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Abstract: Pixel-based images captured by a charge-coupled device (CCD) with infrared (IR) LEDs
around the image sensor are the well-known CCD Red–Green–Blue IR (the so-called CCD RGB-IR)
data. The CCD RGB-IR data are generally acquired for video surveillance applications. Currently,
CCD RGB-IR information has been further used to perform human gesture recognition on surveillance.
Gesture recognition, including hand gesture intention recognition, is attracting great attention in
the field of deep neural network (DNN) calculations. For further enhancing conventional CCD
RGB-IR gesture recognition by DNN, this work proposes a deep learning framework for gesture
recognition where a convolution neural network (CNN) incorporated with wavelet image fusion of
CCD RGB-IR and additional depth-based depth-grayscale images (captured from depth sensors of
the famous Microsoft Kinect device) is constructed for gesture intention recognition. In the proposed
CNN with wavelet image fusion, a five-level discrete wavelet transformation (DWT) with three
different wavelet decomposition merge strategies, namely, max-min, min-max and mean-mean, is
employed; the visual geometry group (VGG)-16 CNN is used for deep learning and recognition of
the wavelet fused gesture images. Experiments on the classifications of ten hand gesture intention
actions (specified in a scenario of laboratory interactions) show that by additionally incorporating
depth-grayscale data into CCD RGB-IR gesture recognition one will be able to further increase the
averaged recognition accuracy to 83.88% for the VGG-16 CNN with min-max wavelet image fusion
of the CCD RGB-IR and depth-grayscale data, which is obviously superior to the 75.33% of VGG-16
CNN with only CCD RGB-IR.

Keywords: CCD RGB-IR; depth-grayscale; wavelet image fusion; DWT; CNN

1. Introduction

Human activity recognition [1], which belongs to the categorization of behavior cog-
nition, has been paid much attention in recent years. Human activity information can
be represented by two main biometric characteristics: body and hand gesture features.
Body gesture-based human activity recognition is generally used in applications of sport
instructor experts [2], human–machine interactions by gesture commands [3,4], gesture-
based identity recognition [5,6] and rehabilitation tasks\healthcare assistants [7–9]. On the
other hand, in the field of hand gesture-based human activity recognition, sign language
recognition [10,11] and human intention recognition [12] can be practically constructed in
real-life applications. Focusing on human activity recognition by hand gesture information,
this work proposes a hand gesture-based intention recognition approach by simultaneously
considering two different modalities of image data derived from both a charge-coupled
device (CCD) and depth cameras.

The popular CCD camera has been successfully used in surveillance applications. To
have the capability of night vision (allowing the camera to see in the dark), the CCD camera
is generally designed to have numerous infrared (IR) LEDs surrounding the image sensor.
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With the light emitted by infrared illuminators, such captured image from the CCD camera
is well-known as CCD RGB-IR. Although CCD RGB-IR images have a relatively fine image-
rendering property in an environment with low illumination (or completely dark), such
images are somewhat substandard in the task of human activity recognition. For image
recognition, including hand gesture recognition, in this work, the use of sensor fusion by
additionally increasing and hybridizing another different image sensing modality of data
will have positive effects on recognition accuracy improvements. Studies on IR image-based
sensor fusion have been seen in the recent years. Most of these works are aimed at fusion
of visible (VIS) and specific IR images [13–19]. In the study of Hu et al., a synchronized
fusion model is proposed for multi-band images where images of far-infrared (FIR), near-
infrared (NIR) and VIS are encompassed [13]. An adaptive fusion algorithm for VIS and
IR videos is proposed in [14], which is based on entropy and the cumulative distribution
of gray levels. In [15], a fusion network model, called a relativistic coupled generative
adversarial network (RCGAN), is developed for the IR and VIS image fusion task. Another
enhancement of the generative adversarial network on image fusion can also be seen in
the work of [16], in which a dual-discriminator conditional generative adversarial network
(DDcGAN) is designed to fuse IR and VIS images of different resolutions; in addition, fusion
of VIS and IR images by a generative adversarial network is also employed in intelligent
ubiquitous electric internet of things (UE-IoT), to detect fault points in a more reliable
and accurate manner [17]. In [18], IR and VIS image fusion is used in image-based object
tracking. To improve dissatisfactory object tracking in the situation that unreliable VIS
images are captured in poor illumination conditions, a visible RGB and IR fusion tracking
approach that is based on the fully convolution Siamese networks has been proposed
by Zhang et al. [18]. In turn, Hou et al. proposes a framework called VIF-Net, and with
VIF-Net, two different types of data from the VIS and IR sensors are used for the feature
extraction, fused, and then the feature is reconstructed [19].

Although lots of image fusion approaches have been investigated, most of these studies
mainly combine the two advantages of night-visible capability and rich texture information
obtained from IR and VIS-RGB, respectively. In a CCD camera-based surveillance scenario
with human activity recognition, such fusion of VIS and IR images for further hand gesture
activity recognition will perhaps not be feasible. During nighttime of darkness, i.e., an
environment with extremely low illumination, it will be difficult to obtain the information
from VIS images. In this situation with insufficient light (darkness approaching), only
the CCD RGB-IR image can be acquired from the CCD camera. However, human activity
recognition using only CCD RGB-IR with the restricted texture details will not have perfect
recognition performances. In some studies [20–23], thermal image-based approaches to
use images of infrared thermography (IRT) acquired from the sensing device of the IR
thermal imager for analyzing activity gesture information are presented to maintain a
satisfactory recognition accuracy even in an adverse environment of low lights. However,
a high cost problem of the IR thermal imager will be inevitably encountered, which will be
an adverse factor on the market acceptance to such intelligent applications. To tackle this
issue, in this paper, depth image information derived from a depth sensor that belongs to
the sensor category of time of flight (ToF) is additionally considered to be fused with the
CCD RGB-IR data for constructing hand gesture intention recognition with outstanding
performance. It is well-known that a depth sensor will not be restricted in performance
by the illumination factor. A hand gesture intention recognition system using convolution
neural network (CNN) deep learning incorporated with wavelet image fusion of CCD
RGB-IR and depth-grayscale data is proposed in this work, which will be detailed in the
following sections.

