
����������
�������

Citation: Su, J.; Meng, J.; Hou, W.;

Wang, R.; Luo, X. Multi-Angle

Optical Image Automatic

Registration by Combining Point and

Line Features. Sensors 2022, 22, 739.

https://doi.org/10.3390/s22030739

Academic Editor: Loris Nanni

Received: 29 November 2021

Accepted: 17 January 2022

Published: 19 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

Multi-Angle Optical Image Automatic Registration by
Combining Point and Line Features
Jia Su 1, Juntong Meng 1, Weimin Hou 1, Rong Wang 2,3 and Xin Luo 2,3,*

1 School of Information Science and Engineering, Hebei University of Science and Technology,
Shijiazhuang 050018, China; sujia@hebust.edu.cn (J.S.); mengjuntong@stu.hebust.edu.cn (J.M.);
hwm@hebust.edu.cn (W.H.)

2 Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China,
Huzhou 313001, China; 202121070112@std.uestc.edu.cn

3 School of Resources and Environment, University of Electronic Science and Technology of China,
Chengdu 611731, China

* Correspondence: luoxin@uestc.edu.cn

Abstract: Image registration is an important basis of image processing, which is of great significance
in image mosaicking, target recognition, and change detection. Aiming at the automatic registration
problem of multi-angle optical images for ground scenes, a registration method combining point
features and line features to register images is proposed. Firstly, the LSD (Line Segment Detector)
algorithm is used to extract line features of images. The obtained line segments whose length
are less than a given threshold are eliminated by a visual significant algorithm. Then, an affine
transform model obtained by estimating a Gaussian mixture model (GMM) is applied to the image
to be matched. Lastly, Harris point features are utilized in fine matching to overcome shortages of
methods based on line features. In experiments, the proposed algorithm is compared with popular
feature-based registration algorithms. The results indicate that the proposed algorithm in this work
has obvious advantages in terms of registration accuracy and reliability for optical images acquired
at different angles.

Keywords: image registration; scene splicing; line features; LSD; GMM

1. Introduction

The specific task of image registration technology is to determine point-by-point
mapping relationships among images acquired from same scenes in different shooting
conditions, such as angles, time, and sensors. It can realize the fusion of multi-image
information and the expansion of visual ranges. At present, this technique is widely used
in automatic driving, target tracking, remote sensing mapping, medical diagnosis, military
survey, and other fields [1–3]. Recently, there have been many achievements under the
efforts of scholars and engineers in the field of optical image registration. The Harris
corner algorithm is combined with the scale-invariant feature transform (SIFT) operator
for registering satellite-borne optical imagery, such as panchromatic and multispectral
images [4]. An adaptive redundant key-point elimination method (RKEM)-SIFT is proposed
by Zahra [5]. It reduces computational complexities while improving image matching
performances. In addition, due to significant differences in their imaging mechanisms, a
rapid and robust method based on SURF was designed for multi-modal image registration
by exploiting local edge information [6]. It can simultaneously satisfy requirements of
real-time and accuracy. The KAZE algorithm is combined with a modified version of the
speeded-up robust features (SURF) descriptor for registering synthetic aperture radar (SAR)
images [7]. Wang proposed an improved KAZE-HOG algorithm, which has good capability
to resist scale and rotation transforms [8]. Zheng put forward an image registration method
based on RANSAC (Random Sample Consensus), which is suitable for processing aerial
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video. It incorporates prior sampling to possibly generate more correct samples [9]. These
methods have their own characteristics, but they are not designed for multi-angle images.

The focus of this work is on automatically registering optical images acquired from
different view angles on the ground. Images from limited fields of view can be stitched
together by using registration technology so as to broaden visual fields or generate panora-
mas. However, there are various divergences in images caused by differences of view
angles, such as displacement, scale, and rotation. It is essential to find invariant features in
images of different view angles for registering and stitching them properly. The remainder
of this article is organized as follows. The second section introduces the procedure of our
algorithm, in which rough matching by using LSD and GMMs and fine matching based on
point features are described in detail. In the third section, the proposed registration method
is verified and compared with other algorithms by using multi-angle optical images. Finally,
the discussion and conclusion are given in the fourth section.

2. Methodology

For ordinary optical images with certain differences of view angles, point and line
features are combined in order to deal with the limitations of popular registration methods
based on point features in this work. First of all, the LSD (Line Segment Detector) algorithm
is utilized during rough matching and the transform affine model parameters of rough
registration are estimated by using line features and GMM (Gaussian Mixture Models).
Then, Harris point feature extraction is applied in fine matching to enhance registration
accuracy. The procedure of our algorithm is demonstrated in Figure 1.
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Figure 1. The proposed image registration algorithm flow chart.

