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Abstract: Sensitive electrodes are of a great importance for the realization of highly performant elec-
trochemical sensors for field application. In the present work, a laser-induced carbon (LIC) electrode
is proposed for 4-Aminophenol (4-AP) electrochemical sensors. The electrode is patterned on a com-
mercial low-cost polyimide (Kapton) sheet and functionalized with a multi-walled carbon nanotubes
polyaniline (MWCNT-PANI) composite, realized by an in-situ-polymerization in an acidic medium.
The LIC electrode modified with MWCNT-PAPNI nanocomposite was investigated by SEM, AFM,
and electrochemically in the presence of ferri-ferrocyanide [Fe(CN)6]3−/4− by cyclic voltammetry
and impedance spectroscopy. The results show a significant improvement of the electron transfer rate
after the electrode functionalization in the presence of the redox mediators [Fe(CN)6]3−/4−, related
directly to the active surface, which itself increased by about 18.13% compared with the bare LIG.
The novel electrode shows a good reproducibility and a stability for 20 cycles and more. It has a
significantly enhanced electro-catalytic activity towards electrooxidation reaction of 4-AP inferring
positive synergistic effects between carbon nanotubes and polyaniline PANI. The presented electrode
combination LIC/MWCNT-PANI exhibits a detection limit of 0.006 µM for the determination of 4-AP
at concentrations ranging from 0.1 µM to 55 µM and was successfully applied for the monitoring in
real samples with good recoveries.

Keywords: laser induced carbon; MWCNT-PANI; electrochemical sensor; 4-Aminophenol

1. Introduction

Phenolic compounds (PCs) are acquiring exceptional attention due to their harmful-
ness to human body and to environment [1]. The European Chemicals Agency has placed
them on the target List [2] under the REACH Legislation [2], and the US Environmental
Protection Agency has set them on the List of Dangerous Contaminants [3].

4-Aminophenol (4-AP) has been detected as an intermediate substance for pharma-
ceutical preparation of the acetaminophen [4] and it can be obtained via the reduction
of 4-nitrophenol pesticide [5]. 4-AP considered as a precursor for the synthesis of wide
range of the materials for different application in various field, such as medical substances,
rubber, dyestuff, feeding stuff and pesticides [6] and therefore, significant quantities of
4-AP can be predictably released as a pollutant into the environment. 4-AP is toxic and
detrimental to human health by raising the body temperature for a long period [7]. Indeed,
monitoring of 4-AP is essential and the development of low-cost, selective and sensitive
analytical methods is urgently necessary.
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The development of analytical electrochemistry has become a significant task of
research in recent years [8]. In this context, several carbon-based electrodes have been
proposed as transducer, primarily glassy carbon, carbon paste and screen-printed electrodes
(SPE) [9]. Among them, graphene SPEs have been reported and well-characterized [10].

The graphite screen-printed electrodes are based on graphite ink and carbon black
particles with a polymer as a binder, which is coated onto a substrate and then dried at a
suitable temperature, which allows the mass production [11,12]. The commercially SPEs
based on these materials need a standard micro-fabrication involving dip/spin-coating
or screen-printing methods that are expensive or require additional binders or additives,
which can be unfavourable for electrochemical [13,14]. However, the elaboration of complex
solutions of carbon-based materials leads to clusters and aggregation due to the strong
van-der-Waals interactions between sheets in graphene, significantly compromising the
intrinsic high specific surface area and lessening the electrochemical activity [15]. The
presence of organic solvents in the composite materials used for the functionalization
leads to the destruction of the insulation inks, which reduces the sensitivity and the limit
of detection [16,17]. Due to the low electron transfer rate, the functionalized electrodes
become insensitive to several key analytes. The electroactive species in the samples can
therefore easily disrupt SPCE-based biosensors [18].

