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Abstract: Indoor localization is an important issue for indoor location-based services. As opposed to
the other indoor localization approaches, the radio frequency (RF) based approaches are low-energy
solutions with simple implementation. The kernel learning has been used for the RF-based indoor
localization in 2D environment. However, the kernel learning has not been used in 3D environment.
Hence, this paper proposes a multi-kernel learning scheme for 3D indoor localization. Based on
the signals collected in the area of interest, the WiFi signals with better quality and closer to the
user are selected so as to reduce the multipath effect and the external interference. Through the
construction of multi-kernel, the localization accuracy can be improved as opposed to the localization
based on the single kernel. We build multiple kernels to get the user’s location by collecting wireless
received signal strengths (RSS) and signal-to-noise ratios (SNR). The kernel learning maps data
to high dimension space and uses the optimization process to find the surface where the data are
mapped. By multi-kernel training, the surface is fine-tuned and eventually converges to form the
location database during the mapping process. The proposed localization scheme is verified by the
real RSS and SNR collected from multiple wireless access points (AP) in a building. The experimental
results verify that the proposed multi-kernel learning scheme performs better than the multi-DNN
scheme and the existing kernel-based localization schemes in terms of localization accuracy and error
in 3D indoor environment.

Keywords: 3D indoor localization; multi-kernel; WiFi; transfer learning; semi-supervised learning

1. Introduction

Recently, the location-based service (LBS) for internet of things (IoT) becomes popular
in many fields such as office building, shopping mall, and community building. Since
the GPS system cannot catch satellite signals in an indoor environment, many indoor
localization systems based on different RF signals have been presented, such as RFID [1–3],
Bluetooth, and LoRa [4] based localization systems.

With the popularity of wireless LANs and wireless access devices, WiFi-based indoor
localization has become more and more popular in recent years. Based on the WiFi localization
systems, fingerprint schemes [5–10] show great advantages and accuracy in indoor localization
with RSS and SNR signals. In the offline phase, select multiple physical locations in the region
of interest and the signals received from APs built in indoor environment are defined as labeled
data in these selected locations. Therefore, the obtained position and the corresponding labeled
data are defined as the fingerprint database. In the training phase, the labeled data and the
corresponding RSS and SNR are obtained. In the online phase, the RSS and SNR received by
devices determine the specific location based on the radio map. Consequently, this kind of
scheme shows high potential in indoor localization.

A few 3D indoor localization schemes have been proposed. Qi et al. [11] proposed
a hybrid RSS-AOA measurement in non-cooperative and cooperative 3D wireless sensor
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networks. By using approximate error expressions for the RSS and angle of arrival (AOA)
measurement models, new estimation based on the proposed method can be obtained.
Cramariuc et al. [12] proposed a Penalized Logarithmic Gaussian Distance metric, which
can improve the comparability of different clustering schemes in 3D positioning.

The existing localization schemes either need additional hardware and measurements
or need to collect numerous samples for learning or training. To reduce the costs of
hardware, collecting, and measurements, a novel semi-supervised localization scheme is
proposed, which only needs to collect a few labeled signals of RSS and SNR and hence
reduces the costs (only 25% of the collected signals are labeled). However, the accuracy
of the existing localization schemes using only a few labeled signals of RSS and SNR are
not satisfactory. To improve these schemes, the multi-kernel learning scheme is proposed
and adopted in our semi-supervised localization scheme so as to improve the localization
accuracy and alleviate the multipath effect and signal deviating problem. The kernel model
is adopted because the kernel model can learn the distribution of data according to the
kernel function selected for the problem, and judge the result according to the distribution
of the data. During localization, the kernel model can learn the distribution of signals in the
positioning area, and determine where the user may be based on the signal distribution.

The main contributions of the proposed approach are summarized as follow:

• A semi-supervised localization scheme, which only needs to collect a few labeled
signals of RSS and SNR, is proposed in this paper.

• A multi-kernel learning scheme with weight adjustment and optimization for 3D
indoor localization in WiFi networks is proposed in this paper so as to further improve
the accuracy of localization.

• Experimental results demonstrate that the proposed localization scheme performs
better than the multi-DNN scheme and the existing kernel-based localization schemes
in terms of localization accuracy and error.

The rest of this paper is organized as follows. Section 2 describes the related works.
Section 3 describes the system model and the problem formulation of the proposed scheme.
Section 4 describes the proposed semi-supervised multi-kernel learning scheme for 3D
indoor localization. The experimental results are shown in Section 5, and the conclusions
are summarized in Section 6.

2. Related Work

This section mainly describes the related work and discusses the motivation.

2.1. Traditional RSSI-Based Localization Schemes

Zanca et al. [13] compared the experimental results of several traditional RSSI-based
localization schemes for indoor wireless sensor networks. Among these traditional RSSI-
based localization schemes, i.e., Min–Max, Multilateration, Maximum Likelihood (ML),
and ROCRSSI, the ML scheme performs the best. The ML scheme is based on classical
statistical inference theory. In testbed 1, the localization error of the ML scheme is around
2.3 m where there are 25 anchor nodes located in a 10× 10 m2 room. In testbed 2, the
localization error of the ML scheme is around 1.3 m where there are 40 anchor nodes located
in a 7× 7 m2 room. However, a mobile beacon node that is assumed to be always aware of
its own position is required in testbed 2. The assumptions of these traditional RSSI-based
localization schemes are different from those of the AI-based localization schemes. Besides,
the performance of these traditional RSSI-based localization schemes is not better than
that of the AI-based localization schemes. Hence, the traditional RSSI-based localization
schemes are not compared with the proposed localization scheme.

