel C: combined assets, RB = 3M, weights 10/90
BTC/SP500 31.72 21.57 35.88 1.51 1.47 1.30 0.27 140,255 NA
Long/Short 7.22 13.89 18.58 1.21 0.52 0.20 0.01 140,255 NA
Long only 19.62 11.75 12.43 0.55 1.67 2.64 0.94 140,255 NA

panel D: combined assets, RB = 3M, weights 20/80
BTC/SP500 47.49 28.12 39.07 1.52 1.69 2.05 0.64 140,255 NA
Long/Short 7.80 15.84 18.60 1.16 0.49 0.21 0.01 140,255 NA
Long only 27.41 15.01 14.57 1.20 1.83 3.43 0.79 140,255 NA

panel E: combined assets, RB = 6M, weights 10/90
BTC/SP500 35.51 22.96 35.88 1.51 1.55 1.53 0.36 140,255 NA
Long/Short 7.37 14.05 19.00 1.21 0.52 0.20 0.01 140,255 NA
Long only 21.37 12.19 12.43 0.55 1.75 3.01 1.18 140,255 NA

panel F: combined assets, RB = 6M, weights 20/80
BTC/SP500 53.76 30.17 41.24 1.52 1.78 2.32 0.82 140,255 NA
Long/Short 8.05 16.21 17.70 1.16 0.50 0.23 0.02 140,255 NA
Long only 30.27 15.85 14.07 1.20 1.91 4.11 1.04 140,255 NA

Note: BTC and S&P500 stand for the benchmark strategies, i.e., Buy&Hold applied for BTC and S&P500 prices,
respectively. Long/Short stands for the investment strategy with long and short signals. Long stands for the
investment strategy with long only signals. The table presents the results in the period between 1 January 2017
and 31 December 2020 for daily frequency. The hyperparameters of LSTM model for the base case scenario were
set as it was described in Table 1.
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Figure 7. Combined model on different frequencies and different assets. Note: BTC and S&P500
stands for the benchmark strategy, i.e., Buy&Hold applied for BTC price and S&P500 index.
Long/Short stands for the investment strategy with long and short signals. Long only stands
for the investment strategy with long only signals. The plot presents the fluctuations of equity lines
in the period between 1 January 2017 and 31 December 2020 for daily frequency. Panel (A) shows the
results of ensemble model built on three various frequencies for BTC. Panel (B) shows the results of
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ensemble model built on three various frequencies for S&P500 index. Panel (C) shows the results
of ensemble model built on three various frequencies for BTC and S&P500 with rebalancing period
equal to 3m and weights equal to 10% for BTC and 90% for S&P500 index. Panel (D) shows the
results of ensemble model built on three various frequencies for BTC and S&P500 with rebalancing
period equal to 3m and weights equal to 20% for BTC and 80% for S&P500 index. Panel (E) shows the
results of ensemble model built on three various frequencies for BTC and S&P500 with rebalancing
period equal to 6m and weights equal to 10% for BTC and 90% for S&P500 index. Panel (F) shows the
results of ensemble model built on three various frequencies for BTC and S&P500 with rebalancing
period equal to 6m and weights equal to 20% for BTC and 80% for S&P500 index.

Panels A, B, C, D, E, and F of Figure 7 confirm the observations from Table 10.
As a conclusion for this section, we can say that combined results for ensemble model

suggest rare rebalancing of assets and higher weight of BTC in the optimal portfolio for
investment strategies.

7. Conclusions

This research aimed to test LSTM networks in forecasting the value of the BTC and
S&P 500 index on the data from 2013 to the end of 2020 on data with the following
frequencies: daily, 1 h and 15 min. Based on the forecasts from LSTM models we generated
buy and sell investment signals, used them in algorithmic investment strategies and created
equity lines for our investment. For this purpose we used various combination of LSTM
models optimized on in-sample period and tested on out-of-sample period with rolling
window approach. We paid special attention to data preprocessing in the input layer,
to avoiding overfitting in the estimation and optimization process, and we assured correct
selection of hyperparameters at the beginning of our tests. We introduced our authorship
loss function with better utilizes the forecasting ability of LSTM model in algorithmic
investment strategies. Then we performed the sensitivity analysis of the main parameters
and hyperparameters. In the final step, we combined the signals from various frequencies
into one ensemble model.