In recent years laser induced graphene (LIG) has attracted a great attention for flexible
electronics applications [19,20], especially in the field of electrochemical sensors [21–23]. In
general, there are two type of interaction of laser and such materials, the photochemical and
photothermal. In the case of photochemical, according to the literature, UV laser < 380 nm
is required to obtain photochemical reaction or to use femtosecond lasers where the pulse
duration is less the time of electron-hole recombination [24]. In the case of photothermal
reaction to induce graphene structure on polyimide surface, the temperature has to reach
certain amount to have a process called pyrolysis regardless of the laser wavelength [25].
Any type of laser, even the CO2 laser (10.6 µm) can achieve this process if the intensity
and scanning speed are enough to escalate the temperature to burn the surface of the
polymer. So different types of laser have been implemented in the literature to structure
carboneous patterns on polyimide including the 405 nm continuous wave lasers. A CO2–
laser-induced graphene on a Kapton surface shows an overall structure of porous graphene
with a sheet structure with interconnected fibrous strands [26]. An induction by an UV
laser displays micron-sized and nanometer pores with a decrease in nitrogen atoms. A
Raman investigation with LIG on Kapton reports, that the 2D peak and the ratio 2D/G
ratio show a better quality for CO2 LIG with a few layers of graphene [27].

In our previous works [28,29], 405 nm laser was used to directly pattern a commercial
polyimide substrate into LIG. The results show that the structure of the induced carbon by
this method is a graphene basal plane with a non-uniform scope of the oxygen-containing
groups, coming from sp2 carbon clusters of some nanometers disconnected inside an
imperfect carbon grid or a sp3 network.

However, the fabrication process of patterned carbon has several disadvantages, such
as poor repeatability and the lack of control of the induced carbon film thickness. To
overcome these limitations, the functionalization of laser-induced graphene electrodes
surface has been proposed [30].

Several new materials have been used as electroactive for the electrochemical detec-
tion of 4-AP chemical compounds. In particular, Priya et al. reported the hydrothermal
elaborated two-dimensional MoS2 modified glassy carbon electrode sensor to detect 4-AP
in phosphate buffer solution. The fabricated sensor shows a detection limit of 2 nM in the
linear range from 2 to 8 nM [31].
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P. Shaikshavali et al. [32] succeeded in elaborating a hybrid nanocomposite based on
CuO-Au decorated multiwalled carbon nanotubes (MWCNTs) and employed as sensitive
material for the detection of 4-AP after its dispersion on the surface of glassy carbon
electrode (GCE). The developed sensor showed a good linear response for 4-AP at the
range of concentration from 0.5 µM to 1.6 µM with a detection limit of 0.105 µM. An
electrochemical sensor for 4-AP monitoring based on graphene–chitosan composite film
modified glassy carbon electrode (GCE) was fabricated by Huanshun Yin et al. [33]. Under
the optimal experimental conditions, the oxidation peak current was proportional to 4-AP
concentration in the range from 0.2 µM to 550 µM and 0.057 µM (S/N = 3) as a detection
limit. Using the proposed sensor, 4-AP was successfully detected in water samples and
paracetamol tablets. Qiuqun Liang et al. reported on the development of an electrochemical
sensor based on cobalt complexes of Bis-Schiff bases to monitor 4-AP and paracetamol,
which shows a linear LOD of 1.86 µM and 2.8 µM and a range of concentration from
5 to 30 µM [34]. Another method was developed by Nannan et al. combining silver,
palladium nanoparticles to decorate reduced graphene oxide modified glassy carbon
electrodes [35]. This strategy shows a low LOD of 0.013 µM in the linear range between 1
and 300 µM. All these investigations for 4-AP detection are reporting mainly on modified
glassy carbon electrode (GCE), which are expensive [36] and need pretreatment before
its functionalization [37]. For realizing such sensors electron-transfer and electroactivity
become very important.

In the last decade conducting polymers have been used as a selective material for the
electrochemical sensing application [38]. Among these polymers, polyaniline (PANI) has re-
ceived widespread attention due to its low-cost, electrical conductivity (6.28 × 10−9 S·m−1),
electrocatalytic activity and the easy fabrication process. PANI can be elaborated either
electropolymerization or by chemical polymerization in acidic medium [39]. In addition,
the development of PANI based nanocomposite has been a significant task of research
specially its combination with carbon based materials or inorganic nanoparticles [40]. The
MWCNT-PANI composite provides higher sensitivity compared to MWCNT and PANI
as standalone.

