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Abstract: The Fifth Generation (5G) mobile networks use millimeter waves (mmWaves) to offer
gigabit data rates. However, unlike microwaves, mmWave links are prone to user and topographic
dynamics. They easily get blocked and end up forming irregular cell patterns for 5G. This in turn
causes too early, too late, or wrong handoffs (HOs). To mitigate HO challenges, sustain connectivity,
and avert unnecessary HO, we propose an HO scheme based on a jump Markov linear system (JMLS)
and deep reinforcement learning (DRL). JMLS is widely known to account for abrupt changes in
system dynamics. DRL likewise emerges as an artificial intelligence technique for learning highly
dimensional and time-varying behaviors. We combine the two techniques to account for time-varying,
abrupt, and irregular changes in mmWave link behavior by predicting likely deterioration patterns of
target links. The prediction is optimized by meta training techniques that also reduce training sample
size. Thus, the JMLS–DRL platform formulates intelligent and versatile HO policies for 5G. When
compared to a signal and interference noise ratio (SINR) and DRL-based HO scheme, our HO scheme
becomes more reliable in selecting reliable target links. In particular, our proposed scheme is able to
reduce wasteful HO to less than 5% within 200 training episodes compared to the DRL-based HO
scheme that needs more than 200 training episodes to get to less than 5%. It supports longer dew
time between HOs and high sum rates by ably averting unnecessary HOs with almost half the HOs
compared to a DRL-based HO scheme.

Keywords: millimeter bands; Fifth Generation; handover; deep reinforcement learning; jump Markov
linear system

1. Introduction

Fifth Generation (5G) mobile users need uninterrupted connectivity while consuming
large amounts of data and media content when commuting [1]. Millimeter wave (mmWave)
bands (i.e., 30−300 GHz on the radio spectrum) hold great potential, enabling 5G mobile
users to experience gigabit rates and networks to meet traffic demands. However, a caveat
to this is that mmWave communication is very susceptible to topographic and user dynam-
ics. Common materials such as concrete, water, and even human bodies/movements [2]
severely alter its cell patterns and ultimately its performance. This level of vulnerability in
mmWave bands severely impacts mobility management in 5G mobile networks. To reduce
that impact, research on efficient mobility management in 5G mmWave communication con-
tinues to gain momentum. In the recent past, 5G mobility management has been explored
with machine and artificial intelligence (AI) learning solutions. Some of these include deep
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and reinforcement learning (RL) handoffs (HOs). The challenge is that most of the previous
HO works [3–6] selected target cells on the basis of initial maximum network performance
values. However, the challenge is that the optimum initial value does not always guarantee
reliability of the connection after HO. For instance, the selection of mmWave target links
based on the highest SINR values [4–7] does not always reveal the reliability of the link
after a HO or caching [7] event. In most cases, HOs end up getting executed too early, too
late, wrongly, or wastefully. Poor HOs negatively affect the selection of caching points [7]
in edge computing too. To that effect, 5G mobile network performance is punctuated with
gradual and abrupt changes. To reduce inconsistences in network performance, selection
of the best target links requires understanding not just the immediate behavior after HO
but also the long-term behavior.

To that effect, we propose an HO scheme that learns not just the immediate behavior of
target links but also the likely behavior/pattern post HO. In this regard, we learn to predict
the deterioration patterns of potential target links post HO. We use the jump Markov linear
system (JMLS) [8,9] and deep reinforcement learning (DRL) to learn the feasible optimal
deterioration pattern that chosen target links must adhere to for them to avoid wasteful
HO. JMLS is known to account for abrupt changes [8] in system dynamics. We exploit this
capability to predict the likely receivable power deterioration pattern of target links at the
user. We strategically update the initial JMLS deterioration pattern with online DRL and
meta training techniques. Meta training is a technique that reuses similar past training data
to make new decisions. This reduces the request for new training datasets when making
new decisions in a novel location. At HO, the predicted deterioration pattern of a target
link is then compared against an optimal global desired deterioration pattern to understand
the reliability of a target link and select the most stable one.

1.1. Related Works

The surging role/potential of mmWave bands in mobile networks such as 5G/beyond
cannot be ignored. However, this also applies to its challenges, particularly in the mobility
management support of 5G networks. The authors in for [10] instance claimed that higher
propagation losses inherent in mmWaves must be addressed to sustain connectivity espe-
cially at ranges beyond 100 m and in non-line-of-sight (NLOS) settings. The authors in took
four approaches to tackle the crucial problem of distance limitation owing to high spreading
loss and molecular absorption that often limit the mmWave transmission distance and
coverage range. These were a physical layer distance-aware design, ultra-massive MIMO
communication, reflect arrays, and intelligent surfaces. These methods use machine and
artificial intelligence (AI) learning for 5G. Various author between [11–31] suggested a
move from centralized (used in most 4G systems) to decentralized mobility management
algorithms using DRL. DRL in 5G ably learns and builds knowledge about different dy-
namics of mmWave channels [11–18]. For instance, by interacting with environment data,
the authors utilized DRL to observe the available resource at network edges and provide a
resource allocation scheme. This enhances user mobility management at the edge given
user mobility context, transitions, and signaling exchange [11–26].