The primary contributions of this work are summarized and listed as follows:

(1) An effective deep learning recognition framework, CNN, incorporated with wavelet
image fusion of the dual modalities of sensor data, CCD RGB-IR and depth-grayscale,
is proposed for hand gesture intention recognition.
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(2) Compared with traditional CNN deep learning and recognition using only a single
modality of sensor data (either CCD RGB-IR or depth-grayscale), the presented CNN
with wavelet image fusion of both CCD RGB-IR and depth-grayscale has obvious and
significant performance impacts on gesture recognition accuracy.

(3) Compared with those studies using fusion of VIS and IR images in CCD camera-
based surveillance applications with human activity recognition, gesture recogni-
tion using a fusion of CCD RGB-IR and depth-grayscale, as per the presented ap-
proach, will be much competitive, especially in adverse conditions such as darkness
or low illumination.

(4) Compared with those works by IR thermal image-based approaches for overcoming
the problem of gesture recognition in the condition of low lights, the presented ap-
proach will be much more advantageous and acceptable given the costs of
sensor deployments.

The remainder of this paper is organized as follows. Section 2 provides a primary
description of the typical calculation framework of CNN deep learning in a general recog-
nition task. Section 3 details the hand gesture intention recognition using the presented
CNN deep learning incorporated with wavelet image fusion of the CCD RGB-IR and depth-
grayscale sensing data. Section 4 presents the experiment results where the effectiveness
and performance of the proposed CNN with wavelet image fusion of CCD RGB-IR and
depth-grayscale are demonstrated, compared with conventional CNN with only CCD
RGB-IR alone or depth-grayscale alone. Section 5 is a discussion of related techniques and
real-world applications. Finally, Section 6 gives some concluding remarks.

2. Typical VGG-16 CNN Deep Learning on Recognition

Convolution neural network-based deep learning has been successfully used in pat-
tern recognition applications, including hand gesture intention recognition in this work.
Compared with the traditional artificial neural network (i.e., the so-called ANN) scheme,
additional convolution and pooling computation layers are finely incorporated inside the
CNN model. Convolution and pooling tasks in CNN are mainly to perform image feature
extraction by a series of filters and reduce the data dimension of the extracted feature
information, respectively. Each convolution computation is followed by a corresponding
pooling process. With such layer-by-layer convolution and pooling calculations on the set
of input images, the CNN model can finally achieve the purpose of image characteristics
learning in a deep manner.

In this study of hand gesture intention recognition, the well-known VGG-16 CNN
model is adopted [24]. The VGG-16 CNN structure was developed by the visual geometry
group (VGG) for constructing 2-dimentional (2-D)-based image recognition system. As
can be seen in Figure 1, the calculation framework of VGG-16 CNN contains two main
process parts: the first part of convolution and max pooling estimates (13 layers) and the
second part of fully connected (FC) classification computations (3 layers). In this study, a
set of continuous-time RGB-IR hand gesture images (each image fixed to the size of 224 by
224) that denote different classifications of human intentions was sent to VGG-16 CNN for
learning and recognition. It can be noted that in the last layer of VGG-16 CNN (i.e., the
final classification layer), the node number in this layer is set to 10 to denote class match
values of 10 corresponding hand gesture intention categorizations.
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Figure 1. Frameworks of VGG-16 CNN deep learning [24] for the continuous-time hand gesture data
stream (10 gesture classification nodes set in the final layer).

Figure 2 depicts a typical one-channel VGG-16 CNN deep learning recognition scheme
without consideration of the fusion of different modalities of sensor data. It is clearly
seen in Figure 2 that for the CCD camera-derived data stream, the RGB-IR hand gesture
data-based VGG-16 CNN can be trained and then built up. Such single-channel VGG-16
CNN deep learning using only the same modality data of RGB-IR will inevitably encounter
the problem of dissatisfactory recognition performance in situations where the recognition
environment is lowly illuminated (or in darkness). For overcoming this problem and
further enhancing such single-channel CCD RGB-IR VGG-16 CNN gesture recognition, a
dual-channel VGG-16 CNN deep learning framework by incorporating the wavelet-based
image fusion scheme to effectively hybridize two different modalities of sensor data, CCD
RGB-IR and depth-grayscale (from a depth camera), is presented, which will be detailed in
Section 3. The single-channel VGG-16 CNN deep learning framework of the depth camera-
derived depth-grayscale data is also provided in Figure 2 for clearness on recognition
performance comparisons.
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channel to process the same type of sensor data (the CCD RGB-IR modality or the depth camera-
derived depth-grayscale modality in an environment of low illumination).

3. Hand Gesture Intention Recognition by Presented VGG-16 CNN Deep Learning
Incorporated with Wavelet Fusion of CCD RGB-IR and Depth-Grayscale
Sensing Images

In this work, wavelet-based image fusion is properly incorporated into the VGG-16
CNN hand gesture intention recognition for obtaining reliable recognition outcomes. For
wavelet image fusion, it is mainly composed of three estimate procedures, which are
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(1) extraction of filter coefficients (i.e., DWT coefficients) of the CCD RGB-IR and depth-
grayscale sensor images; (2) merge computations of the derived DWT coefficients of the
two different sensor data types; and (3) inverse discrete wavelet transform (IDWT) carried
out for the merged image for decoding and getting back a recovery image. The IDWT-
decoded recovery image is then sent to the VGG-16 deep learning model for establishment
and classification of the training models of the hand gesture intention actions. Figure 3
depicts the presented dual-channel sensor fusion approach to hybridize the CCD RGB-IR
and depth-grayscale sensor image data by wavelet fusion for VGG-16 deep learning hand
gesture intention action recognition. Figure 4 shows the hybridized action data stream for
VGG-16 CNN deep learning and recognition derived from the mentioned three procedures
in wavelet image fusion.
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3.1. Discrete Wavelet Transform of Five Levels for Decompositions of CCD RGB-IR and
Depth-Grayscale Hand Gesture Action Data

As mentioned, in the wavelet-based image fusion, each of two different sensor modal-
ity data of the acquired hand gesture intention action image is first used to derive the
corresponding filter coefficients using wavelet transform. The well-known wavelet trans-
formation of the image with two-dimensional (x,y) pixel raw data is essentially categorized
into two-dimensional wavelet transformation, which performs an encoding procedure
using the original input image. The discrete wavelet transform will separate the original
image to four different independent segments, which are the approximated (A) image part,
the horizontal detail (HD) data part, the vertical detail (VD) data and the diagonal detail
(DD) data. Figure 5 shows an example that one-level DWT decomposition is performed
on a hand gesture image with the sensor modality of CCD RGB-IR. It is clearly seen that
four decomposed components, A, HD, VD and DD, are extracted after the one-level DWT
process. Note that the approximated image part will keep most of the original image
data, and it is obtained by calculations of low-pass (LP) filter and LP filter (i.e., the LL
decomposition coefficient); the HD segment is derived using the LP filter and the high-pass
(HP) filter (i.e., the LH decomposition coefficient); the HP filter and the LP filter are em-
ployed to determine the VD segment (i.e., the HL decomposition coefficient); finally, the
DD segment can be estimated using two high-pass filters, HP filter-HP filter (i.e., the HH
decomposition coefficient). These LL, LH, HL and HH wavelet decomposition coefficients
that are representative of those corresponding regions, A, HD, VD and DD, respectively,
can be estimated using Equations (1)–(4), as follows.