In this work, 405 nm wavelength laser induced carbon electrode is used as a flexible
electrode for the electrochemical detection of 4-AP. The LIC electrode was modified with
in-situ polymerized MWCNT-PANI composite to reach higher sensitive, repeatable, and
stable responses for the 4-Aminophenol chemical compound. For the detection of a 4-AP
target, we prepare LIC/MWCNT-PANI electrodes and use the square wave voltammetry
(SWV) method realizing a short response time.

2. Materials and Methods

Polyimide Kapton® HN Film “thermal conductivity coefficient (0.12 W/m·K) and
the refractive Index (sodium D line: 1.70)” was purchased from DuPont, 4-Aminophenol,
standard phosphate buffer saline (PBS, pH = 7), ethanol, K3Fe(CN)6, K4Fe(CN)6, DMF,
potassium peroxydisulfate (KPS), MWCNT, Aniline, hydrochloric acid (HCl), and potas-
sium chloride (KCl) were purchased from Sigma-Aldrich and used without any further
purification. The different pH of the PBS solution was adjusted using 1.0 M H2SO4. 4-AP
solutions in water samples (contains 0.01 mg·mL−1) were prepared by adding the tar-
get without any prior treatment. In addition, for the paracetamol samples, two tablets
(0.5 g/tablet contains 0.01 mg·mL−1 4-AP) commercial ones were finely mortared to a pow-
der. Then the powder was dissolved in 30 mL of anhydrous ethanol and stirred. Finally, the
obtained solution was filtered after centrifugation for 5 min and diluted with anhydrous
ethanol. The real samples measurements were carried out according to the standard addi-
tion method in tap water sample and paracetamol samples. UV-Vis spectrometer Perkin
Elmer Norwalk CT 06859 USA Lamda 900 was used for the optical characterization of the
prepared nanocomposites and FTIR spectroscopy type-Perkin Elmer model UATR two-
Range between 400 and 4000 was used for the identification of chemical functional groups
of the prepared nanocomposites. Impedance spectroscopy results were fitted by ZView
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software. For measurement of surface area and roughness, sensor were measure by (5600LS
Atomic Force Microscope System AFM, Keysight Technologies, Santa Rosa, CA, USA) in
tapping mode where using Pt conductive tip. All electrochemical measurements were
carried out using PalmSens 4 potentiostat.

2.1. Fabrication of Laser-Induced Carbon Electrodes

LIC is formed by irradiating a polyimide (PI) Kapton HN substrate using set-up
equipped with a visible laser source 405 nm wavelength operated in continuous mode at
2 W and an x-y motorized stage set at an exposure time of 40 ms (Figure 1a). The laser
beam is adjusted in Y direction prior to irradiation such that the diameter of laser beam is
6 µm at optimal focal length 7 cm.
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Figure 1. Schematic representation of (a) patterned electrodes and (b) prepared sensor.

Upon laser writing, due to the photo-thermal effects, the orange-colored Kapton sur-
face becomes transformed into a 3D pyrolytic carbon material is induced [25]
(thickness > 10 µm) [41] (Figure S1). The contact was complemented with silver ink tracks
to acquire a planer three-electrode sensor such as those of screen-printed electrodes. The
working, counter and reference electrodes are highlighted in Figure 1b. The geometric area
of the working electrode is 0.070 cm2. The reference electrode used here is Ag/AgCl. The
main sensing area was isolated from the rest of the pattern by selective passivation using a
polydimethylsiloxane (PDMS) hydrophobic coating.