Exploiting various actor-critic different DRLs in [11–27], the authors e.g., in [18] pro-
posed to jointly solve offload and resource allocation problems in 5G networks. The authors
in [12] used a deep Q-learning-based task offloading scheme to select optimal BSs for users
and maximize task offloading utility. In [13], Q-learning was integrated with the mobility
robustness optimization (MRO) scheme and mobility-load-balancing (MLB) scheme to
tackle traffic load and speed effects in 5G. In [29], a paradigm shift for leveraging time-
consecutive camera images in handover decision problems was presented. DRL was used
for deciding the handover timings. In [30], a DRL-based approach to solving the problem
of joint server selection, task offloading, and handover in a multi-access edge computing
(MEC) wireless network was proposed. On the other hand, in [31], HO and the power
allocation problem in a two-tier HetNet, consisting of a macro base station and mmWave
small base stations, were explored. The author developed a multi-agent reinforcement
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learning (MARL) algorithm based on the proximal policy optimization (PPO) method, by
introducing centralized training with a decentralized execution framework. However, in
all these schemes, highly mobile and dynamic users were hardly considered. Additionally,
DRL requires thousands of samples to gradually learn useful policies [15]. Furthermore,
DRL becomes terribly unstable/stochastic when learning systems with large local vari-
ances [16]. Thus, to guarantee continuous connectivity for 5G mobility, i.e., by not just
satisfying channel input/state bounds but also considering abrupt and continuous distur-
bances, control approaches using Markov systems have been proposed in the literature. For
instance, the authors in [20] used JMLS with expected maximization (EM) to predict abrupt
deterioration behavior. Predictions were then enhanced using Viterbi algorithms. The
Viterbi algorithm, however, requires accurate channel state information (CSI) to converge.
In such cases, the authors in [26] argued that inaccurate training gradually cripples the
accuracy of predictions, particularly at low signal-to-noise ratios (SNRs). To that effect,
it was combined with meta data training, making the Viterbi proposed approach more
reliable and less dependable on the changing and accuracy of the data. In [18], to tackle
a distributed decision-making scenario, the author extended the JMLS formulation into
game theory. Similarly, the authors in [17] incorporated particle-filter-based RL in JMLS to
predict a finite number of disturbances within a randomly chosen sample of trajectories.
This allowed the scheme to track/adjust to time-varying conditions in real-time. It is
worth reiterating that none of the mentioned works analyzed the deterioration pattern of
mmWaves to make an HO decision or utilized multiple users with very different levels
of impact on mmWave propagation characteristics; they were all designed to operate in a
single frequency band or with one user type.

1.2. Contributions

• We propose to use the JMLS to model the deterioration behavior/patten of mmWave
target links and the formulation of HO policies for 5G mmWave networks. Given
JMLS’s ability to account for abrupt changes [7], we analyze the pattern and learn to
predict the extent of abrupt performance changes in the chosen target mmWave links
before HO.

• We use DRL to update and optimize JMLS deterioration pattern predictions and
learning. To help reduce training samples and, thus, have ample time to track pattern
changes of rapid-varying channels in real time, we propose using meta learning
techniques. Meta learning is a technique that automatically reuses training data from
related past tasks or neighbors to make a new decision. This reduces the need for a
new CSI/training dataset to make new decisions.

• We use the Kaiser–Meyer–Olkin (KMO) [25] test to measure the expected divergence of
target links from the optimum deterioration pattern post HO to know their reliability
in advance.

1.3. Organization

The remainder of this paper is organized as follows: Section 2 describes the proposed
framework and its operation. The section further describes the resource allocation and
optimization problems; Section 3 present adoptions of the JMLS–DRL solution; Section 4
analyzes the simulation results; Section 5 provides the conclusion.

2. Proposed Framework

We propose to use the likely received power pattern supplemented with SINR values
to determine the best mmWave target cell/link. We first learn to predict and then analyze
the received power deterioration pattern for four different types of users with respect to
mmWave BSs. The four types of users are cars, pedestrians, cyclers, and e-bikers. For
each user type, prior to HO selection, the scheme learns the likely mmWave user received
power deterioration pattern given the effects of speed, topography, and channel state.
The best target link is one whose likely deterioration pattern with distance is gradual
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and follows the global deterioration pattern generated from aggregative data samples
from multiple mmWave BSs. The received power deterioration pattern is modeled using
JMLS. It models how likely received power will deteriorate for a user given the NLOS and
distance effects on the mmWave channel. Thus, in the first instance, the model learns and
determines the desired optimal received power deterioration patterns for different user
types using expected maximization (EM) [9]. EM automatically infers missing values of the
link deterioration pattern over some states. Even though EM is robust, dynamic channel
changes are not anticipated [10]. The EM estimations are, thus, optimized using DRL and
meta training techniques.

Meta learning is loosely defined as an automatic learning and adaptation mechanism
that improves accuracy by typically acquiring training from related tasks/users. The
scheme only requires new training samples when the prediction error is bigger than the
assumed predicted threshold. At HO, we have two deterioration patterns to consider:
a global deterioration pattern formulated with aggregative data from all mmWave BSs,
and a current local deterioration pattern formulated using local/individual BS channel
data. Owing to the large data variance analyzed, the global pattern is regarded to be more
accurate.

Thus, at HO, KMO test index values are used to determine the similarity levels
between the global and local deterioration pattern for target links whose SINR is above
the threshold. The level of divergence between the target link’s deterioration behavior
and global pattern determines how reliable the target link is post HO. This is vital because
mmWave links have a tendency of deteriorating from excellent to very poor performance
immediately after HO. Thus, understanding the long-term connectivity endurance post
HO is paramount for a reliable connection.

2.1. Manhattan Grid Mobility Model

A Manhattan grid model is used to model the road network with streets and intersec-
tions (as shown in Figure 1) in an urban scenario. The road network area is 500 m × 100 m.
We have four types of users, distributed evenly: pedestrians with speeds of 1.4 m/s, cyclers
with speeds of 3–7 m/s, e-bikers with speeds of 8–9 m/s, and cars with speeds of 10–14 m/s.
Cars within 3 m of each other adjust velocities every 3 s by 1–3 m/s to avert crashes. Each
street consists of right and left lanes for each user type.
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Given user directions, i.e., y ={moving toward/away from a mmWave BS}, users
traverse different streets. The probability of recovering the channel link just after being
blocked Pyr and of remaining blocked Pyb is expressed as follows [12]:

Pyr =
y

K ∑k
i=1

Tr

Tr + Tb , (1a)
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Pyb =
y

K ∑k
i=1

Tb

Tr + Tb , (1b)

where K is the total number of samples, whist k ∈ K is the number of possible blockings;
Tb and Tr are the mean nonblocking and blocking windows within a transmission range d.
The rate of channel links switching from blocked to recovered and vice versa within d is
1/Tr and 1/Tb, respectively. Accordingly, y is binary and assumed 1 when the users are
moving toward a target BS. Otherwise, y is assumed to be 0, as the recovery of reconnection
over the serving cell is minimal if user is moving away. The argument is that link recovery
chances are high if a user is moving toward the direction of mmWave BS.