Ai : LLi(x, y) = ∑K−1
n=0 ∑K−1

m=0 LLi−1(m, n)× l(2x−m)× l(2y− n), x, y ∈ Z, K = 224, i = 1, 2, . . . , 5. (1)

VDi : HLi(x, y) = ∑K−1
n=0 ∑K−1

m=0 LLi−1(m, n)× h(2x−m)× l(2y− n), x, y ∈ Z, K = 224, i = 1, 2, . . . , 5. (2)

HDi : LHi(x, y) = ∑K−1
n=0 ∑K−1

m=0 LLi−1(m, n)× l(2x−m)× h(2y− n), x, y ∈ Z, K = 224, i = 1, 2, . . . , 5. (3)

DDi : HHi(x, y) = ∑K−1
n=0 ∑K−1

m=0 LLi−1(m, n)× h(2x−m)× h(2y− n), x, y ∈ Z, K = 224, i = 1, 2, . . . , 5. (4)
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Figure 5. Four separated decomposition components, image data of the approximate (A), detailed
data of the horizontal (H), detailed data of the vertical (V) and detailed data of the diagonal (D), de-
rived from discrete wavelet transform (one-level DWT decomposition on CCD RGB-IR, for example).

Note that in Equations (1)–(4), l(2x−m) and l(2y− n) denote low-pass filters, and
h(2x−m) and h(2y− n) represent high-pass filters; the index i is the level number of
iterative DWT decomposition levels. These four terms, LLi(x, y), HLi(x, y), LHi(x, y) and
HHi(x, y), denote the approximated image part, the vertical detail data part, the horizontal
detail data part and the diagonal detail data part in the i-th level DWT decomposition,
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respectively. Parameters x and y are the x-axis and y-axis positions of a pixel in an input
image, respectively. The maximum value of both x and y is set to K − 1 (K = 224, as shown
in Equations (1)–(4); images with the invariable size of 224 by 224 required for specific
deep learning of VGG-16 CNN, as introduced in Section 2). In a series of multi-level
DWT decomposition calculations, the approximated image part, LLi(x, y), keeps crucial
information about the pixel raw data in the i-th decomposition level, by which the DWT
decomposition parameter sets of the next level (i.e., i + 1) can then be iteratively estimated.
It is also noted that the term LLi(x, y) with i set to 0, i.e., LL0(x, y), denotes the original
input image before performing DWT.

In this study, 5-level DWT, which contains five consecutive phases of data decom-
position (i.e., i = 5), is adopted to encode each of the CCD RGB-IR and depth-grayscale
sensing data modalities (see Figure 6). Compared with only one-level DWT data encoding
in Figure 5, the 5-level DWT estimate, as shown in Figure 6, will continually perform five
phases of data decomposition calculations. As can be seen in Figure 6, when completing
the 1st DWT on the original input image, the approximate data A1, and three segments
of detailed data, HD1, VD1 and DD1, can be extracted. The derived approximate image
data A1 will then be used as the input image of the 2nd level DWT. The approximate data
A2 and other three segments of detailed data, HD2, VD2 and DD2 can be obtained in the
2nd DWT data decomposition. Similar calculations are done in the 3rd, 4th and 5th level
DWT data decomposition. Note that, in this work, after performing 5-level DWT estimates
on each of the CCD RGB-IR and depth-grayscale modality data, five coefficient parameter
sets (i.e., (A1,CCD, HD1,CCD, VD1,CCD, DD1,CCD), (A2,CCD, HD2,CCD, VD2,CCD, DD2,CCD), . . . ,
and (A5,CCD, HD5,CCD, VD5,CCD, DD5,CCD)) and another 5 coefficient parameter sets (i.e.,
(A1,Depth, HD1,Depth, VD1,Depth, DD1,Depth), (A2,Depth, HD2,Depth, VD2,Depth, DD2,Depth), . . . , and
(A5,Depth, HD5,Depth, VD5,Depth, DD5,Depth)) can then be used to represent the input sensing
images of CCD RGB-IR and depth-grayscale, respectively.
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Following DWT data decomposition, a merge computation to hybridize these two
different modalities of DWT coefficient parameter sets of CCD RGB-IR and depth-grayscale
in each of the five levels will be done. Finally, an inverse DWT (IDWT) estimate will
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be performed on the merged data (i.e., data decoding), where a recovered image with
pixel-based raw data can then be obtained and further used for CNN deep learning and
recognition, which will be detailed in Section 3.2.

Figures 7 and 8 are the coefficient derivation process of the 5-level DWT decomposition
on two different modalities of hand gesture sensing data, namely, CCD RGB-IR and depth-
grayscale, respectively. As shown in Figures 7 and 8, the approximated data region in the
overall image will become smaller and smaller with an increasing DWT decomposition
level. In contrast, when the iterative number of such a DWT decomposition is increased,
there are more and more detailed data contained in the image. Note that in merging the
calculations of the two different modalities of wavelet decomposition coefficients, the
decomposition coefficient of the two different sensing modalities of the image data with
the same DWT decomposition level number will be taken into account, with coefficient
hybridizations done on both of the 5th level DWT coefficient of CCD RGB-IR (see Figure 7)
and the 5th level DWT coefficient of the depth-grayscale (see Figure 8), for example.
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3.2. Decomposition Data Merge and IDWT-Decode to Derive Hybridized Data Streams for
VGG-16 CNN Deep Learning on Hand Gesture Intention Action Recognition