2.2. Elaboration of PANI and MWCNT-PANI Composite

The polymerization of aniline is realized in an acidic solution, in a mutual process
of elaboration. The process is as follow: a diluted KPS (20 mM 100 mL DI) solution was
added drop-wise in 20 mL of aniline solution (2 mL aniline dissolved in 160 mL of 0.5 M
chloric acid) under stirring for 12 h at 0–2 ◦C. At this stage, the precipitate was washed
with chloric acid to remove the monomer until we reached a green color. Finally, the
polymer was filtered and washed with DI to achieve pH 7 before being dried [42]. For
the MWCN-PANI composite elaboration, 2 (wt %) weight percent of MWCNT relative to
the nanocomposite MWCNT-PANI was sonicated in HCl (118 mL concentration 0.5 M) to
obtain a homogeneous dispersion. After, 1.5 mL of aniline was added to the CNT solution
and sonicated for 1 h. Then, under stirring, 4.32 g in 86 mL water of potassium persulfate
was added drop-wise. The reaction was continued at 0–2 ◦C for 12 h. The dark green
resulting product was filtered and washed.
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2.3. Preparation of PANI/LIC Electrodes and MWCNT-PANI/LIC Electrodes

PANI and PANI-CNT nanocomposites were dissolved in DMF (1 mg/mL) and ultra-
sonicated for 1 h. Three different electrodes were prepared: LIC, LIC/PANI and LIC/MWCNT-
PANI. LIC/PANI was prepared by placing 2 µL of PANI solution into the surface of the LIC
electrode. The obtained LIC/MWCNT-PANI was prepared by drop-casting PANI-CNT
nanocomposite (1, 2 and 3 µL).

3. Results
3.1. Optical Performances of the Pristine Polyimide (PI) Sheet

Figure 2 shows the UV-vis transmission and absorption spectrums of pristine PI film,
indicating that the PI film has a poor transmission (0.01%) at 405 nm and a strong absorption
(4.05 a.u) for UV laser.
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3.2. Characterization of PANI and MWCNT-PANI Composite

The UV-Vis results of PANI and MWCNT-PANI in DMF solution are presented in
Figure 3a. Two peaks are obtained with PANI. The first peak in the UV wavelength range
between 340 and 360 nm is related to π−π* excitation and the second peak in the visible
wavelength range is related to the quinone rings exciton present in PANI. The dark green
coloration of the obtained PANI and the two peaks obtained in the UV spectrum indicate
the emeraldine salt form of polyaniline [43,44]. The UV-vis spectra of MWCNT-PANI
nanocomposites (blue) also show the presence two absorption bands. Due to the overlap
between PANI and MWCNTs, the π−π* band has been red shifted. The UV region band
is shifted to the higher wavelength side due to the addition of MWCNTs. This indicates
the good distribution of the MWCNTs among the PANI [45]. This phenomenon increases
the interaction energy between PANI and MWCNTs (as stated in the FTIR spectrum). The
improved absorption of MWCNT-PANI composite compared to PANI can be attributed to
the formation of a higher number of polarons and bipolarons as reported in the previous
works [46], which has been confirmed from the amelioration of the electrical conductivity
along with the interaction between PANI quinoid rings and MWCNT. Based on the Tauc
relation in Equation (1), the prepared PANI and MWCNT-PANI composites’ optical band
gap was calculated. The power coefficient n determined the type of possible electronic
transitions during absorption processes [47]. n = 1

2 for the direct band transition of the
nanocomposites. The direct band gap was obtained from extrapolating the straight portion
of the plot on hν axis at α = 0. The obtained band gaps Eg 2.54 eV for PANI and 2.40 eV
for MWCNT-PANI. These values are in good agreement with the results found in [46].
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Where, Eg is the optical band gap, α is the absorption coefficient, ϑ is the frequency and A
is a constant.

αhϑ = A(hϑ − Eg)n, (1)
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Infrared spectroscopy is a valuable method to characterize the interactions between
MWCNT and PANI Figure 3b. It exhibits the clear presence of benzoid C−N at 1262 cm−1

and the C=N quinoid ring vibration at 1506 cm−1 [48] indicating the oxidation state of
emeraldine salt of PANI. Very weak and broad band around 3000 cm–1 is assigned to
the NH stretching mode at 3500 cm−1 [49]. The band at 2930 cm−1 corresponds to C-H
bending [44]. By adding 0.2 wt % of MWCNT into the PANI matrix, the characteristic
features of MWCNT are not observed. In contrast, the main features of the PANI were
maintained, which indicates that the MWCNT was well interpenetrated into the PANI
matrix, as well as the decrease in the absorption. A small peak was found at 776 cm−1,
which can be explained as a new form of C-H out of plan bending maybe due to the
chemical interactions of PANI and MWCNT.