2.2. Fingerprint-Based Localization

There are lots of localization results [5,7–10] based on the fingerprint approach which are
described as follows. Abbas et al. [5] proposed a WiDeep system, which is a system based on
deep learning to achieve fine-grained and powerful accuracy in the presence of noise. This
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scheme uses a deep learning model of a stacked denosing auto encoder and a probability archi-
tecture to process the inference for the received WiFi signal and find the relationship between
the WiFi signal heard by the mobile device and its position. Anzum et al. [6] proposed a zone-
based indoor positioning method using counter propagation neural networks (CPN). When
the traditional CPN is applied, many empty clusters are generated. A slight modification of
the CPN can significantly reduce the number of empty clusters and provide more accurate
results. Chang et al. [7] proposed a high-precision indoor localization scheme based on WiFi
fingerprint. This scheme requires only a single WiFi AP and a single fixed-location receiver.
By training DNN based classification model with CSI, it can localize the target without any
attached device. Wu et al. [14] proposed a DNN-based fingerprint recognition method called
DNNFI. The proposed method only maintains a single DNN between different reference
points instead of using multiple deep self-encoders, so it has faster inference calculations and
reduces the weight deviation. First, a bunch of auto-encoders are used to pre-train weights.
The softmax function is used to determine the probability of the target’s location, which can
ultimately be used to estimate the receiver’s location. Although the fingerprint approach has
many advantages, including high accuracy and simple implementation, it requires a lot of
training data and manual labelling. When the localization area is too large, the fingerprint
approach will not be suitable.

2.3. Kernel-Based Localization

Kernel learning combining with support vector machine (SVM) paradigm leads to the
breakthroughs in many artificial intelligence tasks and gives birth to the kernel learning as a
field of research. Yan et al. [15] proposed a people counting approach based on fingerprint-
ing localization for multiple regions in indoor environment. This method locates each target
in the environment, and uses the Kernel Fuzzy C-Means (KFCM) clustering algorithm
to divide the entire area into different sub-areas to obtain the number of people in each
sub-areas. The position is compared with the boundaries of all subregions to determine the
subregion to which it belongs. Mari et al. [16] proposed a kernel online sequential extreme
learning machine (KOS-ELM) based approach. The proposed method incorporates both
trilateration and fingerprinting algorithms in localization phase to improve the localization
accuracy. Zou et al. [17] proposed a WinSMS System. The system extracts real-time RSS
readings between routers to make WiFi routers as online reference point. Using online data
from offline calibration radio maps and labeled source data, RSS readings from the target
mobile device are combined as unlabeled data to use transfer learning algorithms to design
localized models. The proposed method can learn the invariant kernel by calculating the
source distributions and target distributions for reproducing Hilbert kernel space.

2.4. 3D Localziation

Among the 3D localization schemes, some schemes are fully 3D [3,11,18,19], some
schemes only indicate the floor and the 2D location of the target object [12,20].

Qi et al. [11] proposed hybrid RSS (received signal strength) and AOA (angle-of-
arrival) estimators based on the least squares (LS) criterion for non-cooperative and co-
operative 3D wireless sensor networks. By applying the convex relaxation techniques,
estimators can be transformed into mixed semi-definite programming (SDP) and second-
order cone programming (SOCP) problems. Theoretical analysis and simulation results
show that the proposed hybrid RSS-AOA estimators can achieve lower Root Mean Square
Error (RMSE). Wen et al. [18] proposed an efficient approximate maximum likelihood
algorithm, which updates the direction-of-arrival (DOA) and time delay (TD) parameters
alternatively. The approximate maximum likelihood algorithm applies to arbitrarily dis-
tributed arrays. Then, the author proposes a closed Cramer–Rao boundary for joint DOA
and TD estimation. On this basis, the authors provide further analysis to show the benefits
of joint DOA and TD estimation over only DOA estimation. Wang et al. [19] proposed a
3D indoor localization algorithm named LMR (LLS-Minimum-Residual) to improve the
accuracy of localization. The NLOS (non-line of sight) error is estimated and used to correct
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the measurement distances. The target location is calculated with the linear least squares
(LLS) solution. The final location is obtained by NLOS error mitigation. Cheng et al. [3]
proposed a 3D localization scheme (3DLRA) based on deep learning. 3DLRA combines the
absolute positioning and relative positioning technology of RFID (Radio Frequency Identi-
fication). Through analyzing the variation characteristics of the received signal strength
(RSSI) and Phase and mining data characteristics by deep learning, the location accuracy
and system stability are improved.

Cramariuc et al. [12] proposed a Penalized Logarithmic Gaussian Distance metric
which can enhance the performance of both 3D and RSS clustering. Marques et al. [20]
proposed a fingerprint-based indoor localization scheme which estimates the building,
then the floor, the room and, finally, the most probable geometric position within the
room where the user is located. The positioning process started with the construction of a
Filtered Radio Map where the Test Sample is used as a key. Then the similarity between
the Test Sample and each one of the Calibration Samples in the Filtered Radio Map is
computed. The computation cost is reduced by the filtering stage. Based on filtering stages
and majority rules, the estimated building, floor and room are derived. By computing the
centroid of the most similar Calibration Samples from the estimated room, the estimated
geometric position is obtained. The average localization error is 3.351 m.

2.5. Motivation

The existing 3D localization schemes either need additional hardware and measure-
ments or need to collect numerous samples for learning or training. To reduce the cost, we
propose a semi-supervised localization scheme for WiFi networks. Although WiFi-based
fingerprint and kernel learning schemes show good accuracy in a 2D scenario. However,
these approaches may inaccurately detect the floor when the device is located in a 3D
environment since it is difficult to distinguish RSS from APs with different distances on
different floors. Even if by direction-of-arrival and time delay to estimate the location
in 3D environment, the WiFi signal strength is relatively susceptible in 3D environment
due to its multipath effect and external interference which lead to inaccuracy. To improve
the existing WiFi-based fingerprint and kernel learning schemes, an iterative multi-kernel
learning scheme for 3D indoor localization in WiFi networks is proposed in this paper.