As mentioned, in wavelet-based image fusion, after finishing the extraction of the
DWT decomposition coefficients of each of the CCD RGB-IR and depth-grayscale sensor
images, a coefficient merge process will then be followed. In this work, three data fusion
strategies, max-min, min-max and mean-mean, to merge the CCD RGB-IR and depth-
grayscale DWT decomposition coefficients in each DWT calculation level, were employed.
The following details the three general DWT image fusion strategies used in this work. Note
that additional merging schemes, such as substitutive wavelet fusion, additive wavelet
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fusion and weighted model wavelet fusion, also have been employed in image-related
applications [25,26].
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(1) The data fusion strategy of max-min

In each DWT decomposition level, the merge operation of max-min for hybridizing
CCD RGB-IR and depth-grayscale DWT decomposition coefficients is to decide the maxi-
mum between the approximate data of CCD RGB-IR and depth-grayscale; in addition, for
each of the regions of vertical, horizontal and diagonal detailed data, the merge operation
is to estimate the minimum between the CCD RGB-IR and depth-grayscale sensor modality
decomposition parameters. Equations (5)–(8) detail the max-min data fusion strategy.

Ai,Merged = max(Ai, CCD, Ai,Depth), i = 1, 2, . . . , 5. (5)

VDi,Merged = min(VDi, CCD, VDi,Depth), i = 1, 2, . . . , 5. (6)

HDi,Merged = min(HDi, CCD, HDi,Depth), i = 1, 2, . . . , 5. (7)

DDi,Merged = min(DDi, CCD, DDi,Depth), i = 1, 2, . . . , 5. (8)
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(2) The data fusion strategy of min-max

Compared with the abovementioned max-min fusion operation, the min-max data fu-
sion strategy herein is to make the minimum decision between the CCD RGB-IR and depth-
grayscale approximate data and find the maximum between the CCD RGB-IR and depth-
grayscale detailed data in each of the five DWT decomposition levels. Equations (9)–(12)
show the calculation of the min-max data fusion strategy.

Ai,Merged = min(Ai, CCD, Ai,Depth), i = 1, 2, . . . , 5. (9)

VDi,Merged = max(VDi, CCD, VDi,Depth), i = 1, 2, . . . , 5. (10)

HDi,Merged = max(HDi, CCD, HDi,Depth), i = 1, 2, . . . , 5. (11)

DDi,Merged = max(DDi, CCD, DDi,Depth), i = 1, 2, . . . , 5. (12)

(3) The data fusion strategy of mean-mean

Different to the max-min and min-max merge operations, the mean-mean data fusion
strategy simultaneously takes into consideration the CCD RGB-IR and depth-grayscale
decomposition information in the data merge computations of each level. The mean-mean
data fusion is essentially similar to additive wavelet fusion. The additive fusion strategy
is that the approximate information of one modality data is added by that of the other
modality data. The detailed data of the two different input modalities are also extracted
using the same operation. In this work, mean-mean data fusion is adopted to further
derive the averaged information of the accumulative CCD RGB-IR and depth-grayscale
approximate and detailed data. Detailed operations of the mean-mean data fusion strategy
can be clearly seen in Equations (13)–(16).

Ai,Merged = mean(Ai, CCD, Ai,Depth), i = 1, 2, . . . , 5. (13)

HLi,Merged = mean(HLi, CCD, HLi,Depth), i = 1, 2, . . . , 5. (14)

LHi,Merged = mean(LHi, CCD, LHi,Depth), i = 1, 2, . . . , 5. (15)

HHi,Merged = mean(HHi, CCD, HHi,Depth), i = 1, 2, . . . , 5. (16)

Following the data fusion process, for the merged image is then performed the inverse
discrete wavelet transform to make a series of inverse operations of DWT calculations
(i.e., decoding of the DWT data). After completing the IDWT computation, the DWT
decomposition data-merged image will then be transformed and returned to the recovery
image with all pixel raw information. Equation (17) shows the 5-level IDWT decoding
process, which is a computation of pixel-based image recovery. Note that, in Equation (17),
the recovery image of the corresponding 5-level IDTW calculation can finally be decoded
and acquired in the case of i = 0, which is the term LL0(x, y) (i.e., A0(x, y)). The IDWT-
image, LL0(x, y), will then be viewed as the input data of the VGG-16 model to further
perform deep learning and recognition of the hand gesture intention actions. It is also noted
that the image of LL0(x, y) reveals the hybridization information of the two original input
images of CCD RGB-IR and depth-grayscale. Figure 9 illustrates the 5-level IDWT decoding
process for achieving pixel-based image recovery from a series of wavelet decomposition
coefficients derived from 5-level DWT, A5, HD5, VD5, DD5, HD4, VD4, DD4, HD3, VD3,
DD3, HD2, VD2, DD2, HD1, VD1 and DD1.

LLi(x, y) = ∑∞
m=−∞ ∑∞

n=−∞ LLi+1(m, n) × l(y− 2n) × l(x −
2m) + ∑∞

m=−∞ ∑∞
n=−∞ HLi+1(m, n) × l(y− 2n) × h(x− 2m) +

∑∞
m=−∞ ∑∞

n=−∞ LHi+1(m, n) × h(y− 2n) × l(x− 2m)+

∑∞
m=−∞ ∑∞

n=−∞ HHi+1(m, n) × h(y− 2n) × h(x− 2m), x, y ∈ Z, i = 4, 3, . . . , 0.

(17)
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Figure 9. Five-level IDWT calculations employed in this work for finally obtaining the recovery
images with pixel information (flowcharts of the IDWT decoding of each of the five levels).