3.3. Surface Area A

There are several concerns about using the Randles-Sevcik equation to estimate the
electrode surface area, mainly when nanomaterials are being used for electrode modifica-
tion [50]. For determining the surface area of the different electrodes LIC, LIC/PANI and
LIC/MWCNT-PANI we use atomic force microscopy (AFM) [51,52]. The roughness of the
three electrodes samples has been determined for a 4 µm2 representative area. Figure 4
shows the 3D projections of the AFM. The surface area A and the roughness are determined
using WSxM software [53] and listed in Table 1. The larger surface area is achieved with
LIC/MWCNT-PANI, for which the surface A increased by about 18.13% compared with
the flat one. The SEM (Figure S2) images clearly show a well-dispersed MWCNT-PANI
composite with slight agglomerations. The polymeric materials well coated the CNTs bun-
dles, which matches well with previous published reports [48,54]. This type of morphology
provides a large surface area for the interaction with 4-AP.
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Table 1. Surface area and roughness of LIC, LIC/PANI and LIC/MWCNT-PANI.

Electrodes Surface Area (µm2) Roughness (nm)

LIC 4.08 ± 0.49 2.58 ± 0.31
LIC/PANI 4.16 ± 0.48 2.88 ± 0.33

LIC/MWCNT-PANI 4.82 ± 0.48 4.96 ± 0.51

3.4. Electrochemical Investigation of 4-AP

The transfer process at the surface of the prepared electrodes was studied. CVs of
the different prepared electrodes were recorded at different scan rates ranging from 100 to
400 mV·s−1 in the presence of the redox mediators 5.0 mM [Fe(CN)6]3−/4− in 0.1 M KCl as
a supporting electrolyte as presented in (Figure 5). The results present a quasi-reversible
reaction behavior of [Fe(CN)6]3−/4− for all the electrodes. In addition, a linear increase of
the current against the square root of the scan rate, indicates that the voltammetric response
was controlled by diffusion process [55]. Interestingly, the oxidation and reduction current
peaks obtained for LIC/MWCNT-PANI increased about 61% and 18% compared to the bare
LIG and LIC/MWCNT-PANI (2 µL) electrodes, respectively. The role played by MWCNT-
PANI composite in the modification of the LIG electrode was studied further by EIS. The
Nyquist plots were presented in Figure 5d. The EIS includes a semicircular part and a
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linear part [56]. At higher frequencies, the semicircular corresponds to the electron transfer
limited process and the diameter is equivalent to the charge transfer resistance (Rct). While
the linear part at lower frequencies represents the diffusion process. The related electrical
equivalent circuit diagram is shown in Figure 5d inset. The EIS data were fitted by Zview
software. According to the fitted EIS results, the impedance decreases significantly from
bare to modified LIC, with LIC/MWCNT-PANI displaying the lowest Rct. It is observed
that for bare LIC, the value of Rct is the highest (Rct = 9.200 ± 0.036 KΩ), whereas for
LIC modified by PANI, the Rct values are intermediary (Rct = 2.464 ± 0.021 KΩ). The
smallest value of Rct have been reached for LIC/MWCNT-PANI (Rct = 2.200 ± 0.016 KΩ).
Therefore, MWCNT-PANI enlarges the surface area, as measured by AFM and decreases
the charge-transfer resistance at the electrode-electrolyte interface. The Nyquist diagram
analysis is consistent with CV measurement and further proved the successful construction
of MWCNT-PANI based composite for electrochemical sensor [56].
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[Fe(CN)6]3−/4− in 0.1 M KCl and (d) Nyquist plots of the bare LIC, LIC/PANI and LIC/MWCNT-
PANI electrodes; inset: equivalent circuit.