Our goal is to improve the localization accuracy in 3D indoor environments by using
WiFi signals. The proposed 3D indoor localization scheme can effectively reduce the
WiFi indoor positioning error with a small number of labeled data sets, and integrate
the existing kernel learning through the optimization fine-tuning method to improve the
localization accuracy. The proposed kernel learning method can learn the relationship
between the labeled data and unlabeled data based on cross-domain data, which represent
the correspondence between the labeled data and unlabeled data.

3. Preliminaries

This section introduces the system architecture, problem formulation, and the compar-
ison with the single kernel scheme.

3.1. System Architecture

The WiFi 3D indoor localization architecture is shown in Figure 1. There are many
APs deployed in the 3D indoor environment with multiple floors. The mobile devices
are placed in the localization area. The mobile device can retrieve the RSSI, SNR and the
corresponding MAC address within the transmission range of the AP as the identifier.
Let D denote the data which is retrieved by a mobile device on the location `. D can be
represented as D = ((r1, s1, m1), (r2, s2, m2), . . . , (rn, sn, mn), `), where r, s, m denote RSSI,
SNR and MAC address, respectively, n is the number of APs which can be heard by the
mobile device within the transmission range. All the data are saved in MongoDB for the
training phase.
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Figure 1. System architecture.

When the dataset D is collected, the next step is to categorize the dataset into two
categories, labeled data and unlabeled data based on whether or not the data are collected
at known locations. In the training phase, each labeled data from the source domain is
correspond to the true location `. In order to find the mapping relationship between the
labeled data and unlabeled data, the kernel optimization learning is used to form the
location database. Each kernel learns the distribution of its own region. In the localization
stage, the signal distribution obtained by the mobile device is sent to the server. The server
then calculates the expected value of the related kernels and obtains the estimated location.
Note that, the training, learning, and location estimation are all performed in the server.

In the proposed scheme, an anchor point located at the corner of the building, whose
latitude, longitude, and altitude have been obtained through GPS, is regarded as the point of
origin (0, 0, 0) in our coordinate system. The Cartesian coordinate system is adopted in the
proposed scheme and a meter is regarded as the basic unit in our coordinate system. We get
the estimated relative coordinate (x, y, z) of the target object in our coordinate system first
and then we use the anchor point’s position to derive the target object’s estimated location.
The reason the GPS coordinates are used because we can use the relative coordinate of the
target object to get the possible latitude, longitude, and altitude of the target object. We get
the relative coordinate of the labeled data by combining the blueprint of the building and
a distance measuring instrument (e.g., laser ranger or ruler). The measuring error is less
than 10 cm. To get the relative coordinates of all the labeled nodes indeed consumes a lot
of manpower. Hence, we propose a semi-supervised localization scheme.

Figure 2 shows the difference between the RBF kernel and the chi-squared kernel. The
data are mapped to high dimension by RBF kernel and chi-squared kernel. In RBF kernel,
the signal obtained by users with short distance movement is not obviously different
after mapped to high-dimension by RBF kernel which leads to higher localization error
as opposed to the chi-squared kernel. Hence, the chi-squared kernel is adopted in the
proposed multi-kernel learning scheme for 3D indoor localization.

3.2. Problem Formulation

Transfer kernel learning [15,17] has been studied widely in recent years and has been
applied successfully in indoor localization. However, when the location field is too large
resulting in lots of data groups, the accuracy of transfer kernel learning is decreased and
becomes unsuitable. Therefore, the multi-kernel optimization learning method is proposed
to solve the above problem.

Assume that p APs are installed in an indoor environment, and the signals received
by mobile devices from these APs in three dimension position ` can be represented by a
matrix X, which includes q samples. The received signal xi = (ri, si) represents the i-th
RSSI and SNR, respectively. X can be represented as X = [x1, x2, . . . , xq].
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Chi-Squared kernel

RBF kernel

Figure 2. The comparison with RBF kernel and chi-squared kernel.

The signal collected at the offline calibration is named as the source domain, which
is denoted as (xs

i , ls
i ). The signal collected in the online localization is named as the target

domain and is denoted as (xT
i ), which is the data needed to be estimated its location. The

goal of the proposed scheme is to estimate the location (`T) of mobile device by constructing
a localization model using multi-kernel optimization learning.

Multi-kernel optimization learning improves the accuracy based on labeled data.
There are two domains DS and DT , where DS = {xS

i , `S
i }

q
i=1 indicates the data in the

source domain and the corresponding labeled data `i, and the target domain DT = {xT
i }n

i=1
indicates the unlabeled data. In order to find the relationship between the source domain
and the target domain, the cross domain is used. The cross domain is the intersection with
the source domain and the target domain and can be represented as DST ∈ DS ∩ DT . By
using the cross domain data, the extrapolated kernel is built. The detailed methodology of
building extrapolated kernel is introduced in the next section. During the training phase,
in order to minimize the difference between the source domain and the target domain, the
squared loss optimization problem can be used, which is shown as follows:

arg min∗
Λ

(
KM − KM

)
= arg min∗

(
ΦSi ΛTi Φ

T
Si
− KM

)
.

subject to


ΛT = diag{λ1, λ2, · · · , λl}
λTQiλ− 2rT

i λ + si ≥ 0, i ∈ Z+

λi ≥ 0

(1)

where KM denotes the source domain DS mapped to high dimension through the kernel
function and KM represents the hyperplane found by Mercer’s theorem, ΦM is the eigenvec-
tor matrix of KM and ΦT

M is the transpose matrix of ΦM. The restriction condition is defined
as the quadratic constrained quadratic programming (QCQP) optimization problem.