Figures 10–12 depict wavelet image fusion of CCD RGB-IR and depth-grayscale by the
DWT decomposition coefficient fusion strategies of max-min, min-max and mean-mean, re-
spectively. For clearly observing the difference of each fusion strategy on the merged image
and its corresponding IDWT-decoded image, only one-level wavelet image fusion informa-
tion is shown. As shown in Figure 10, the left represents the max-min merged image infor-
mation, i.e., the set of four segments of A1,Merged, VD1,Merged, HD1,Merged and DD1,Merged,
which are derived from the computation of max(A1, CCD, A1,Depth), min(VD1, CCD, VD1,Depth),
min(HD1, CCD, HD1,Depth) and min(DD1, CCD, DD1,Depth), respectively (see Equations (5)–(8)).
The right of Figure 10 denotes the recovery image from calculations of IDWT on the max-
min merged image information (i.e., one-level IDWT operations, the term LLi(x, y) esti-
mated from Equation (17) with i = 0). Similarly, the merged image information and the
recovered pixel-based image by the corresponding IDWT decoding process of min-max and
mean-mean wavelet image fusion can be seen in Figures 11 and 12, respectively (also see
Equations (9)–(17)). Note that, as mentioned before, such IDWT-decoded images generated
from max-min, min-max or mean-mean wavelet image fusion (five-level wavelet transform
calculations employed in this work (i.e., the IDWT initial setting i = 4 set in Equation (17))
will then further be carried out for VGG-16 CNN deep learning and recognition.
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Figure 10. The “max-min” merge strategy performed on two 1st-level DWT coefficients derived from
CCD RGB-IR and depth-grayscale hand gesture images (the left) and the IDWT-decoded recovery
image of the “max-min” merged (the right) for VGG-16 CNN deep learning.
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subject was requested to record the indicated hand gesture intention actions. The subject 
enlisted for hand gesture database establishment was male and about 20 years of age. 
Table 1 shows the indicated ten continuous-time hand gesture action categorizations, 
each of which represents the specific semantic human intention behavior in the real life of 
laboratory environments. Note that each of these gesture actions operated is 
well-designed according to the standard sign language (specific sign language used in 
social actions of Taiwan) definition in [27]. These actions of Action-1, Action-2, …, and 
Action-10 are essentially common in an interaction scenario of a laboratory office com-
posed of student members and the leading teacher, and very beneficial for the smart so-
cial activities of a normal group or smart person communication between the normal and 
the disabled, which are “To the restroom!,” “What?”, “Good bye!”, “Is it ok?”, “Good 
morning!”, “The teacher!”, “The exam!”, “Hello!”, “Calm down!”, and “Exchange!”, re-
spectively. Examples of the ten included designed hand gesture intention actions in a 
laboratory office interaction are listed as follows (smart interactions between the normal 
using acoustic voices and the disabled using hand gesture actions): 

(The normal): Where are you going? (The disabled): To the restroom! 
(The normal): Do you remember? (The disabled): What? 
(The normal): I’m going back first. (The disabled): Good bye! 
(The normal): Ok, finished! (The disabled): Is it ok? 
(The normal): Hi, good morning! (The disabled): Good morning! 
(The normal): Who is him? (The disabled): The teacher! 

Figure 11. The “min-max” merge strategy performed on two 1st-level DWT coefficients derived from
CCD RGB-IR and depth-grayscale hand gesture images (the left) and the IDWT-decoded recovery
image of the “min-max” merged (the right) for VGG-16 CNN deep learning.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 23 
 

 

 

Figure 11. The “min-max” merge strategy performed on two 1st-level DWT coefficients derived 
from CCD RGB-IR and depth-grayscale hand gesture images (the left) and the IDWT-decoded re-
covery image of the “min-max” merged (the right) for VGG-16 CNN deep learning. 

 

Figure 12. The “mean-mean” merge strategy performed on two 1st level DWT coefficients derived 
from CCD RGB-IR and depth-grayscale hand gesture images (the left) and the IDWT-decoded re-
covery image of the “mean-mean” merged (the right) for VGG-16 CNN deep learning. 

4. Experiments 
Hand gesture intention actions recognition experiments were made in a laboratory 

office environment. In the phase of gesture action database establishment, the specific 
subject was requested to record the indicated hand gesture intention actions. The subject 
enlisted for hand gesture database establishment was male and about 20 years of age. 
Table 1 shows the indicated ten continuous-time hand gesture action categorizations, 
each of which represents the specific semantic human intention behavior in the real life of 
laboratory environments. Note that each of these gesture actions operated is 
well-designed according to the standard sign language (specific sign language used in 
social actions of Taiwan) definition in [27]. These actions of Action-1, Action-2, …, and 
Action-10 are essentially common in an interaction scenario of a laboratory office com-
posed of student members and the leading teacher, and very beneficial for the smart so-
cial activities of a normal group or smart person communication between the normal and 
the disabled, which are “To the restroom!,” “What?”, “Good bye!”, “Is it ok?”, “Good 
morning!”, “The teacher!”, “The exam!”, “Hello!”, “Calm down!”, and “Exchange!”, re-
spectively. Examples of the ten included designed hand gesture intention actions in a 
laboratory office interaction are listed as follows (smart interactions between the normal 
using acoustic voices and the disabled using hand gesture actions): 

(The normal): Where are you going? (The disabled): To the restroom! 
(The normal): Do you remember? (The disabled): What? 
(The normal): I’m going back first. (The disabled): Good bye! 
(The normal): Ok, finished! (The disabled): Is it ok? 
(The normal): Hi, good morning! (The disabled): Good morning! 
(The normal): Who is him? (The disabled): The teacher! 

Figure 12. The “mean-mean” merge strategy performed on two 1st level DWT coefficients derived
from CCD RGB-IR and depth-grayscale hand gesture images (the left) and the IDWT-decoded
recovery image of the “mean-mean” merged (the right) for VGG-16 CNN deep learning.

4. Experiments

Hand gesture intention actions recognition experiments were made in a laboratory office
environment. In the phase of gesture action database establishment, the specific subject was
requested to record the indicated hand gesture intention actions. The subject enlisted for
hand gesture database establishment was male and about 20 years of age. Table 1 shows the
indicated ten continuous-time hand gesture action categorizations, each of which represents
the specific semantic human intention behavior in the real life of laboratory environments.
Note that each of these gesture actions operated is well-designed according to the standard
sign language (specific sign language used in social actions of Taiwan) definition in [27]. These
actions of Action-1, Action-2, . . . , and Action-10 are essentially common in an interaction
scenario of a laboratory office composed of student members and the leading teacher, and very
beneficial for the smart social activities of a normal group or smart person communication
between the normal and the disabled, which are “To the restroom!,” “What?”, “Good bye!”,
“Is it ok?”, “Good morning!”, “The teacher!”, “The exam!”, “Hello!”, “Calm down!”, and
“Exchange!”, respectively. Examples of the ten included designed hand gesture intention
actions in a laboratory office interaction are listed as follows (smart interactions between the
normal using acoustic voices and the disabled using hand gesture actions):

(The normal): Where are you going? (The disabled): To the restroom!
(The normal): Do you remember? (The disabled): What?
(The normal): I’m going back first. (The disabled): Good bye!
(The normal): Ok, finished! (The disabled): Is it ok?
(The normal): Hi, good morning! (The disabled): Good morning!
(The normal): Who is him? (The disabled): The teacher!
(The normal): Is it an exam or quiz? (The disabled): The exam!
(The normal): Hello! (The disabled): Hello!
(The normal): I’m so excited now. (The disabled): Calm down!
(The normal): Is academic exchange required? (The disabled): Exchange!
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Table 1. A database of ten continuous-time hand gesture intention actions established for evaluation
of the presented deep learning with wavelet-based image fusion (the modality of CCD RGB-IR) [27].