For further investigation, the electron transfer ET rate was estimated based on cyclic
voltammetry results. The CVs in Figure 5 revel quasi-reversible nature of a reactions which
results in an increase of the peak-to-peak separation (∆EP by increasing the scan rate (v). In
this case the (k0 heterogeneous ET rate can be calculated, using the method developed by
Klingler and Kochi Equation (2) [57].

k0 = 2.18
(

αnFDv
RT

)1/2
e−[(α2F/RT)n∆EP ] , (2)

α is the transfer coefficient = 0.5,
n is the number of electrons transferred,
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F is the Faraday constant, and
R and T have their usual meanings.
D diffusion coefficients of the oxidized and reduced form.
ν scan rate.
∆EP peak-to-peak separation.

The k0 was calculated for each scan rate and the arithmetic means obtained as shown in
Figure S3. It was found that the ET rate k0 frequently changed altogether over the surface of
the LIC after the modification with PANI and MWCNT-PANI nanocomposite samples. The
LIC/MWCNT-PANI electrode presents the faster transfer kinetics which can be attributed
to the large specific area and good electroactivity of MWCNT-PANI nanocomposite.

In order to investigate the electro-catalytic activity of the PANI and MWCNT-PANI
films at the electrode surface, CV measurements were carried in 0.1 M HCl (pH = 1) from
−0.5 to 1 V at a scan rate of 50 mV·s−1 (Figure 6). The typical CV response of polyaniline
has been well reported in previous works [58] showing two sets of oxido-reduction peaks.
The first set of redox peaks is linked to the conversion of the reduced leucoemeraldine base
to the partially oxidized emeraldine. The second is related to the conversion of emeraldine
to the fully oxidized pernigraniline. At the bare LIC, no significant electrocatalytic current
response has been observed. The difference in electrochemical behavior between the pure
PANI and MWCNT-PANI nanocomposite films is clear from the CVs.
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Figure 6. CV curves of prepared electrodes in 1 M HCl scan rate 50 mV·s−1.

The MWCNT-PANI film demonstrates the higher current peaks, explain the improved
electroactivity compared pure PANI.

3.5. Electrochemical Detection of 4-AP

The electrochemical behavior of 1 mM of 4-AP was investigated with the different
prepared electrodes (LIC and LIC/PANI and LIC/MWCNT-PANI (1, 2 and 3 µL)). The
CVs were recorded in 1 mM 4-AP 0.1 M phosphate buffer solution pH = 6.5 shown in
Figure 7a. The results show a quasi-reversible redox peak in all cases. Where the effect of the
combination of carbon nanotubes and polyaniline is seen. It is noted that the highest current
among the different electrodes is obtained after the modification with MWCNT-PANI
(2 µL) and it is about 2 and 1.4 times higher than that of LIC and LIC/PANI. The higher
LIC/MWCNT-PANI electrode sensitivity towards 4-AP can be attributed to the adsorption
ability (porous surfaces in LIC/MWCNT-PANI electrode), the high catalytic activity of the
conductive nanocomposite due to the synergistic effect between polyaniline and carbon
nanotubes. The electrochemical behavior of 4-AP at the surface of nanocomposite modified
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LIC electrode is well documented in previous reports [4,31]. At the surface of MWCNT-
PANI film, the electrons are released in the presence of 4-AP, which improve and enhance
the electrochemical reaction during the measurement.
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Figure 7. (a) CVs obtained by bare LIC, LIC/PANI and LIC/MWCNT-PANI in the presence of 1.0 mM
4-AP in 0.1 M PBS (pH = 6.5) Scan rate of 100 mV·s−1, (b) LIC/MWCNT-PANI in the presence of
1.0 mM 4-AP in 0.1 M PBS (pH = 6.5) at different scan rates from 100 mV·s−1 to 500 mV·s−1; (c) Linear
fitting of the peak current with the square root of scan rate. Inset oxidation current against the scan
rate (100 to 500 mV·s−1); (d) CVs LIC/MWCNT-PANI response of 1 mM 4-AP in 0.1 M PBS in
different at 100 mV·s−1 scan rate and the inset: Redox reaction mechanism of 4-AP.