2.1. Rough Matching
2.1.1. Line Detection by LSD

The LSD algorithm is a line detection algorithm proposed by Gioi [10]. It has great ad-
vantages in calculation speed. In particular, it is much faster than the Hough transform [11].
Generally, line detection algorithms are based on edge detection, and edge information
needs to be computed first. In contrast, LSD directly uses the gray information of images
to generate line segmentation matrices without adjusting algorithm parameters [12–14].
The LSD algorithm mainly includes three steps: detecting the candidate regions for lines,
rectangular approximation of the candidate regions for lines, and line verification.
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(1) Detect candidate regions for lines. Due to quantization noises in imaging processes,
there are sawteeth in the edges of images. If line detection is conducted directly, the
extraction results will be affected. Therefore, an optical image is blurred through Gaussian
down-sampling to the 80% size of the original image. Then, the gradient at each point is
calculated within a region of 2 × 2 pixels. The amplitude of the gradient represents the
change degree of gray values in the image. Large values denote large gray differences of
neighboring pixels, and small values mean that pixels and their neighboring pixels are very
likely to belong to a same region. Hence, in order to effectively extract line regions, the
points with small gradient amplitudes will be deleted according to a preset threshold.

(2) Generate candidate regions for lines. The determination of candidate regions for
lines is realized by iterations. At the beginning of an iteration, a candidate region is a point
at which the gradient amplitude is at its maximum, and the direction of this candidate
region is the gradient direction at the point. Next, the gradient at its neighboring points
in the candidate region is calculated. When the angle between the gradient direction
at a neighboring pixel point and the region direction is less than a preset threshold, the
neighboring points are marked as a point belonging to the candidate region. Then, the
direction of the candidate region will be updated. However, the candidate region is
irregular and cannot be employed to represent a line segment. Therefore, it is necessary
to estimate a rectangle for a line according to the region [15]. The specific scheme is
demonstrated in Figure 2, including determining the direction, width, height, and center of
the estimated rectangle.
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(3) Verify lines. It is necessary to verify lines to avoid false detections for as many as
possible. The NFA (Number of False Alarms) is chosen as the verification indicator [16].
Consider an image of M × N pixels, it is defined as follows.

NFA(r)= (MN)
5
2 ∗ B(n, k, p) (1)

where r represents a candidate region for lines, and B(n, k, p) is a binomial model. The p is a
given precision value for each candidate region. The n and k stand for the number of pixels
contained in this region and the number of points whose direction are identified as that of
the region, respectively. The NFA value can be derived by the following formula [17].

NFA(r) = (MN)
5
2 ∗

n

∑
j=k

(
n
k
)pj (1−p)n−j (2)

If the NFA value of a candidate region is less than a given threshold, it is thought that
a line is correctly detected. Figure 3 exhibits an example of a line feature extraction by LSD.
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2.1.2. Matching Line Features by GMM

The line feature matching problem can be converted to solve a Gaussian mixture model
(GMM) [18]. The essence of GMM is a weighted composition of several normal probability
density functions with different parameters. Through the previous procedures, linear
features of registration image pairs have been obtained. Suppose that the line segments
in the reference image are centroids of GMM, and the line segments in the image to be
registered can serve as observed data. The corresponding relation of the line segments in
the image pair can be regarded as hidden variables, so as to estimate transform parameters
for rough matching.

Firstly, consider an arbitrary image to be registered J and its reference image I.
Let N be the number of line segments in I, and M is the number of line features in J.
Let X = {x1, x2, . . . , xN} for the line segment set detected from I; Y = {y1, y2, . . . , yM} for the
line segment set detected from J; and P = {Pmn}1≤m≤M, 1≤n≤N+1 is a response matrix, which
is composed of hidden variables of GMM [19,20]. If n ≤ N + 1, then Pmn is the probability
that the line segment ym is related to xn, and if n = N + 1, then ym is an outlier. The problem
of line segment matching can be expressed as a likelihood equation below [21].

L(Θ)= ln
M

∏
m=1

p(ym) (3)

where p(ym) is the marginal probability distribution of ym in a GMM, and Θ is the parameter
set of an affine transform model. The transform of xn under the model parameter set Θ can
be denoted as T = (xn, Θ). Since the relationship between line segments is unknown, it is
difficult to maximize L directly. Therefore, this problem can be resorted to the expectation
maximization (EM) algorithm to realize the optimization of L through iteration [22].

2.2. Fine Matching

According to line matched pairs, the parameters of the affine transform model of
the image can be estimated. However, owing to large differences of view angles, there
are some mismatches in the line matching results. They will affect the estimation of
transform parameters. Hence, it is essential to conduct fine matching based on point
features. Specifically, this contains the following steps: point feature extraction, point
feature matching, and mismatched point elimination.

2.2.1. Extraction and Representation of Point Features

Because rough matching has been fulfilled, the simple Harris operator is chosen
to detect feature points [23] and the popular SIFT operator is utilized to describe point
features [24,25]. Corner detection is executed both on the reference image and on the
transformed image according to the rough registration model [26].
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2.2.2. Point Feature Matching

At first, a K-D (K-Dimensional) tree of point features is constructed [27], and all data
are divided into left and a right subtrees according to their spatial location. Then, the same
operations are conducted on the data in the subtrees until all points have been processed.
In the processes of division, it is necessary to maintain the data balance between the left
and right subtrees as far as possible. Otherwise, the search efficiencies will be reduced.