2.2. Outage Probability

Assuming that Θ is a set of optimization parameters for a given access policy π, the
outage probability Pπ for the observable set of signals Yk can be defined as follows [2,11]:

Pπ(Yk|Θ) , P
(
∑l ∑sk

bl log2(1 + γt(x)) ≥ rmζ(γ̂t)
)

, (2a)

where γt and γ̂t are the measured and target SINR, respectively, and rmζ is the targeted data
rate given channel state st ∈ S. bl is the bandwidth for the given channel link l. We assume
that all mmWave BSs directionally transmit equal maximum power P, and that all users
have a receiver sensitivity of xkmin. Thus, each serving mmWave BS (with either LOS or
NLOS link) given, P, must satisfy the average received power of at least xkmin. Moreover,
given a threshold xk0, where xk0 > xkmin, any user–mmWave BS link that requires transmit
power that exceeds P or does not meet xk0 will not be established or lose connection,

i.e., such a connection experiences a truncation outage at a given distance d =
(

P
xk0

) 1
∝kL

despite satisfying Equation (2). α is the path loss exponent in LOS and NLOS pathloss
exponents [25]. Equally, given the cutoff threshold xk0, LOS and NLOS users located at

distances beyond
(

P
xk0

) 1
∝kL and

(
P
xk0

) 1
∝kNL , respectively, from the target BS are unable to

communicate owing to insufficient received power xt. The data rate is defined as

rm =b log2

(
1 +

P|hH p|2
(1+d∝)

Fx

(∣∣∣θl
k

∣∣∣) ) , (2b)

ϕl
k(·) =

1.4× 104

fc(GHz)·v(km/h)
, (2c)

where θl
k =

2d sin ϕl
k

λ is the normalized central angle of arrival for beam p, v is user velocity

under 50 km/h, fc is the carrier frequency.
∣∣hH p

∣∣2 is channel gain. and Fx

(∣∣∣θl
k

∣∣∣) denotes the

Fejér kernel value. As user speed approaches zero and Fx

(∣∣∣θl
k

∣∣∣)→ 1 , SINR approaches
the maximum. Fx approaches 0 as v increases [4].

2.3. Resource Allocation Problem

The minimum rate Rm requirement problem given outage and power constraints at
d from a BS is defined as

max
Θ

∑
t

∑
St , l

(
1− Pyb

(
Pm|xt

π + Pm|ut
π

)
rm

l (y)
)
≥ Rm, (3a)

where Pm|xt
π and Pm|ut

π are the LOS and NLOS conditional outage probability for a user in
the m-th state, respectively. rm

l is the maximum attainable data rate at user–BS distance d.
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The target receivable power xt+1 at d needed to meet Rm in condition (2a) given outage
constraints (1a)–(2b) is proposed in Equation (3b).

xt+1 = max ∑
xt ,ut

{
γ̂

γmin xt −
αxt

2

βγ̂2

}
, (3b)

where {.}+ = {max, 0}. xt is the current received power in LOS. γ̂ and γmin are the
targeted and measured SINR needed to satisfy Rm. It must be noted that, if there exists an
infeasible SINR target in a certain user state, the resulting power demand, xt+1, by users
may diverge to infinity. This is due to each user link attempting to meet its own required
SINR no matter how high the power consumption can be. Thus, α and β are power and
SINR scaling factors, respectively, to substantially enhance reasonable deviations of xt+1 in
NLOS. The corresponding energy consumption for a given xt+1 is as follows [24]:

Ec = β

{
xtδ

c(t− w)

Rm + e0 ∗ ζc(t− w)

}
, (3c)

where β denotes the price per unit energy consumption, c(t− w) denotes the actual number
of packets received by the user at t during window w, c(t− w)/Rm is the latency, xt is the
current received power at time t, e0 is the unit energy per packet, and e0 ∗ ζc(t− w) denotes
the energy lost due to lost packets (expected number minus the actual number of received
packets) at t during window w. Given receivable xt and transmittable power P constraints
(see Section 2.1), for optimum packet delivery latency, the maximum link utility problem is
formulated as follows [19]:

max ∑
P

∑
xt ,
{xt+1δc(t− w)− ζPEc}, (3d)

where δ is the expected latency scaling factor given xt+1 within w. ζEc is the latency
discrepancy following a change from xt to xt+1 as the user moves away from the serving
BS. We learn to predict the long-term deterioration pattern {xt, . . . , xT} of the target links to
ascertain its reliability in meeting the desired data rate prior to the next HO. We utilize JMLS
properties to predict the likely gradual/abrupt deterioration behavior of target links [7].

3. JMLS System Definition

We first reformulate the resource allocation problem in Equation (3a–d) into a JMLS
learning form with system state, action, and reward defining the deterioration pattern.

3.1. The JMLS Representation

We propose the deterioration pattern learning algorithm and JMLS by describing
Equation (3a–d) as follows:

xt+1 = A(st)xt + B(st)ut + wt
yt =
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Equations (3a)–(3d) as follows: 

 𝑥 = 𝐴(𝑠 )𝑥 + 𝐵(𝑠 )𝑢 + 𝑤  𝑦 = 𝓇 (𝑠 )𝑥 +  𝑣 , , ℳ = (Θ, 𝑃(𝑆), 𝜋, 𝑃𝜋)    (4a) 

where 𝑥 ∈ 𝑋 is the current received power in the LOS given state 𝑠 , and 𝑢 ∈ 𝒰 is the 
estimated received power discrepancy due to blockage/NLOS effects. It is related to 𝑥  by 

min(st)xt+1 + vt,
M = (Θ, P(S), π, Pπ)

(4a)

where xt ∈ X is the current received power in the LOS given state st, and ut ∈ U is
the estimated received power discrepancy due to blockage/NLOS effects. It is related to
xt by ut = −Kxt where K is the control factor of the power and SINR scaling factor in
Equation (3b); A(st) and B(st) are the SINR/power coefficient matrices in Equation (3b).
vt ∼ N (0,Q(st)) and wt ∼ N (0, R(st)) are the data rate and received power measure-
ment noise, respectively. Measurement noises are influenced by the competing effect of
change in gain, angular and linear transmission distance, user speed, etc. for the same
SINR requirements (see Equation (3a–c)). st denotes a state governing for parameter



Sensors 2022, 22, 746 7 of 21

set Θ =
{

A, B, R,
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min,Q, P(S)
}

. st belongs to a set of Markov stochastic decisions
M = {m1,m2, . . . , mM}, and mM determines which state is active at time t.

st = {v, rt, Tt, dt, ηt}, (4b)

where v = [v1, . . . , vT ] is a vector of user velocity, rt = [r1, . . . , rt] is a vector of possible
user data rate, Tt =

[
tm
1 , . . . , tm

N
]

is a vector of average service time, d =
[
dm

t , . . . , dm
T
]

is a
vector of transmission distances with the same SINR, and η = [ η1, . . . , ηN ] is a vector of
user direction in the n-th sample.