Useful information concerning the electrochemical reaction mechanisms can be ob-
tained from the potential scan rate. Therefore, the electrochemical response of 4-AP
(1 mM) in 0.1 M phosphate buffer (pH = 6.5) was investigated at different scan rates
from 100 mV·s−1 to 500 mV·s−1 by cyclic voltammetry Figure 7b. The results illustrated
a linear regression current against the square root of the scan rate Figure 7c, which is a
characteristic diffusion-controlled process for the 4-AP oxidation [59].

The pH effect towards the electrochemical response of 4-AP was inspected in PBS
using CV technique at the surface of LIC/MWCNT-PANI electrode. The CV responses
of 1 mM 4-AP were carried out in the range of 4.0 to 7.0 in order to pick the best pH for
the sensor operating point as presented in Figure 7d. From the voltammograms behavior,
the Ipa,c of 4-AP increased from pH 4.0 to reach the well-defined highest peak current at
pH = 6.5 and then decreased. Therefore, pH 6.5 was selected as a supporting electrolyte in
all the experiments for the determination of 4-AP. On increasing the pH of PBS solution, the
oxidation peak potentials of 4-AP shifted towards the negative potential, which indicates
the involvement of the protons in the electrochemical oxidation of 4-AP at LIC/MWCNT-
PANI electrode [32]. The possible redox reaction mechanism is presented in inset Figure 7d.
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3.6. Dtermination of 4-AP by SWV
3.6.1. Analytical Curve

The high sensitivity of LIC/MWCNT-PANI provides an efficient electron interaction,
which improves the direct electron transfer between MWCNT-PANI and LICE active sites.
The LIC/MWCNT-PANI sensor provided a simple and reliable method for hazardous
chemical detection. It has been also demonstrated as a sensitive material for the monitoring
of several chemicals in the environmental and health-care sectors. Table 2 shows some
selected sensors based on carbon nanotubes/polyaniline nanocomposite for different
chemical compounds with various analytical methods. Most of them are using fluorescence,
amperometry or differential pulse voltammetry as detection method.

The SWV technique is increasingly used in the field of chemical sensors because of
its high sensitivity due to the ability to discriminate the capacitive current [60–62]. It has
been used here to detect 4-AP with the proposed electrode (LIC/MWCNT-PANI). The
effects of frequency from 1.0 to 20 Hz at fixed pulse amplitude (0.1 V) and potential step
(0.01 V), on the LIC/MWCNT-PANI sensor response to 1.0 µM 4-AP in PBS (pH = 6.5)
solution were studied (Figure S4). The highest and the stable analytical signal was obtained
at 5 Hz, thus this frequency was selected for the sensor calibration. While the detection was
performed in the possible range from −0.2 to 0.3 V and the pH test medium was adjusted
to 6.5, the SWV responses were recorded with different concentrations of 4-AP from 0.1 µM
to 55 µM (Figure 8a). It can be seen from the calibration curve in (Figure 8b) that a quite
linear variation of the current can be observed with the increase of the concentration in the
selected range Ipa (µA) = 50.63 + 9.63 × [4-AP], with a detection limit of 0.006 µM. The
limit of detection has been determined based on Equation (3).

LOD =
3S
m

, (3)

where, (S) is the relative standard deviation of the blank analyte signal and (m) is the slope
of the calibration curve.
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The limit of detection of the proposed sensor is lower than several previously reported
results based on nano-composite and nano-materials modified electrodes (Table 2). The
value found is better than that obtained with other electrodes reported in the literature
and briefly summarized in Table 2. MWCNT-PANI provides a high sensitivity and a good
electroactivity for 4-AP detection due to its high specific surface area.
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Table 2. Performance parameters of different electrochemical sensor methods for 4-AP detection.