Action Classes Data Streams of Continuous-Time CCD RGB-IR Hand Gesture Actions

Action 1
(To the restroom!)
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for the deep learning model test). Each gesture action is a completed image capture in the 
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Action Classes Data Streams of Continuous-Time CCD RGB-IR Hand Gesture Actions 
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(To the restroom!) 
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(What?) 
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(Good bye!) 
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(Is it ok?) 

 

Action 5 
(Good morning!) 

 

Action 6 
(The teacher!) 

 

Action 3
(Good bye!)
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Note that these captured hand gesture actions in Table 1 belong to the type of CCD
RGB-IR, captured using a CCD camera in a situation of almost complete darkness. Figure 13
reveals that the specific subject performs the indicated gesture action in a proper location to
the deployed image sensor. Note that, in Figure 13, when the CCD camera operates in dark
conditions, i.e., in insufficient light, the IR lights around the image lens of the CCD will keep
emitting to ensure visible rendering of the RGB images (see the right of Figure 13). In total,
60,000 action images were collected, mainly including two separated parts: 30,000 action
images of CCD RGB-IR and 30,000 action images of Kinect depth-grayscale; the collected
subject was to make an action for each of the indicated 10 types of hand gesture intention
actions, with each specific type of action performed 50 times (25 times for actions for deep
learning model training and the other 25 times actions for the deep learning model test).
Each gesture action is a completed image capture in the time period of 2 s with a frame
rate of 30. The established database is used for action recognition performance evaluations
of the presented VGG-16 CNN deep learning incorporated with wavelet image fusion of
CCD RGB-IR and depth-grayscale modalities.
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Figure 13. Acquisitions of the hand gesture intention images of different modalities of RGB-IR and
depth-grayscale from a CCD camera and a Kinect device.

As mentioned, this work employs 5-level wavelet image fusion for hybridizing two
different sensor modality data. Before VGG-16 CNN deep learning and recognition, each
of the 30,000 CCD RGB-IR action images collected was made into a wavelet image fusion
of “max-min”, “min-max”, and “mean-mean” with the corresponding image of the same
time-stamp in another collected set of 30,000 depth-grayscale action images. In total, there
are 30,000 “max-min” wavelet fused images, 30,000 “min-max” wavelet fused images and
30,000 “mean-mean” wavelet fused images for making the recognition and testing the
three different VGG-16 CNN deep learning models (for each VGG-16 CNN, 15,000 action
images used for model training and the other 15,000 action images used for model test).
In the phase of VGG-16 CNN model training, the related hyper-parameter settings were
finely made, the batch size set to 50, the learning rate set to 0.0001, the training ratio set
to 0.8 and the number of epochs set to 60; in addition, for minimizing the value of the
training loss, a popular optimizer, “Nesterov Momentum”, with the value of momentum
set to 0.9, was also adopted in training of VGG-16 CNN. The specifications of the related
hardware devices employed in the developed hand gesture intention recognition system
are as follows: a desktop PC with a Windows 10 OS, equipped with an i7-8700 3.20 GHz
CPU (Intel, Santa Clara, CA, USA), 16 GB RAM and a graphics card with a Geforce GTX
1080 Ti GPU (Nvidia, Santa Clara, CA, USA); a CCD camera for capturing the CCD RGB-IR
hand gesture images was connected to a monitor host with four surveillance channels
(only one channel used in this work). In total, 8 IR-LEDs were deployed around the central
image sensor in the CCD camera. The AVI video recorded from the CCD camera has
the specific format of H.265, 1920 × 1080 and 255 kbps. Note that the AVI video then
performed extractions of H.265-encoded images and decoded images (RGB-IR images with
specific time-stamps finally obtained for recognition system developments). The Microsoft
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Kinect sensor device for acquisitions of depth-grayscale images belonged to the Kinect v1
type, where the effective range for depth capturing is from 0.5 m to 4.5 m. In this work of
acquiring the depth-grayscale gesture images, the distance between the gesture-making
subject and the sensor device is about 1.25–1.30 m. The Kinect for Windows software
development kit (SDK) v1.8 was used in this work.