In this paragraph we refer to Research Hypotheses formulated at the beginning of
this research.

The first hypothesis (H1): The signals from LSTM model employed in AIS are more efficient
than Buy&Hold approach regardless of asset class tested,holds only for some of BTC strategies
(1 d_LS, 1 d_LO, and 1 h_LO) and some of S&P500 strategies (1 d_LO, 15 min_LS, and 15
min_LO). Therefore, we reject H1.

The second hypothesis (H2): The signals from LSTM model employed in AIS are more
efficient than Buy&Hold approach regardless of data frequency tested, holds only for daily data
in case of BTC and 15 min data in case of S&P500. Therefore, we reject H2.

The third hypothesis (H3): The signals from LSTM model employed in AIS are more efficient
in case of BTC than in case of S&P500 index, has to be rejected as well because for various
frequencies we obtain different results.

The fourth hypothesis (H4): The robustness of tested models to various hyperparameters
does not depend on asset class tested, enables us to state that the results were not robust for
BTC nor for S&P500 but in significantly different way. Nevertheless, we can not reject the
fourth hypothesis.

Finally, we were not able to reject the fifth hypothesis (H5): The ensemble model con-
structed as a combination of ML models with various frequencies and assets can produce better risk
adjusted returns than single models, because Long only ensemble strategies performed best.

Summarizing the most important conclusions from this paper, we can state that the
efficiency of LSTM in algorithmic investment strategies strictly depends on the hyper-
parameters tuning procedure, the construction of the model and the estimation process.
Moreover, the proper loss function is crucial in the model estimation process. What is more,
the results are dependent on asset classes and frequencies used. Finally, we noticed that
the results are not robust to initial assumptions.
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Possible research extensions of this paper could cover more extensive sensitivity
analysis especially with regards to parameters and hyperparameters which were not
tested in this study, the construction of alternative loss functions improving the problems
identified with regards to common error measures (one of the drawbacks of using MADL
as a loss function is that it’s not easily optimized), the use of various high frequency
data, the repetition of the whole research with transaction costs included in the estimation
process and finally, more careful hyperparameters tuning process, especially in case of
S&P500.
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software, J.M. and P.S.; validation, J.M., P.S. and R.Ś.; formal analysis, J.M., P.S. and R.Ś.; investigation,
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Abbreviations
The following abbreviations are used in this manuscript:

%OP Percent of Over-Predictions
1 d, 1 h, 15 min 1 day, 1 h, 15 minutes
1st Qu., 3rd Qu. 1st quantile, 3rd quantile
3M, 6M 3 months, 6 months
AIS algorithmic investment strategies
ARC Annualized Return Compounded
ARIMA Autoregressive Moving Average
ARIMAX Autoregressive Moving Average with exogenous variables
ASD Annualized Standard Deviation
AT Attention based model
B&H buy&hold strategy
bs040, bs080, bs160 batch size of 40, 80 and 160 observations, respectively
BTC bitcoin
CEC Constant Error Carousel
CET Central European Time
dr001, dr002, dr004 dropout rate of 1%, 2% and 4%, respectively
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
IR∗ Information Ratio
IR∗∗ Modified Information Ratio
IR∗∗∗ Aggregated Information Ratio
KNN K-Nearest Neighbours algorithm
Kurt. kurtosis coefficient
LightGBM Light Gradient Boosting algorithm
LS, LO Long/Short strategy, Long only strategy
LSTM Long-Short Term Memory
MADL Mean Absolute Directional Loss
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MD Maximum Drawdown
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MLD Maximum Loss Duration
MSE Mean Square Error
nObs number of observations
Norm. Pearson chi-square normality test p-value
nTrades number of trades
OHLC Open High Low Close
RB Rebalancing period
RH research hypothesis
RMSE Root Mean Square Error
RNN Recurrent Neural Network
seq07, seq14, seq28 sequence length of 7, 14 and 28 observations, respectively
SGD Stochastic Gradient Descent algorithm
Skew. skewness coefficient
SVR Support Vector Regression
TI Technical indicators
tr0685, tr1371, tr2742 training set length (size) of 685, 1371 and 2742 observations, respectively
W10%, W20% weight of 10%, weight of 20%
XGBoost Extreme Gradient Boosting algorithm
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