Following a transition to xt+1, the immediate reward
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yt ∈ Y is defined as a function of energy efficiency.
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min(st) =
rm(st, at)

Pt
, (4c)

where rm(st, at) is a data rate greater than Rm in Equation (3a). The likely rate discrepancy
between a user and mmWave BS is expressed as

Q(st) = δk
(Pt − xt)rm(st, at)

Pt
, (4d)

where δk is the scaling factor of the rate discrepancy for each state, s at time t given
maximum rate rm(st, at). The transition probability between states with xt and xt+1 is

P(S) , P
(
st+1 = mj

∣∣st = mi
)
. (4e)

Assuming that N samples from different mmWave BSs at time t are collected within
each window w and arranged in ascending order of the users’ distance from serving BSs,
the transmission energy cost function is defined as follows:

J (xt) = E
{
∑N

j=1 ‖xj‖2
Q(st)

+ ∑N−1
j=0 ‖ut‖2

R(st)

}
, (4f)

where first and second factors in Equation (4f) represent the sum-weighted norm energy
cost for received packets and lost packets over XN = {x0, . . . xN}, respectively. J (xt) ,
∑N

j=1 Ec.

3.2. Initial Deterioration Path Training

YT , XT , and ST denote a sequence of observed data rates {y1, . . . , yT} over corre-
sponding receivable power values {x0, . . . xT} and {s1, . . . , sT} states until time T. The
JMLS learning problem in each user type is to define the likely sequence XT and parameter
Θ that maximize the likelihood function P(XT |Θ, YT) given a finite observation in YT over
ST for all k1, . . . , k2 ∈ T at distance k1 ≤ k2. The initial deterioration pattern estimator
upon which we design our framework for received power pattern X is the EM algorithm
in [12]. EM uses Bayesian inference to automatically infer the optimal value set of Θ for
XT [12] at each step k, as seen in Figure 2; the value function can be written as

Q
(

Θ|Θ k
)
= E

[
log P(XT , ST , YT |Θ)

∣∣∣YT , Θk
]
, (5a)

such that
Θk = argmax

x ∈ X
Q
(

Θ
∣∣∣Θk

)
, (5b)

where Θ(k) is the current parameter estimate at iteration k. The change, ∆Q(st), between
sk and sk+1 states must satisfy condition (5c) to avoid abrupt changes or shocks in data rate.

|Q(sk+1)− Q(sk)| < µ(k)v , (5c)
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where µ(k)v is the averaged data rate discrepancy between states sk and sk+1 for a user with
velocity v. In Equation (5c), a smaller difference denotes a lower change between xk and
xk+1, defining deterioration pattern XT . Q(sk+1) and Q(sk) can be chosen independently.
Obtaining full or accurate CSI to determine the pattern may be difficult owing to rapid
changes in mmWave channels. Furthermore, EM cannot handle such switching dynam-
ics [12]. Thus, instead of recomputing the steps in Equation (5a–c) to refine pattern X, as
more CSI about YT is obtained, we use online DRL with EM estimations of X as the initial
experience to determine user target data rates YT , as seen in Figure 3.
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3.3. Deep Reinforcement Learning in EM-Estimates

As seen in Equation (5b), EM estimates the maximum obtainable received power x, i.e.,
the upper bound of desirable received power in each state needed to obtain a high SINR,
a ∈ Ax, and, hence, data rate, y, efficiently. The role of DRL, given optimum maximum
receivable power −x∗ per state, is to determine the minimum/lower bound of receivable
power x∗ needed to obtain the same JMLS value, a ∈ Ax, efficiently about the same state. It
must be both noted and emphasized that the power at the receiver can randomly vary with
time, space, and frequency. This may trigger erroneous reception at the receiver. Rectifying
or averting the errors may need a high transmit power (which is energy-inefficient and
is beyond the limit) to meet the desirable receivable power and receive the same amount
of user data within a given QoS/SINR requirement. However, if the gain of the channel
is high in the peak, even if the received power is lower (e.g., in NLOS), this permit using
lower receivable power to receive the same/similar amount of data while maintaining
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the same given QoS/SINR. Thus, knowing the pattern of noy only the maximum but also
the minimum receivable power prior to the HO decision is vital. Hence, DRL is used to
determine minimum desirable power given the maximum by EM estimation. Here, DRL
uses EM data as the initial experience (meta data) to determine the least expected receivable
power needed to give a ∈ Ax. In that case, the DRL agent has to consider only the SINR
value, a ∈ Ax, possible for −x in EM and find the power x that gives the highest directly
obtainable reward plus expected accumulated future reward of the resulting states s. The
EM’s Q value for the (−x, a) pair is used as meta data by the agent to find the SINR that
gives the smallest DRL Q value with a function value V. The optimal value function V∗ is
obtained by solving xko for each given −xko in Figure 2.

V∗(xko) = maxE
π

{
∇min(−x∗t, a(st), x∗t)

∣∣∣
st ,π(xt |θπ)

}
. (6a)

Technically, for a given optimum pattern −X∗ in Equation (5c), the algorithm uses
corresponding optimized parameter sets θπ and policy π(st|θπ) as input to DRL. The
DRL scheme then determines the minimum desirable value xt needed to achieve a(st). It
uses corresponding maximum value −xt determined by EM in each state st as the initial
experience and improves it by minimizing the expected energy cost, J (xt). The policy
(st|θπ) is defined as

π = argmin
J

{
Q(at, xt|θπ) + ε ∑

st∈S
Pπ(xt|−xt, at)J ∗(xt)

}
, (6b)

where Pπ(xt|−xt, at)→ [0, 1] denotes the probability of transition from −xt to xt without
change, a ∈ A, with least possible energy cost J ∗(xt), in st. The optimal policy π derives
the smallest possible value ofQ(−xk, ak, xk|θπ); hence, J ∗(xt) in Equation (4f) satisfies the
following Bellman equations:

J ∗(xt) =if s∗ ∈ S ∨ xt, else (6c)

J ∗(xt) , min
x

E
[
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Pπ(xt|−xt, at)J (x∗t )

]
, (6d)

where s∗ are goal states where condition (5c) is satisfied.