The QCQP is an optimization problem in which both the objective function and the
constraints are quadratic functions. It has the following form.

min( 1
2 xT P0x + qT

0 x).

subject to
{ 1

2 xT Pix + qT
i x + ri ≤ 0, i = 1, 2, · · · , m

Ax = b
(2)

where P0, P1, · · · , Pm are n-by-n matrices, q0, q1, · · · , qm are positive semidefinite matrices
and x ∈ Rn is the optimization variable.

The variable Λ is defined as the eigenvalue in the training phase. The purpose is
to compute the domain-invariant kernel KA and estimate the location of mobile device.
The goal of the above equation is to minimize the difference of the domain location error
between the source and target domain in raw data.
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3.3. Comparison with the Single Kernel Scheme

Figure 3 shows the difference between the single kernel learning and the multi-kernel
learning. The figure is divided into two parts. The upper part represents the single kernel
learning; the bottom part is the proposed multi-kernel learning. The proposed scheme is
designed for 3D indoor environment compared with the single kernel learning which is
designed for 2D plane. By multi-kernel learning, each kernel learns the distribution of own
region. According to the signal distribution obtained by mobile device, the expected kernel
is the estimated location. The expected kernel is derived from multiple kernels during the
multi-kernel optimization phase, which is shown in Figure 4. By using QCQP optimization,
each kernel learns the distribution of its own region and fuse all the models to get the
distribution of the area of interest.
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Figure 4. The multi-kernel learning.

4. A 3D Multi-Kernel Learning Approach for 3D Indoor Localization

This section proposes a 3D indoor localization scheme based on semi-supervised
multi-kernel optimization learning in WiFi network for predicting the unlabeled target
with cross-domain data in 3D indoor environment. The notations are defined in Table 1.
The system architecture is shown in Figure 5 with six phases. The data acquisition is shown
in Figure 4 and divided into the source domain data DS and the target domain data DT ,
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which represent the labeled data and the unlabeled data, respectively. The six phases of the
proposed scheme are briefly described as follows:

Table 1. Notation table.

DS The source domain

DT The target domain

DST The cross-domain

{rm, sm, ai,j}
The three tuples, which represent the m-th RSSI, SNR signal and received
from the j-th AP on the i-th floor

KS The source kernel

KT The target kernel

KST The cross domain kernel

C The cluster which AP is selected

KS The extrapolated source kernel

λT The estimated location through 3D multi-kernel learning phase

` The target’s eigenvalue

β1, β2, · · · , βk The weight of each kernel

(1) 3D data collection phase: During the data collection stage, the data collected in the 3D
environment is divided into DS ,DT and DST . The DS indicates that the data are in
source domain and DT indicates the unlabeled data. DST is the intersection of DS and
DT and can be represented as DST ∈ DS ∩ DT . The collected data are used to choose
multiple APs in the next phase.

(2) Multi-AP selection phase: In order to learn the signal distribution generated by each
AP, the multi-AP selection phase is proposed. In this phase, according to the signal
obtained by the user at the area of interest, select multiple APs near the user. The
selected APs form the kernels in the next phase.

(3) 3D Multi-kernel construction phase: In order to find the corresponding signal plane
between multiple APs, the multi-kernel construction phase is proposed to solve this
problem. In this phase, the selected APs are used to form the kernel model. The
data, include DS, DT and DST , which located in the area of the intersection between
multiple APs is input to the kernel function to form the high-dimensional data. By
Mercer’s theorem, the plane between multiple APs is built. The plane is adjusted by
the next phase.

(4) Weight adjustment phase: After constructing multiple kernels, the kernel closer to
the user is more accurate, therefore, the weight adjustment phase is proposed to
determine the weight of each kernel. In this phase, the distance and the SNR between
the kernel and the user is measured. If the kernel is closer to the user, the kernel gains
a larger weight. The weight of the kernel is optimized in the next phase.

(5) The multi-kernel optimization phase: After giving the weight to each kernel, the area
responsible for each kernel is combined according to the weight to form an expected
kernel KS. In order to reduce the distribution between the source kernel KS and KS,
the multi-kernel optimization phase is proposed to solve this problem.

(6) Location estimation phase: After multi-kernel optimization phase, the expected kernel
KA is constructed and used for location estimation.
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4.1. 3D data Collection Phase

The data collection in the 3D environment is shown in Figure 6. The data are collected
at a multi-floor building. Each floor is divided into several cubes and each cube collect
training data, which includes RSS, SNR and the corresponding MAC address. The detail of
the data collection phase is described as follow:

S1. The data collected in each cube is separated into labeled data (DS), unlabeled data
(DT) and the cross-domain data (DST). DS = {rt, st, ai,j, `i}

p
t=1 denotes the labeled

data which is collected at the eight corners of the cube with RSSt, SNRt and the
signal collected at the j-th AP on the i-th floor and the corresponding labeled data `t,
respectively.

S2. DT = {rt, st, ai,j}
q
t=1 denotes the unlabeled data which is collected randomly at each cube

with RSSt, SNRt and the signal collected at the j-th AP on the i-th floor, respectively.
S3. DST = {rt, st, ai,j, `t}r

t=1 indicates the cross-domain data with RSSt, SNRt and the
signal collected at the j-th AP on the i-th floor, which is the intersection of DS and DT
and can be represented as DST ∈ DS ∩ DT .