Figures 14–18 show an example of the 5-level wavelet image fusion of the two different
sensor modalities of hand gesture action images used in this study. For simplicity, only
wavelet transform fused images of the “Action 1” type of hand gesture intention actions
are provided. Figures 14 and 15 are the original single modality of the image data captured
from the depth sensor and the CCD camera, respectively. The merged images of “max-min”,
“min-max” and “mean-mean” wavelet image fusion of the “Action 1” CCD RGB-IR and
depth-grayscale images are given in Figures 16–18, respectively. It is also noted that the
wavelet fusion merged images are then used for training and recognition of the CNN
deep learning.
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Finally, the VGG-16 CNN recognition performance results of hand gesture intention
recognition by the conventional single modality and the presented hybridized modality
by wavelet image fusion are presented. Table 2 provides the averaged recognition perfor-
mance of the overall ten classes of gesture actions of all hand gesture intention recognition
strategies with (or without) image fusion in the phase of VGG-16 CNN training. It can
be clearly seen that each strategy achieves complete recognition of 100%. Table 3 is the
recognition performance of hand gesture intention recognition by the traditional VGG-16
CNN with only one modality of CCD RGB-IR or depth-grayscale images; the recognition
effectiveness of the presented VGG-16 CNN incorporated with wavelet image fusion of
CCD RGB-IR and depth-grayscale on hand gesture intention recognition is given in Table 4.
Observations of the recognition performance outcomes, revealed by Tables 3 and 4, can
be made from two different viewpoints: a separate, one class of action, and the overall
ten classes of actions. From the viewpoint of a separate, one class of action, two classes of
gesture actions, Action 1 and Action 10, can be improved the recognition performance of
VGG-16 CNN with only the single modality CCD RGB-IR and depth-grayscale using either
of max-min, min-max and mean-mean wavelet image fusion strategies on CCD RGB-IR and
depth-grayscale. In addition, two hybridization strategies, VGG-16 CNN with min-max
and mean-mean wavelet image fusion, can significantly improve six classes of actions,
which are Actions 1, 4, 5, 6, 9 and 10 and Actions 1, 3, 4, 6, 9 and 10, respectively. For
VGG-16 CNN with max-min wavelet image fusion, the number of gesture classes that can
increase the recognition accuracy is 3 (Actions 1, 5 and 10). Observed from Tables 3 and 4,
it is also noted that both Actions 3 and 5 still have substandard recognition rates, even with
the use of wavelet image fusion on CCD RGB-IR and depth-grayscale. Such a phenomenon
of difficulty in performance improvement is extremely reasonable. Without considerations
of image fusion, Action 3 with the modality of CCD RGB-IR and depth-grayscale only has
a performance of 40.33% and 17.93%, respectively. For Action 5, recognition performances
of the single modality CCD RGB-IR and depth-grayscale are much worse, just 2.67% and
25.20%, respectively. That both types of single modality actions are hard to be categorized
or even completely unrecognizable will not benefit from the data complementary effect of
wavelet image fusion. Regarding the overall consideration of all ten classes of actions, VGG-
16 CNN recognition incorporated with wavelet image fusion of min-max and mean-mean
merged strategies have apparently more outstanding recognition performances, both of
which are significantly higher than those of CCD RGB-IR alone and depth-grayscale alone.
VGG-16 CNN with min-max wavelet fusion performs best, achieving 83.88%, followed by
80.95% for the mean-mean wavelet fusion. However, VGG-16 CNN with max-min wavelet
image fusion has no apparent effects on improvements of averaged recognition accuracy,
reaching only 73.91%. The averaged recognition rate of VGG-16 CNN using only a single-
sensor modality without any image fusion is not satisfactory—75.33% with CCD RGB-IR
recognition and 72.94% with depth-grayscale recognition. Experimental results clearly
reveal the effectiveness of the presented deep learning using wavelet image fusion with
proper merge strategies of the wavelet decomposition parameter sets for improvements
of the averaged recognition accuracy of hand gesture intention action classifications. In
addition, confusion matrices of VGG-16 CNN with max-min, min-max and mean-mean
wavelet image fusion are also provided in this work, which can be seen in Tables 5–7,
respectively. Figures 19–21 show the recognition rate and loss value curves of VGG-16
CNN model training (as mentioned, totally 60 iterations set in the training phase) using
max-min, min-max and mean-mean wavelet fused images, respectively. For demonstrating
the competitiveness of the presented approach on computation speed, the time information of
both the training and test phases of the hand gesture intention recognition using the proposed
VGG-16 CNN with wavelet image fusion is also provided in Table 8. It is clearly seen in
Table 8 that for each of VGG-16 CNN with max-min, min-max and mean-mean wavelet image
fusion, the averaged time of a gesture intention action required for recognition calculations is
about a half-second, which can achieve real-time computation in real-life applications.
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Table 2. Recognition performances of hand gesture intention recognition by typical deep learning
of a VGG-16 CNN with only a single modality of CCD RGB-IR or depth-grayscale images and
the proposed VGG-16 CNN deep learning with wavelet image fusion of CCD RGB-IR and depth-
grayscale by “max-min”, “min-max” or “mean-mean” merge types on recognition system training.

Data Modality CCD RGB-IR Depth-Grayscale Wavelet Fusion
Using Max-Min

Wavelet Fusion
Using Min-Max

Wavelet Fusion Using
Mean-Mean

Average 100% 100% 100% 100% 100%

Table 3. Recognition performances of hand gesture intention recognition by typical deep learning
of the VGG-16 CNN with only a single modality of CCD RGB-IR or depth-grayscale images on the
recognition system test.

Single Sensor Modality CCD RGB-IR Depth-Grayscale

Action-1 67.67% 93.33%
Action-2 100.00% 99.93%
Action-3 40.33% 17.93%
Action-4 59.67% 69.60%
Action-5 2.67% 25.20%
Action-6 86.33% 95.26%
Action-7 100.00% 77.66%
Action-8 100.00% 91.46%
Action-9 100.00% 98.00%

Action-10 96.67% 61.06%
Average 75.33% 72.94%

Table 4. Recognition performances of the hand gesture intention recognition using the presented
dual-channel VGG-16 CNN with wavelet-based image fusion of two different modalities of data,
CCD RGB-IR and depth-grayscale, on the recognition system test (by three different merged types of
wavelet decompositions).

Action
Categorization

Wavelet Fusion of
the Max-Min Type

Wavelet Fusion of
the Min-Max Type

Wavelet Fusion of the
Mean-Mean Type

Action-1 98.20% 99.53% 99.20%
Action-2 94.27% 99.07% 97.87%
Action-3 6.00% 24.20% 44.87%
Action-4 43.93% 84.80% 71.13%
Action-5 44.33% 37.53% 18.13%
Action-6 72.33% 98.33% 99.27%
Action-7 82.13% 99.00% 81.67%
Action-8 98.40% 98.33% 99.13%
Action-9 99.47% 100.00% 100.00%
Action-10 100.00% 98.00% 98.20%
Average 73.91% 83.88% 80.95%

Table 5. The confusion matrix of hand gesture intention recognition by VGG-16 CNN deep learning
with wavelet image fusion of the merge type of “max-min” on the recognition system test.

Max-Min 1 2 3 4 5 6 7 8 9 10

1 1473 0 0 11 16 0 0 0 0 0
2 0 1414 1 0 0 0 0 84 1 0
3 132 0 90 7 1003 29 239 0 0 0
4 41 0 25 659 47 456 10 0 0 262
5 107 0 13 0 665 0 665 0 0 50
6 4 302 18 0 6 1085 24 44 5 12
7 0 0 0 0 0 241 1232 2 10 15
8 0 24 0 0 0 0 0 1476 0 0
9 0 0 0 8 0 0 0 0 1492 0

10 0 0 0 0 0 0 0 0 0 1500
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Table 6. The confusion matrix of hand gesture intention recognition by VGG-16 CNN deep learning
with wavelet image fusion of the merge type of “min-max” on the recognition system test.