3.4. Deep Deterministic Policy Gradient (DDPG)

We use the deep deterministic policy gradient (DDPG) to improve the accuracy of
the pattern. DDPG is combined with DQN on the premise of the EM algorithm in order
to further enhance the stability and effectiveness of network training. This makes it more
conducive to solving issues of continuous state and action space. Technically, DDPG uses
DQN as the experience replay memory and the target network to solve the problem of
nonconvergence to approximate the EM function values in neural networks. It is, thus,
an actor-critic and model-free algorithm. It learns policies using highly dimensional
observation and action spaces. In this respect, agents use three modules: primary network,
target network, and replay memory.

Primary networks match actions (SINR ratios in JMLS parameter sets) with expected
received power using a policy gradient method. It consists of two deep neural networks,
namely, primary actor and primary critic neural networks. On the other hand, the target
network sets target values yt for the optimal receivable power xt with pattern X given
by EM estimations. The replay memory stores the tuple experience from EM Bayesian
estimators and environment via the actor network given condition (5c). Experience tuples
include the current and next state, the SINR ratio value following the transition between
states, and the reward for choosing the received power level in XT . Replay memory updates
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are randomly sampled for training the primary critic network and setting the target in the
target network for the eventualities in Equation (5c).

Given EM parameter set θ and policy π(st|θπ), the cost policy gradient∇θπJ gives the
values of xt ∈ XT∀ yt with a minimum change in∇θaQ(at, xt|θπ) between −xt and xt, and
the corresponding maximum change ∆∇min(−xt, at, xt, st) for each value xt transitioning
from −xt is defined as

∇θπJ ≈ max
π

E
[
∆∇min(at, st)

∣∣∣st ,π(xt |θπ)∇θaQ(at, xt|θπ)
]
. (7a)

The optimal value J ∗(xt) gives the highest possible expected future reward and
lowest discrepancy from target values for each state. The policy gradient is explored by
the primary actor neural network, and the value function Q for the (x, a) pair is used by
the agent to find the SINR ratio a and received power x that gives the lowest Q value and
highest reward. Value iteration in DDGP terminates when ∀s ∈ S, |Jk (x) −Jk(−k)| ≤ ε,
and termination is guaranteed for ε > 0. ε is similar to a greedy strategy with probability
1− ε [27]. Here, ε decays as more iterations (and, hence, more experience) are gained. The
primary critic network updates θa by minimizing loss function Ls(θπ), which is defined as

Ls(θQ) = E(ŷt − Q(ak,−xk|θπ)), (7b)

where ŷt is the target network value and can be obtained by

ŷt = ∇min(a, xt) + εQk(xk, πk
(

sk+1

∣∣∣θT
π

)∣∣∣θT
a

)
. (7c)

Here, εQk(xk, πk(st+1
∣∣θT

π

)∣∣∣θT
a

)
is obtained through the target network, i.e., the net-

work with parameters θπ, from EM with −X values and θa from X generated over time for
minimum desirable receivable power. The new values of Equation (5c), i.e., patterns, are
updated by minimizing loss in Equation (7b). The gradient of Ls(θQ) over XT is calculated
by its first derivative, which can be denoted as in [14].

∇θπ Ls(θQ) = E(2(yt −Q(a, xt|θπ)∇θaQ(a, st|θπ))). (7d)

According to Equation (7d), the parameter θQ of the primary critic neural network can
be updated. Specifically, at each training step, a mini-batch experience

〈
st, at, Rimm, st+1

〉
,

t ∈ {1, . . ., k} is randomly sampled from replay memory. For each point in XK, the target
network value is regarded as the previous and current version of EM parameters θT

πand θT
Q.

At each iteration, θT
π and θT

Q in Equation (7c,d) are updated with a weighted combination of
the previous state. The prediction of target path takes the form of a weighted combination
of the following models:

θT
π(x̃k) =
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(
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θT

π(−x̃k),

θT
Q(x̃k) =
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)
θT

Q(x̃k),
(7e)

where ω ∈ [0, 1] is the weight computed using a Gaussian kernel parameterized by the
transmission distance metric dk ∈ s̃k.
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k = exp
(
−0.5(x− µk)

Tdk(x− µk)
)

. (7f)

Target neural networks generate target or ideal values for training and reoptimizing
the deterioration pattern XT from −XT on the basis of EM and replay updates. Thus, EM
estimations in each iteration are used as meta data for DDPG. The target neural network has
a similar network structure to the primary network, i.e., similar neural network structure
and initialization parameters. In the training process, the parameters of the target actor and
critic networks are updated slowly (soft replace) by EM estimated values. Here, instead
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of directly and randomly training parameters of the primary actor and critic networks to
further enhance the stability of the training process, we copy EM estimations as ideal initial
values. Replay memory stores EM experience tuples, thus formulating XT , and each value
update xt ∈ XT includes a tuple

〈
−xt, at, Rimm, xt

〉
update.