: Labeled data

: Unlabeled data

: Cross domain data
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Figure 6. The 3D Data collection phase.

4.2. Multi-AP Selection Phase

The multi-AP selection phase is shown in Figure 7. Inspired by the existing works [12,20],
the ideas of filtering and clustering are adopted in the multi-AP selection phase so as to
reduce the training cost and improve the accuracy of localization. In the localization area,
the features of the signal including ri and si often have the data inaccuracy and offset
problems which have a considerable impact on the subsequent training of the entire data
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set. Before multi-AP selection phase, the data with too high deviation value are filtered.
The collected data are first sorted according to the deviation of the data in an ascending
order. The first k data with the lowest deviation is keep the other data are filtered, where
k is the number of data set candidates. The mean values of ri and si are computed after
removing the outliers. The remaining data are exported for the next step.

...

Received signal
Strong

Weak

n

Cn
mC

n

4C
n

3

...
...

...

...

SNR

...
...

...

Multi-AP selection

...

...
...

...

Figure 7. The multi-AP selection phase.

The user receives signals at the area of interest. After removing the outliers, the
received signal is arranged in descending order according to the value of SNR. Choose
the first n signals to form the kernel model. The details of the multi-AP selection phase is
described as follow:

S1. The collected signals are arranged in descending order according to the value of SNR
and stored into Q. Q can be represented as Q = {[r1, s1, a1], [r2, s2, a2], [r3, s3, a3], · · · ,
[rk, sk, ak]}, where k is the number of data set candidates which can be collected at the
reference point.

S2. According to the signals stored in Q, choose the first n signals from Q, where Q =
{[r̂1, ŝ1, â1], [r̂2, ŝ2, â2], · · · , [r̂n, ŝn, ân]} is the n best signals which can be heard at the
reference point. The intersection between each AP’s transmission range have different
signal distribution. In order to learn the signal distribution generated by each AP,
each element in Q is permutation to select multiple APs whose signal is within the n
best signals and stored in cluster C.

S3. The cluster C can be represented as C = {[â1, â2], · · ·︸ ︷︷ ︸
Cn

2

, [â1, â2, â3], · · ·︸ ︷︷ ︸
Cn

3

, · · · ,

[â1, â2, · · · , ], · · · , âm︸ ︷︷ ︸
Cn

m

}, where m represents the number of AP groups. In the following

phase, each component of the cluster is operated separately to form the kernel.

4.3. Multi-Kernel Construction Phase

In the multi-kernel construction phase, in order to form the kernel, the data, including
DS, DT and DST , is mapped to high dimension by kernel function. The following lemma
proves that the data do not disappear when it is mapped to high dimension and can form
the kernel space by Mercer’s theorem.

Mercer’s Theorem [21]: If k(x, y) is a kernel function, then k(x, y) must satisfy the Mercer’s
condition, that is ∑n

i=1 ∑n
j=1 k(xi, yi) ≥ 0, ∀x∀y ∈ R.
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Lemma 1. The RBF kernel is KR(x, y) = exp(−d(x,y)2

2l2 ), where l > 0 is the parameter and d(x, y)
is the Euclidean distance between x and y in high dimension space. The chi-squared kernel is KC =

exp(−γ ∑i
(x[i]−y[i])2

x[i]+y[i] ), where γ ∈ [0, 1] is the parameter. Let data {[r1, s1, a1], [r2, s2, a2], · · · ,
[rm, sm, am], [rm+1, sm+1], [rm+2, sm+2], · · · , [rn, sn], [rn+1, sn+1, an+1][rn+2, sn+2, an+2], · · · ,
[rk, sk, ak]} denote the DS, DT , and DST , respectively, where DS ∈ Rm,DT ∈ Rn−m and
DST ∈ Rk−n. The DS, DT and DST can be mapped to high dimension by RBF kernel to form the
kernel and can also be mapped by chi-squared kernel to form the kernel.

Proof. According to the definition of kernel function, there is a function that satisfies
k(x, y) = <Φ(x), Φ(y)> for all data, the k(x, y) is a kernel function. By Mercer’s theorem,
if k(x, y) is a kernel function, then k(x, y) must satisfy the Mercer’s condition, that is

∑n
i=1 ∑n

j=1 k(xi, yj) ≥ 0, ∀x∀y ∈ R. The RBF kernel is KR(x, y) = exp(−d(x,y)2

2l2 ), by Taylor

series ex = 1 + ∑∞
n=1 1 + x + x2

2! +
x3

3! + · · ·+
xn

n! = lim
x→∞

(1 +
x
n
)n ≈ 2.7x. The RBF kernel

can be rewrite as KR(x, y) = 2.7
−d(x,y)2

2l2 , where KR(x, y) > 0, ∀x∀y ∈ R, and satisfies the
Mercer’s condition. If KR(x, y) > 0, ∀x∀y ∈ R, this condition means that the data do not
disappear ∀x∀y ∈ R when it is mapped to high dimension and can form the kernel. The chi-

squared kernel is KC = exp(−γ ∑i
(x[i]−y[i])2

x[i]+y[i] ) and can be rewrite as KC = 2.7−γ ∑i
(x[i]−y[i])2

x[i]+y[i] .

Under the condition of chi-squared kernel, the Kc(x, y) > 0, ∀x∀y ∈ R+ and satisfies the
Mercer’s condition. If Kc(x, y) > 0, ∀x∀y ∈ R+, this condition means that the data do
not disappear ∀x∀y ∈ R+ when it is mapped to high dimension and can form the kernel
space. Because KR(x, y) > 0 and Kc(x, y) > 0, the DS, DT and DST can be mapped to high
dimensions by RBF kernel to form the kernel, and can also be mapped by chi-squared
kernel to form the kernel without lost data.