Electrode LOD (µM) Range (µM) References

Au/Pd/rGO/GCE 0.12 1–300 [6]
Cu-Au MWCNT

nanocomposite/GCE 0.105 0.5–1.6 [32]

Graphene chitosan/GCE 0.057 0.2–550 [33]
Bis-schiff Base

Cobalt Complexes/GCE 2.08 5–30 [34]

AuNPs and a
Layered Double

Hydroxide Sodium/GCE
0.1 0.5–400 [63]

Graphene-Polyaniline 15.68 50–500 [64]
Fc-PAA-GNPs/GCE 7.61 30–1064 [65]

LIC/MAWCNT-PANI 0.006 0.1–55 This work

3.6.2. Reproducibility, Stability and Selectivity

The relative standard deviations (RSD) of five electrodes prepared separately for
measuring 1.0 µM 4-AP is determined to be 3.17% to test the modified electrode’s fabrication
reproducibility (Figure 9a). The results suggest a good fabrication reproducibility. Further,
to demonstrate the stability of the LIC/MWCNT-PANI electrode 20 cycles of SWV were
carried using 1 µM 4-AP solution in PBS pH 6.5 at the proposed electrode (Figure 9b). The
experimental results show the fabrication protocol is reproducible.
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Figure 9. (a) CVs of five electrodes prepared independently for measuring 1.0 µM 4-AP; (b) 20 cycles
of SWV were carried using 1 µM 4-AP solution in PBS pH 6.5 at LIC/MWCNT-PANI and (c) Anodic
current for 4-AP oxidation measured in the presence of 100-fold excess of interfering ions at a 4-AP
concentration of 10 µM (pH = 6.5), and SWV under following conditions: 5 Hz, potential step 0.01,
amplitude 0.1 V.

The influence of some inorganic ions, organic compounds and other phenolic com-
pounds on the determination of 4-AP was studied and the results are presented in Figure 9c.
The results show that 100-fold of K+, Mg2+, Ca2+, Cl−, CO3

2−, glucose, tyrosine, serine and
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ascorbic acid (AA), gallic acid (GA), cysteine, resorcinol and pyrocatechol do not interfere
with the oxidation signal of 20 µM 4-AP.

3.6.3. Determination of 4-AP in Real Samples

In order to assess the practical application of the proposed method, the LIC/MWCNT-
PANI electrode was used to determine 4-AP in tap water samples and paracetamol tablet
samples using the standard addition method (Figure S5). All the measurements were
repeated three times under the same conditions. Tables 3 and 4 present the results. The
recovery of 4-AP, compared to the same concentration in PBS, was in the range from 96.4%
to 105.41%, revealing that this method is effective and reliable.

Table 3. Determination of 4-AP in water samples.

Samples Added Concentration (µM) Current (µA) RSD (%) (n = 3) Recovery (%)

1 5 108.22 3.03 97.63
2 10 134.75 2.71 96.40
3 15 188.75 2.86 98.17

Table 4. Determination of 4-AP in paracetamol tablet samples.

Samples Added Concentration (µM) Current (µA) RSD (%) (n = 3) Recovery (%)

1 5 113.06 2.81 102.00
2 10 135.60 3.42 100.63
3 15 198.97 3.11 105.41

4. Conclusions

A flexible, sensitive sensor for 4-AP electrochemical detection was developed in this work
using MWCNT-PANI nanocomposite elaborated by the in-situ polymerization method in
acidic medium, modified laser-induced carbon LIC/MWCNT-PANI. The prepared nanocom-
posite was characterized by UV-vis, FTIR and CV in HCl. The preparation of the electrodes
is performed by a simple and easy method of deposition. An improvement of the current
peaks by cyclic voltammetry and increase of the conductivity by evaluation of charge transfer
resistance suggest the synergetic effect between MWCNTs and PANI with the excellent con-
ductivity and large specific surface area. The LIC/MWCNT-PANI sensor was tested for the
detection of 4-Aminophenol and it was found to have a detection limit of 0.006 µM. The work
demonstrates the feasibility of fabricating robust and cost-effective electrochemical sensors by
laser patterning on polyimide films, suitable for the detection of 4-AP.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s22030833/s1, Figure S1: Raman spectrum of laser induced carbon, Figure S2: SEM of
LIC/MWCNT-PANI, Figure S3: Klingler-Kochi analyses of the calculated ET rates (k0) for each scan
rate, Figure S4: SWV of 1.0 µM 4-AP in PBS (pH = 6.5) at different frequencies from 1.0 Hz to 20 Hz
Figure S5: (a) SWV in water samples and (b) in Paracetamol samples.
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