Figure 3 shows the structure of the proposed JMLS–DDPG algorithm. The DDPG
algorithm takes the EM parameter dataset and maximum receivable power values −X as
initial input to determine the minimum receivable power values of a pattern. Given that
the power effects on SINR can be reduced in high-channel-gain locations, afterward, the
DDPG agents output the minimum receivable power values X needed to maintain the same
SINR ratio previously predicted and set by EM estimations for SK. The corresponding
reward of xk in EM is copied, and the SINR that is beneficial to the agent to achieve the
goal gives a positive reward; on the contrary, it gives a negative reward if condition (5c)
is not fulfilled. The current state information, the SINR ratio, the reward, and the state
information of the next minimum desirable receivable power are stored in the replay pool.
Meanwhile, the neural network trains the experience and continuously adjusts the SINR
strategy by randomly extracting sample data from the EM pool, and it uses the gradient
descent approach to update and iterate network parameters, so as to further enhance the
stability of pattern X and the accuracy of the algorithm. Using EM experiences as initial
training data input to DDPG restricts the search range for optimal minimum receivable
power values. Thus, any observed mmWave BS data rate not meeting the corresponding
receivable power is immediately discarded for training or consideration. This in itself
technically reduces the training sample for DRL and, hence, convergence time. Ultimately,
the improved DRL HO is obtained by combining DDPG with EM predictions acting as a
meta training sample. Finally, the pattern model is integrated into the HO platform for
HOs.

3.5. Online Update of Target Deterioration Path

DDPG subdivides the training network structure into an online network and target
network (see Figure 3). The online network is used to output the minimum expected
received power in real time, evaluate SINR ratio values, and update network parameters
through online training, which includes the online (primary) actor network and online critic
network. The target network includes the target actor network and target critic network,
which get updated by EM values. The target actor network system, however, does not carry
out online training. For each user type, the estimated path XN is only re-estimated from
new training samples when the pattern prediction error based on EM estimates is too much
larger than the minimal desired received power pattern. It, therefore, follows that, when the
error given the energy efficiency is small enough such that the channel gain compensates
for the power loss to maintain the desired SINR, the corresponding EM information used to
generate received power pattern Xt is regarded to provide reliable training sample for the
target network in DDPG. EM data are, thus, re-encoded to generate new training samples
for the DRL and to set new targets over S̃t, a process henceforth referred to as meta-training.
If indeed the pattern of link deterioration is successfully followed by the target mmWave
network, then X̃t represents the true channel link deterioration behavior from which Yt
is obtained. Consequently, the corresponding pair S̃t and Yt parameter set θπ(st) can
continue being used to retrain DDPG instead of requesting new CSI from the environment
in Figure 3. The model can be efficiently and quickly retrained with a relatively small
number of new training samples. A natural drawback of decision-directed approaches
such as the Bayesian in EM is their sensitivity to decision errors. For example, if the link
fails to successfully sustain connectivity, then the meta training samples −X̃ of X̃ over S̃t
do not accurately represent the channel behavior results in Yt. In such cases, the inaccurate
training sequence may gradually deteriorate the accuracy of DDPG predictions, making
the proposed approach unreliable, particularly in low-SINR areas where link deterioration
pattern errors occur frequently. Nonetheless, when pattern errors are less frequent in EM,
the effects of decision estimate errors of ε, i.e., the number of errors in a pattern, can be
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used to decide when to generate meta training. For instance, we retrain with new training
samples in DDPG only when the number of errors is larger than some threshold. Using
this approach, only accurate meta training data are used, and the effect of decision errors is
controlled. When using new training samples, we cleverly focus attention on states with
non-converged pattern values, i.e., where Equation (5c) is not fulfilled. Our online training
mechanism is summarized in Algorithm 1. The Workflow in Figure 4 summarizes the steps
in Algorithm 1. In particular, EM estimates the initial receivable power pattern. If, however,
the date rate discrepancy condition is not satisfied in Equation (5c), DDPG in Figure 4
is conditionally evoked to improve the prediction of the target link deterioration pattern
when EM fails to meet the data rate condition in Equation (5c). DDPG, as earlier alluded to,
cleverly uses the maximum SINR to find the minimum expected receivable power of each
state defining the deterioration pattern.

Algorithm 1: JMLS–DRL-Based Pattern Algorithm.

Input: User mobility model parameters, Py. v
Parameters about DC communication: transmission power limits, bandwidth, channel gain, and
NLOS and LOS path loss exponent.
Observed states S; Set of observed signals Y = [y1, y2, y3, . . . , yN ] ∈ R,
Output: mmWave deterioration path X = [x1, x2, x3, . . . , xN ] for target link

1. Initialize the deterioration path estimations
2. for t = 1 do
3. Draw yt for JMLS parameter estimation Θ, where (XT , ST , YT |Θ)
4. Estimate Maximization (EM):

5. Q
(

Θ
∣∣∣Θk

)
= E

[
log P(XT , ST , YT |Θ)

∣∣∣YT , Θk
]
,

6. Θk = arg max
x ∈ X

Q
(

Θ
∣∣∣Θk

)
7. Define pattern: X = [x1, x2, x3, . . . , xN ]
8. for xN do
9. if Q(sk+1)−Q(sk) > µ(k)v then
10. update xN with DRL
11. else
12. repeat step 6 for all X
13. end if
14. end for
15. Update EM deterioration path estimations with DPPG
16. Re-estimate Q(sk+1) using primary network Q(s, a|θπ)
17. Initialize target network parameters with EM parameter set
18. Initialize replay memory using EM samples.
19. for each EM step do
20. Observe user state st and SINR ratio at ∈ θπ

21. Execute at ∈ θπ and state xt

22. Observe change in
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3.6. Global Path and Local Path Optimization Formulation

The local pattern is formulated on the basis of local CSI from one mmWave BS. The
local agent, thus, considers only the SINR ratio a ∈ Ax and corresponding received power
x values possible in the local environment over given states S̃t. The long-term function for
the local deterioration pattern is expressed as

QLP(at, xt|θπ) , E
[

T

∑
t=0

δt
{
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min(at, xt) + εQ(xt+1, π( xt+1|θπ))
}]

, (8a)

where δ ∈ (0,1) is the discount factor and approaches 1 with more training samples. The
global deterioration pattern is formulated on the basis of collective SINR ratio at and
received power xt values from different mmWave BSs over S̃t. The value function QGP is

QGP(at, xt|θπ) , ∑
a∈Axk

Pπ(at|xt) ∗
α

K

{
Q(xt+1at, xt|θπ)
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}

, (8b)

where Pπ(at|xt) is the probability of receiving x given α in state s by EM; α is the learning
rate over K samples in EM.