The kernel learning represents the domain-invariant kernel by matching the source
distribution and the target distribution to generate the kernel Hilbert space. In multi-AP
selection phase, each group of the cluster’s data, including DS, DT and DST , represent
the intersection of the area formed by multiple APs. For example, if the intersection area
is formed by two APs a1 and a2, the data must have signal heard by a1, a2. Each group
of cluster’s data is operated separately to form the kernel in this phase. The detailed of
multi-kernel construction phase is shown as Figure 8 and is described as follow:

S1. The first step is to calculate the source kernel KS and the target kernel KT using the

kernel function, such as chi-squared kernel K(x, y) = exp(−γ ∑i
(x[i]−y[i])2

x[i]+y[i] ). The
cross-domain kernel KST , from the common area between KS and KT , are also using
the chi-squared kernel.

S2. In order to evaluate the distribution difference between KS and KT in the space of
Hilbert, the second step is to compute the difference of distribution between the source
kernel and the target kernel. However, since KS and KT have distinct dimensions,
that is KS ∈ RlS×lS and KT ∈ RlT×lT , the difference between KS and KT cannot
be directly estimated. In order to solve the problem of different dimensions, an
extrapolated kernel KS ∈ RlS×lS is constructed using the eigensystem {ΦT , λT}. The
target eigenvector matrix ΦT and the target eigenvalue matrix λT can be constructed
using the standard problem of eigenvalue KTΦT = ΦTλT .

S3. After calculated eigensystem and the cross-domain kernel KST , the extrapolated
source kernel KS of the eigenvector matrix is calculated by the Mercer’s theorem as
ΦS ≈ KSTΦTλ−1

T .
S4. After S3, the new source kernel KS is constructed from the eigenvectors of the target

kernel, where KS = ΦSλTΦ−1
S . In the next phase, each kernel is given a weight

according to the distance and the SNR value between the user and the kernel.
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Figure 8. The multi-kernel construction phase.

The pseudo code of the multi-kernel construction phase is shown in Algorithm 1.

Algorithm 1: The multi-kernel construction phase
Input: The dataset of DSi , DTi and DSTi derived in the multi-AP selection phase

DSi =
[
[r̂1, ŝ1, â1, `1], [r̂2, ŝ2, â2, `2], · · · , [rm, sm, âm, `m]

]
i

DTi =
[
[r̂1, ŝ1, â1], [r̂2, ŝ2, â2], · · · , [r̂n, ŝn, ân]

]
i

DSTi =
[
[r̂1, ŝ1, â1, `1], [r̂2, ŝ2, â2, `2], · · · , [r̂d, ŝd, âd, `d]

]
i

Output: The multiple domain-invariant kernel K = {KS1 , KS2 , · · · , KSu}, each KSi
represent the kernel model form by DSi , DTi and DSTi , where
u = ∑m

j=3 Cn
j

1 K=∅
2 for j = 3 to m do
3 for i = 1 to Cn

j do
4 The low-dimension data, including DSi , DTi and DSTi , is mapped to

high-dimension data, KSi , KTi and KSTi by using chi-squared kernel

function k(x, y) = exp(−γ
(x−y)2

x+y )

5 The target eigenvalue matrix is obtained by the eigen-decompose KT with
ΛTi = Φ−1

Ti
KTi ΦTi

6 The target eigenvector matrix ΦSi is got by ΦSi = KSTi ΛTi Φ
−1
Ti

7 The domain-invariant kernel is constructed by KSi = ΦSi ΛTi Φ
−1
Si

8 K=K
⋃

KSi

9 end
10 end

4.4. The Weight Adjustment Phase

The weight adjustment phase is shown in Figure 9. After constructing multiple kernels,
the kernel closer to the user have higher accuracy. In order to find the relationship between
the kernel and the user, the distance is measured between the kernel and the user. If the
kernel is closer to the user, the kernel has a larger weight. According to the signal that
user received, the distance between each AP can be calculated by the signal strength, the
detailed of the weight adjustment phase is described as follow:

S1. The distance between the user and AP can be calculated by d(r, â) = 10
P−r
10n , where P

is the measured power from â, n is the environment factor.
S2. The distance between the user and the kernel can be calculated by fd(R, k), where

R represent the corresponding RSS to form the kernel k. For example, if kernel k is
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formed by â1, â2, â3, then fd(R, k) = d(r1,â1)+d(r2,â2)+d(r3,â3)
3 , where r1,r2 and r3 denotes

the RSS that the user received from â1, â2 and â3, respectively.

S3. The SNR signal strength can be calculated by wt =

{
wt = 0, t = 1
wt−1 +

fs(S,K)
Tm ∑n

i=1 Sit
, t > 1 , where

T denotes the length of time, fs(S, K) is the sum of the corresponding SNR signal to
form the kernel model k, and m represents the number of AP. For example, if kernel
model k is formed by a1,a2,a3, then wt = wt−1 +

s1t+s2t+s3t
Tm ∑n

i=1 Sit
, where s1t , s2t and s3t

denotes the SNR that the user received from â1, â2 and â3.
S4. The weight of each kernel can be determined by αwt + (1 − α) f (R,ki)

−1

∑
Cn

m
i=1 f (R,ki)−1

, where

α ∈ [0, 1]. If the kernel is closer to the user, the kernel has a larger weight and if the
kernel is farther to the user, the kernel has a smaller weight. In order to formalize the
distribution discrepancy between the new source kernel KS and the ground truth source
kernel KS, the multi-kernel optimization is used in the next phase to solve this problem.

k
1
 

k
2
 

k
n
 

...