Min-Max 1 2 3 4 5 6 7 8 9 10
1 1493 0 0 7 0 0 0 0 0 0
2 0 1486 0 0 0 0 0 13 1 0
3 161 0 363 637 322 17 0 0 0 0
4 26 2 35 1272 7 75 1 0 2 80
5 0 0 192 0 563 0 292 0 0 453
6 0 0 4 0 8 1475 13 0 0 0
7 0 0 0 6 0 0 1485 0 0 9
8 0 25 0 0 0 0 0 1475 0 0
9 0 0 0 0 0 0 0 0 1500 0
10 12 0 0 18 0 0 0 0 0 1470

Table 7. The confusion matrix of hand gesture intention recognition by VGG-16 CNN deep learning
with wavelet image fusion of the merge type of “mean-mean” on the recognition system test.

Mean-
Mean 1 2 3 4 5 6 7 8 9 10

1 1488 0 0 12 0 0 0 0 0 0
2 0 1468 0 0 0 0 0 32 0 0
3 506 0 673 131 74 50 66 0 0 0
4 25 1 107 1067 0 252 14 0 34 0
5 5 0 712 0 272 0 192 0 0 319
6 3 0 7 0 0 1489 1 0 0 0
7 0 0 0 27 0 58 1225 96 0 94
8 0 13 0 0 0 0 0 1487 0 0
9 0 0 0 0 0 0 0 0 1500 0
10 16 0 0 11 0 0 0 0 0 1473
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max-min wavelet fused images.
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Table 8. Training and test time of the hand gesture intention recognition of the proposed VGG-16
CNN deep learning with wavelet image fusion of CCD RGB-IR and depth-grayscale using “max-min”,
“min-max” or “mean-mean” merge types on the hand gesture database (10 classes of gesture intention
actions with 25 actions collected in each class contained in each of the training and test databases).

Merge Types of Wavelet Image
Fusion for VGG-16 CNN

Wavelet Fusion Using
Max-Min

Wavelet Fusion Using
Min-Max

Wavelet Fusion Using
Mean-Mean

Training time in total 9067.80 s 9070.75 s 9096.67 s
Test time in total 133.96 s 128.17 s 128.57 s

Test time (averaged, one-action) 0.54 s 0.51 s 0.51 s

5. Discussions

In this work, as mentioned, wavelet image fusion for hybridizing both CCD RGB-IR
and depth-scale images belongs to the DWT-based approach. Integer wavelet transform
(IWT) will perhaps be also an alternative for extracting wavelet decomposition coefficients.
Although IWT has some competitive properties, such as fast computation and efficient
memory usages, the IWT technique is seen to have more applications in multimedia fields
of data compression with lossless recovery and data hiding with high security. Recently,
IWT has also been further integrated with DWT for image fusion in the application of image
steganography constructions with data concealments in multimedia communication [28].
The feasibility of IWT used in the field of pattern recognition with multimodality fusion
and deep learning may be evaluated in future work.

The deep learning model for recognition of hand gesture intention actions adopted in
this work is the VGG-16 CNN due to the wide usage of VGGNet-type deep learning models
in the biometric image-based pattern recognition field (e.g., face recognition, fingerprint
recognition, iris recognition and hand gesture recognition in this work). In fact, some
possible extended works may be further explored to use other types of CNN structures for
evaluating the performances.

In the study, as mentioned, compared with the single modality of RGB-IR or depth-
scale data for VGG-16 CNN deep learning and recognition, the presented VGG-16 CNN
with wavelet image fusion may significantly increase the averaged recognition accuracy
in proper DWT decomposition merge calculations. The main patterns to be classified
by the recognition system are hand gesture intention actions in only a very short time-
period (simple gesture actions that are extremely less time consuming, as mentioned in
Table 1). In the situation of continuous-time dynamic hand gesture actions with long
operation time-periods and many sensitivities given context dependency (generally called
as sign language actions), for recognition, a dynamic deep learning model, such as the well-
known LSTM or the more advanced structure of CNN-LSTM, belonging to the recursive
neural network (RNN) type [29], will be required for maintaining satisfactory recognition
accuracy. The future work of this study will consider the development of sign language
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recognition systems where such dynamic deep learning structures will be further explored
and evaluated.

Finally, the technical issue that the presented system will be used in a real-world
application is discussed. As mentioned, the gesture-making operator is requested to
complete each indicated gesture action in a fixed time of 2 s in this work. However, from
the view-point of practical applications in real life, it will not make sense. As popular
voice control-based speech recognition seen in device control applications nowadays, a
waking-up and terminating scheme for the gesture recognition system will be inevitably
required to be able to accurately extract the significant hand gesture intention action made
by the subject. An earlier study of the author on the establishment of an expert system for
the sport instructor robot with Kinect sensor-based gesture recognition has investigated
gesture activity detection (GAD) [2] where various effective GAD methods for extractions
of significant gesture actions are presented. Future work will explore this issue for further
promoting developed hand gesture intention to be practically used. On the other hand, in
practical applications, the promoted system will also additionally take into consideration
designs and integrations of the anti-model of hand gesture intention actions, to tolerate
the occurrence of unexpected gesture actions (e.g., an action that is out of the pre-defined
database of 10 actions in this work) made by the subject.

6. Conclusions

In this study, a deep learning framework, VGG-16 CNN, incorporated with a 5-level
wavelet image fusion of CCD RGB-IR and depth-grayscale sensor data streams, is pro-
posed for hand gesture intention recognition. Experimental results demonstrate that the
hybridization of CCD RGB-IR and depth-grayscale information by the min-max data fusion
strategy to merge wavelet decomposition performs best and is significantly superior to
only CCD RGB-IR without any depth-grayscale data fused on the recognition accuracy
of VGG-16 CNN deep learning. The presented approach can achieve competitive perfor-
mances in a surveillance application with human gesture intention recognition. Finally,
for the possible extension of this work in the future, the presented approach of CNN deep
learning with wavelet image fusion in this study can be further enhanced by incorporating
additional modalities of sensing information (such as the well-known IMU or SEMG data
from wearable watches or bracelets) to promote the system to be able to perform sign
language recognition with semantic context dependency or more complex human activity
behavior recognition with social actions of multiple subject interactions.
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