3.7. Handoff Considerations

We use the Kaiser–Meyer–Olkin (KMO) test [25] to test how much each individ-
ual/local mmWave target link’s expected deterioration pattern, given the user speed,
deviated from its optimized global deterioration pattern. The global deterioration pattern
is formulated by collecting training sample from all mmWave BS with respect to user
type/speed just like the complete report table (CRT) in [4]. The local deterioration pattern
is based on data gathered from an individual BS’s local environment with respect to a
user’s type. It is similar to the report table (RT) user data in [4]. Given all the target BSs
with at least 3 dB SINR above the threshold, the KMO indexing test is used to find the level
of correlation between an optimized global deterioration pattern and that of a target link at
the time of the HO request. The KMO overall index value correlation is defined as follows:

KMOx̂ =
∑x 6=x̂ R2

xx̂

∑x 6=x̂ R2
ˆxx̂
+ ∑x 6=x̂ a2

xx̂
, (9a)
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where R = [rxd] is the correlation matrix, and A = [axd] is the partial covariance matrix,
where axd is defined as

ax 6=x̂.m =
rxx̂ − rx.mrx̂.m

(1− r2
xm)
(
1− r2

x̂m
) , (9b)

and

rxx̂ =
∑T

t=0(xt − x̂t)
(

dt − d̂t

)
√

∑T
t=0(xt − x̂t)

2 ∑T
t=0

(
dt − d̂t

)2
, (9c)

where xt ∈ XT is the optimum lower bound target link value of received power at state
st. dt ∈ st is the minimum expected user–BS link distance, and x̂t and d̂t are values for
the global deterioration path. The KMO test takes values between 0 and 1, as summarized
in Table 1. The general rule for interpreting measurements is provided in Table 1. In this
study, we selected the target cells with a KMO index of 0.751. If the KMO index value is less
than 0.7, the target link is most likely not suitable for HO consideration although it might
have the highest initial SINR. Additionally, during the HO phase, if the serving BS still has
a SINR value of 3 dB, the user maintains the connection to the serving gNB. This avoids
wasteful HOs. Otherwise, we execute the HO process and then go back to prediction phase.

Table 1. Interpretation Of KMO Measure.

KMO Interpretation

0.9 and above Marvelous
0.8–0.9 Meritorious
0.7–0.8 Middling
0.6–0.7 Mediocre
0.5–0.6 Miserable

Under 0.5 Unacceptable

3.8. Measurement Definition

We measured the number of repeated HOs to ascertain if the HO scheme can reduce
the number of the wasteful HOs. Repeated HOs mean that the HO scheme is reselecting
the same serving BS in which the user is already connected to for another HO. This is
wasteful because there is no need to reselect the same BS for HO but rather maintain the
link. We also analyzed the sum data rate of mmWave BSs using different HO schemes.
Additionally, we analyzed the HO overhead for different schemes. The principle is that
a higher overhead reflects a more wasteful HO scheme with the bandwidth. Lastly, we
analyzed the performance of our proposed scheme compared to another scheme, dubbed
the DDPG only scheme. The DDPG only scheme does not use the meta training technique
and does not consider condition (5c). Specifically, it uses random training samples rather
than EM refined samples. We also analyzed performance compared to the existing soft HO
DC model HO scheme in [3]. This scheme only selects the best target cell by averaging the
SINR/data rate.

4. Simulation Results

We used the DC LTE mmWave model introduced by the NYU and the University of
Padova in our simulation [1]. The LTE BSs in the DC model manage mmWave BS. The
model carefully considers the end-to-end mmWave cellular network performance. It uses an
ns-3 simulator and features a 3GPP channel model for frequencies above 6 GHz, as well as
a 3GPP-like cellular protocol stack [1]. The JMLS–DRL algorithm was developed using the
OpenAI Gym [24] toolkit. Open AI Gym is an RL development that is integrable with the
ns-3 simulator; it supports teaching agents for a variety of network applications including
those in ns-3. We investigated the performance using system-level simulations. Data
collected from over 1000 s of simulation time with a resolution of one transmission time
interval (TTI) (1 ms) were used for analysis. The main parameters used are summarized in
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Table 2. For a more detailed review of simulators, refer to [15]. Figures 5 and 6 compare the
number of wasteful HOs as a function of the number of training episodes in the DRL HO
scheme and JMLS–DDPG HO scheme, respectively. The former gets new training samples
from the environment once the initial pattern has been defined by EM estimations for every
other episode, while the latter uses EM estimated data as the training sample as long as
condition (5c) is satisfied. It only requests new training samples when EM data estimates
fail to meet condition (5c). Results show that our proposed scheme quickly reduces the
number of wasted HOs compared to the DDPG only HO scheme. For instance, it required
250 episodes to reduce repeated HOs to minimal levels of less than five, whilst the DDPG
only scheme required close to 400 episodes. This also suggests that it can strategically and
ably predict deterioration patterns using fewer training samples. The fact that this is more
reliable and accurate than a method that continuously receives new training samples was
justified in [4]. The authors in [4] argued that the angles of arrival and received power
slowly vary with speeds because they are affected by the large-scale scattering environment
and do not change with small-scale mobility. Since the received power samples do not
change significantly from one sample to the next, we can use the training samples of the
received power in meta training. Figures 7 and 8 compare the cumulative average reward
behavior as a function of training episodes under different user types. We can draw several
observations. First, the early predictions or rewards of the deterioration pattern for different
user types are very fuzzy in the JMLS–DDPG scheme. This explains why there are a high
number of wasteful or repeated HOs in the early part of the training of JMLS–DRL, as
shown in Figure 6.

Table 2. Simulation Parameter Table [1].