Figure 9. The weight adjustment phase.

The pseudo code of the weight adjustment phase is shown in Algorithm 2.

4.5. The Multi-Kernel Optimization Learning Phase

After the weight adjustment phase, each kernel model has its own weight. In multi-
kernel optimization phase, each kernel is adjusted by the QCQP optimization as shown
in Figure 10. KC is the source domain and KC is constructed by KC using Mercer’s theo-
rem, where C = S1, S2, · · · , Su. Each kernel can be represented as the distribution of the
localization area, and is combined according to the weight to form a combined kernel KS,
where KS = β1KS1 + β2KS2 + · · ·+ βuKSu . The KS is the source domain combined with
the weight which is denoted as KS = β1KS1 + β2KS2 + · · ·+ βuKSu . In order to minimize
the difference between KS and KS, the QCQP optimization is used. The detail of the
multi-kernel optimization phase is described as follow:

S1. In order to minimize the difference between KS and KS, the QCQP optimization is
used which is described as min

λi∈λ
(KS − KS)

2, where λ = {λ1, λ2, · · · , λn} are the n

nonnegative eigen-spectrum parameters.
S2. The QCQP optimization is used to derive the intersection between KS and KS in the

high dimension. The crossover point in KS ∩ KS is λ found by QCQP optimization,
where i ∈ 1, 2, · · · , n.

S3. The goal of the multi-kernel optimization phase is to find a λi that can minimize the
difference between KS and KS. In this step, K′C is calculated by K′C = ΦCλiΦT

C, where
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ΦC is the eigenvector matrix and λi is the eigenvalue matrix. KA is constructed with
λi which has the minimized distribution of KS ∩ KS.

K
S

K
S

QCQP

x

y

K
A

yes

no

choose the next eigenvector 

to form       K
S

Figure 10. The multi-kernel optimization phase.

4.6. Location Estimation Phase

After the multi-kernel optimization learning, λi is found and forms KA with the
minimized difference between KS and KS. Finally, KA is used to estimate the location with
the signal received by the user.

S1. After KA is constructed in multi-kernel optimization learning, the user’s location `t

can be estimated by KA according to the signal received by user.
S2. The user’s location `t can be denoted as `t = KA({[r1, s1, a1], [r2, s2, a2], · · · , [rn, sn, an]}),

where {[r1, s1, a1], [r2, s2, a2], · · · , [rn, sn, an]} represents the n best signals received by
the user.

Algorithm 2: The weight adjustment phase

Input: The multiple domain-invariant kernel K = {KS1 , KS2 , · · · , KSu} construct
by Algorithm 1

Output: The weight of each domain-invariant kernel
P = {β1KS1 , β2KS2 , · · · , βuKSu}

1 P=∅
2 foreach kernel KSi in K do
3 According to the received signal by user, calculate the distance between user

and kernel model by
d(ri ,âi)+d(rj ,âj)+...+d(rk ,âk)

m , where ri, rj, ..., rk is the RSS
received from âi, âj, ..., âk, m is the number of AP choose by multi-AP selection
in phase 4.2.

4 According to the SNR received by user, calculate signal strength between user

and kernel model by wt =

{
wt = 0, t = 1

wt−1 +
fS(S,K)

Tm ∑n
i=1 Sit

, t > 1 , where T denote the

length of time.
5 The ratio βi is determined to combine the distance and signal strength in 1 and

2, which described as βi = αwt + (1− α)
d(ri ,âi)+d(rj ,âj)+...+d(rk ,âk)

m
6 P = P

⋃
βiKsi

7 end
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5. Experiment Results

The experiments are performed in the Elytone building of National Taipei University.
8 APs are deployed in a 20 m × 20 m plane with the height of 2 m to construct the
multiple kernels on each floor. In total, there are 24 APs deployed in three consecutive
floors. User can receive signals from APs on the upper and lower floors. The cube size
is 1 m × 1 m × 1 m. More than 1000 samples are collected at each cube. After filtering,
800 samples with lower deviation are used for training. The proportion of the labeled data
to unlabeled data and cross-domain data is 1:2:1. Hence, the proportion of the labeled
data is 25%. To verify the efficiency of the proposed scheme, seven schemes, namely,
the proposed multi-kernel scheme with chi-squared as the kernel function (denoted as
CMK) and RBF as the kernel function (denoted as RMK), the single-kernel scheme with chi-
squared as the kernel function (denoted as CSK) and RBF as the kernel function (denoted
as RSK), the hybrid-kernel scheme with the hybrid of RBF and chi-squared (denoted as RBF
+ chi-squared) and the hybrid of RBF and polynomial (denoted as RBF + polynomial), and
the scheme using multiple DNN models (denoted as multi-DNN) are experimented and
compared in this paper. The performance metrics to be observed are defined as follows.

• Localization error: The average difference between the real location and the estimated
location.

• Localization accuracy: The ratio that the estimated location is located at the same cube
as the real location.

• Learning time: The time it takes to form each kernel.

5.1. Localization Error

The experiment results of the localization error are shown in Figure 11. As the epoch
increases the localization error decreases. The localization error of the CMK scheme is the
lowest, followed by the multi-DNN, RMK, RBF + chi-squared, CSK, RBF+polynomial, and
the RSK schemes. Overall, the schemes with chi-squared as the kernel function performs
better than the schemes with RBF as the kernel function and the proposed multi-kernel
schemes performs better than the hybrid-kernel and single-kernel schemes because we
create multiple kernels and try to get the optimal expected kernel and thus the proposed
multi-kernel scheme can reduce the localization error and enhance the localization accuracy.

The experiment results of the localization error under each iterations and epoch are
shown in Figure 11a,b. There are two parameters in the experimental results, the C is
the regularization parameter. The intensity of normalization is inversely proportional
to C. ζ is the error caused by how much data are allowed. The greater the value is,
the greater the error is allowed. In the single kernel part, the chi-squared single kernel
(CSK) scheme is better than the RBF single kernel (RSK) scheme, because of the different
distribution in the RBF kernel and chi-squared kernel. The distribution of the RBF kernel
and chi-squared kernel are shown in Figure 8. The color with dark part is the place where
the data are gathered. In the RBF kernel, the place where the data are gathered is more
separated than the chi-squared kernel according to the similarity of the signal received
by data collection in 3D environment, which leads to higher localization error compared
with the chi-squared kernel. In the multi-kernel part, the hybrid kernel (RBF+polynomial,
RBF+chi-squared) schemes generally are better than the single kernel schemes, in order
to reduce the localization error, the 3D multi-kernel learning scheme is proposed which
improves the shortcomings of the singe kernel and hybrid kernel schemes. The results
show that the chi-squared multi-kernel (CMK) scheme is better than the RBF multi-kernel
(RMK) and the single kernel schemes in the 3D localization environment. In multi-DNN,
by creating multiple DNN models to cover the localization area, the location of the user can
be calculated by using probability that the phone is located at a given location. Since multi-
DNN needs to adjust the weight of each neuron, the convergence speed is slower than
that of the multi-kernel scheme. Figure 11c presents the localization error with number
of APs which are selected in the multi-AP selection phase. Basically, the more APs are
chosen, the lower localization error will be. However, if too many APs are selected, the
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complexity of the 3D multi-kernel construction will increase. Figure 11d presents the CDF
of the localization error.
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Figure 11. (a) Localization error vs. epoch.(b) Localization error vs. iteration. (c) Localization error
vs. number of selected APs with epoch 80. (d) CDF vs. localization error

5.2. Localization Accuracy

The experiment results of the localization accuracy are shown in Figure 12. As the
epoch increases the localization accuracy also increases. The localization accuracy of the
CMK scheme is the highest, followed by the multi-DNN, RMK, RBF+chi-squared, CSK,
RBF+polynomial, and the RSK schemes.

The experiment results of the localization accuracy under each iterations and epoch
are shown in Figure 12a,b. In the single kernel part, the accuracy of CSK is better than RSK
because of the different distribution in RBF kernel and chi-squared kernel in Figure 8. In the
multi-kernel part, the accuracy of CMK and hybrid kernel is also better than RMK.

5.3. Time Cost

The experiment results of the learning time under different number of APs are shown
in Figure 13. As the number of APs increases, the time to form the kernel models also
increases. The learning time of RSK and CSK schemes is the lowest because the single-
kernel schemes only need to form a single kernel. The hybrid kernel schemes take more
time than RSK and CSK, because the hybrid kernel schemes need to form two kernels. The
learning time of RMK and CMK schemes is the highest because the multi-kernel schemes
need to form multiple kernels.
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Figure 12. (a) Localization accuracy vs. epoch. (b) Localization accuracy vs. iteration. (c) Localization
error vs number of selected APs with epoch 80.

The experiment results of time cost under each number of APs are shown in Figure 13.
Basically, if too many APs are selected, the time to form kernel model will increase. In the
single kernel part, the time cost of RSK and CSK are the least because they use a single
kernel to cover the localization area. In the multi-kernel part, the hybrid kernel takes
more times than RSK and CSK, because the hybrid kernel uses two kernels to cover the
localization area. In RMK and CMK, the time cost to form multiple kernels are the most,
because the multi-kernel scheme uses multiple kernels to cover the localization area.
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Figure 13. Time cost vs. number of selected APs.
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5.4. Discussions

According to the above experiment results, the proposed multi-kernel scheme can
achieve the lowest localization error and the highest localization accuracy because through
the multi-AP selection, 3D multi-kernel construction, weight adjustment, and the multi-
kernel optimization phases, the proposed multi-kernel scheme can derive the best expected
kernel through multiple kernels constructed by the signals collected from the selected
APs and thus the proposed localization scheme can estimate the location more accurately
and hence reduce the localization error. The CMK scheme performs better than the RBF
scheme because the signal obtained by users with short distance movement is not obviously
different after mapped to high-dimension by RBF kernel which leads to higher localization
error as opposed to the chi-squared kernel.

The multi-DNN scheme performs the second best in terms of localization error and
localization accuracy. However, the multi-DNN scheme needs to adjust the weight of each
neuron, the convergence speed is slower than that of the multi-kernel scheme. Besides, the
multi-DNN scheme needs to collect more sample data.

The time cost of the proposed multi-kernel scheme is higher than the other kernel-based
scheme, because proposed multi-kernel scheme needs to construct multiple kernels, adjust
weight for each kernel, and optimize the expected kernel and hence the time cost of the
proposed scheme is the highest. Basically, the more the kernels are constructed, the more the
time cost becomes. The time cost is also proportional to the number of selected APs.

6. Conclusions

In this paper, we present a new 3D localization scheme which is able to construct
multiple kernels for 3D indoor localization. Compared with the traditional kernel learning
scheme, we create multiple kernels to improve the localization accuracy. The proposed
scheme considers multiple parameters and learns the signal’s distribution generated by
each AP in each cube from the source domain and transfer to the target domain. Finally,
we provide the experiment results and show that the proposed scheme performs better
than the multi-DNN scheme and the existing kernel-based localization schemes in terms of
localization accuracy and error in the 3D indoor environment.
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