Parameter Value

mmWave 28 GHz
mmWave bandwidth 1 GHz

3GPP Channel Scenario Urban Micro, Urban Macro
MMWave max outage −5 dB

mmWave transmission Power 46 dBm
mmWave max PHY Rate 3.2 Gbps

X2 link latency 1 ms
S1 link latency 10 ms

RLC buffer Size 5 MB
S1 MME link latency 10 ms

User speed [1,50] m/s
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The blurriness is also seen when we compare the deterioration pattern prediction
after 200 episodes in Figure 9 and after 500 episodes in Figure 10. Figure 10 shows a
more accurate prediction of likely received power for different user types than Figure 9
with 200 episodes or observations in our proposed JMLS–DRL-empowered HO algorithm.
Secondly, while the DDPG scheme converges independently for each user type as seen in
Figure 7, the proposed JMLS–DRL scheme converges with almost a common and higher
reward for all user types (see Figure 8). The implication is that, after 200 training episodes,
the JMLS–DRL algorithm can have one common/global deterioration pattern to follow
regardless of user type. On the other hand, for the DDPG HO scheme, each user type
will need to follow a different type of deterioration pattern. This facilitates our proposed
scheme’s prediction of the expected target link behavior. In both schemes, an HO is only
issued when the received power at a particular given state/distance from the serving BS
drops beyond the corresponding value of the expected local deterioration pattern. In this
case, the global and local deterioration patterns in KMO are compared at least within a
range of 80 m from a serving mmWave BS. While we can still try and predict beyond 80 m,
the computation cost will be too high. Thus, a selected target link is deemed reliable if it is
able to sustain connectivity within the 80 m transmission range. Beyond 80 m, HOs are
evoked if the SINR drops to at least within 3 dB of the threshold. Therefore, HOs select a
link on the basis of the fact that sustained connectivity is expected for at least for 80 m of
assumed coverage of the mmWave BS. We also analyzed a soft-HO DC-based scheme [4]
using only SINR [2] and a DDPG-based scheme [3] for comparison; the former acted as a
baseline for our case in Figures 11 and 12.
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In Figure 11, we compare the sum rate as a function of the number of BSs for three
different HO schemes. The SINR-based scheme, as explained in [4], only compares the
SINR of the target and serving cell/link. The other scheme gets new updates every episode,
whilst our proposed scheme uses both new and old CSI. We can see that the proposed
scheme has good efficiency in terms of how it uses/selects BSs. The other two schemes
seem to start saturating after 35–40 BSs. This can be attributed to the low training sample
requirement and thorough analysis of CSI in our scheme. The reuse of training samples
gives our scheme ample time to analyze the behavior of links. At the same time, having a
small number of mmWave BSs prevents the proposed scheme from learning more about
the target link deterioration pattern. This can be seen by the smaller sum date rate recorded
at 5 to 15 mmWave BS. More mmWave BSs diversify the amount of data looked at in each
episode. On the other hand, despite a very small number of BSs, for the DDPG only HO
scheme, the acquisition of new training samples in each episode improved the prediction of
the target link path; however, because it changed quickly, the inaccuracy in the predictions
quickly manifested.

Another criterion to evaluate the performance of the proposed HO methods is the
generated overhead. Figure 12 shows the variation of the induced overhead for the three
proposed HO methods. It is obvious that the SINR-based HO induces more handover since,
at each attachment to a new BS, a number of new measurement reports must be exchanged
to allocate new subcarrier resources. On the other hand, using the DDPG only handover
and our proposed HO scheme, fewer overheads are experienced because the past link data
needed to achieve reliability are reusable and exchanged in advance before the HO. For our
proposed scheme, this advantage is more evident because measurement data sources can
be switched depending on condition (5c) (see Figure 3). Hence, the proposed scheme is
better than both the DDPG only and the SINR HO schemes.

5. Conclusions and Future Works

This paper proposed a new HO scheme given the distinct propagation characteristics
of mmWaves in a HetNet structure. A resource allocation problem that considers the
utilization of mmWave bands with LTE bands in a multiuser setup was considered. We
considered a downlink LTE-mmWave HetNet scenario with an mmWave link behavior
pattern analysis scheme applied to address the HO challenges. The resulting optimization
solution consisted of modeling the link behavior using JMLS, DRL, and meta training
techniques. Subsequently, the optimal HO link was selected using KMO test principles.
Simulation results showed that our HO scheme outperformed the DDPG only HO scheme
and the SINR-only based HO scheme in terms of the number of successful HOs. Addi-
tionally, the proposed scheme had fewer wasted (repeated) HOs and a quicker reduction
in repeated HOs. In particular, as plotted in Figures 5 and 6, if we compare the number
of repeated (wasted) HOs when using the existing DDPG (DRL) model and when using
with our proposed JMLS–DRL scheme, results show that our scheme’s performance was
better. For instance, within 200 training episodes, our scheme was able to reduce the total
percentage of wasted HOs to less than 5%. This is unlike the DDPG only HO scheme that
exhibited over 5% after 200 training episodes. In addition, we compared our proposed
scheme with the DRL and SINR HO schemes in terms of the sum rate and overhead per-
formance (Figures 10 and 11, respectively). Our scheme also showed better performance
in this regard. For instance, with a network of 55 mmWave BSs, the JMLS–DDPG HO
scheme network had a sum rate of nearly 2 × 1010 bits/s and a corresponding overhead
of less than 4 × 104 bits/s, as shown in Figures 10 and 11, respectively. This is unlike the
DDPG only HO scheme which had a sum rate of less than 1.5 × 1010 bits/s and almost
double the overhead (8 × 104 bits/s) for the same number of mmWave BSs. Thus, we can
conclusively state that the proposed HO scheme offers longer dew times (time between
HOs) than the SINR-based and DDPG only HO schemes. The results demonstrate the vital
role that deterioration pattern analysis can play in addressing mmWave link selection in
5G networks. Principally, we can conclude that our pattern analysis HO scheme envis-
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ages traits of long-term behavior analysis for mmWave target links before HO execution.
This is unlike unreliable classic HO schemes (e.g., the SINR-based HO) where only the
instantaneous behavior of target links is analyzed prior to choosing the best target link. In
future work, it would be interesting to consider the competing effects of path loss, channel
gain, and transmission power when determining the receivable deterioration pattern of the
target link. This is given the impact that their variation has on the data rates. Furthermore,
while there is a need for highly directional beam antennas at the PHY layer to have an
acceptable link quality, how to effectively handle or dodge adverse effects of both mobile
and static blockages when choosing mmWave links in HO schemes could be interesting to
study in future behavior pattern projections studies for target links. Pattern analysis can
also be extended to cell planning, coverage, or rate maximization. This is vital considering
the vulnerability of mmWave to topographic and user dynamics. Lastly, studying back-
haul configurations that can efficiently support the proposed HO scheme would also be
interesting using the pattern-based HO scheme proposed.
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