Then, matched point pairs are searched for by using the BBF (Best Bin First) strat-
egy [28]. The BBF strategy is a search algorithm for the K-D tree structure and outperforms
the K-D tree search algorithm in high-dimensional features. The BBF algorithm improves
search efficiency by establishing a priority queue and by setting the maximum number of
backtracking and maximum running time. It pushes points that may be backtracked into
the queue and ranks them according to their distances from the hyperplane of a search
point. The closest point possesses the highest priority. Then, every point is traversed by
their priority until the sequence becomes empty.

Meanwhile, the first/second-nearest neighbor ratio method is applied for similarity
comparison of the point features. Accordingly, it is required to find two points in the image
to be registered that are firstly/secondly closest to a search point in the reference image.
Their distances are denoted as Dis1 and Dis2, respectively. Then, the value of Dis1/Dis2
is compared with a given threshold. When the ratio is less than the threshold, it can be
believed that the current point pair may be a matched pair [29].

2.2.3. Elimination of Mismatches

Taking large differences of view angles into consideration, projection transforms are
adopted in fine matching stages. Mismatches are eliminated in order to yield optimal
parameters for a projection transform matrix by the RANSAC algorithm [30,31]. Finally,
stitched images are generated by a bilinear interpolation method.

3. Experimental Results

The hardware environment mainly includes an Intel Core i5-8250U processor at
1.80 Hz, with 4.00 GB RAM. The operating system is 64-bit Windows 10, and the pro-
gramming software is MATLAB R2014a.

3.1. Rough Matching Test

In order to verify the effectiveness of our line matching algorithm, a classic group
of multi-angle images about a same scene in the reference [32] is applied in our rough
matching test. The angles of these experimental images are 0◦, 10◦, 20◦, and 50◦, as shown
in Figure 4. There are three image pairs designed for the matching test. The first pair is
0◦ and 10◦ images, the second pair is 0◦ and 20◦ images, and the third pair is 0◦ and 50◦

images. The 0◦ image is the reference image, and our line matching method is compared
with a popular point matching algorithm, i.e., SIFT, in this experiment. Figure 5 displays
the matching results for the first pair of images.
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Figure 5. The matching results for the first pair of images: (a) the line matching result; (b) the point
matching result.

The quantitative indicator comparison of the two matching methods is presented
in Table 1, which includes the number of matched pairs (NoP) and accuracy. It can be
seen from Table 1 that for multi-angle images, the line matching method proposed in this
work is more reliable than the point matching method. As the difference of view angles
increases, matched feature pairs obtained by the two methods decrease accordingly. The
NoP of our line matching method is much higher than that of the point matching method.
However, the point matching method is outstanding at accuracy. Thus, it is manifested
that combining the line and point matching in multi-angle optical image registration is
reasonable for improving registration results.

Table 1. The quantitative comparison of two matching methods.

Methods

The First Pair The Second Pair The Third Pair

NoP Accuracy
of Pairs NoP

Correct
Matching

Rate
NoP Accuracy

of Pairs

line
matching 152 92.3% 108 90.2% 50 84%

point
matching 16 100% 16 100% 7 100%

3.2. Registration Results and Analysis

The multi-angle registration method proposed in this work is verified in this section.
The multi-angle optical images of ground scenes we used are taken by a common digital
camera. The multi-angle images from the first scene are given in Figure 6.
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Figure 6. The original multi-angle images of the first scene: (a) the 0◦ image; (b) the 15◦ image; (c) the
35◦ image.

The sizes of the three images in Figure 6 are all 800 × 600 pixels. Similarly, the 0◦ image
serves as the reference image. Figure 7 exhibits the results of the line feature extraction by
the LSD algorithm. The numbers of the line segments in each image of the first scene are
432, 466, and 464, respectively.
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Figure 7. The extracted line features from the multi-angle images of the first scene: (a) the 0◦ image;
(b) the 15◦ image; (c) the 35◦ image.

After rough matching, 137 matched line pairs are obtained from the 0◦ image and
15◦ image, as shown in Figure 8. Then, the 15◦ image in Figure 6 is transformed by a
corresponding affine model. On this basis, fine matching is carried out and the results are
shown in Figure 9.
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Figure 9. The fine matching results for the 0◦and 15◦ images of the first scene.

In Figure 9, there are 85 matched point pairs, and the obtained projection transform
matrix Mab is specified by Equation (4). According to this transform matrix, the 0◦and 15◦

images are registered and stitched together. The final stitched result is shown in Figure 10.

Mab =

 0.8464 0.0939 88.6506
−0.1148 0.9715 −20.2125
0.0000 0.0000 1.0000

 (4)
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Figure 10. The stitched image generated by using Mab.

Meanwhile, the 0◦and 15◦ images of the first scene are also matched through the
point-based SIFT method. As can be seen in Figure 11, there are 100 matched point pairs,
and the obtained projection transform matrix is shown in Equation (5).

Mpoint =

 0.8414 0.0979 87.9872
−0.1135 1.0276 −50.5910
−0.0003 0.0002 1.0000

 (5)
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The rough matching results for the 0◦and 35◦ images of the first scene are presented in
Figure 12 and, in total, there are 129 matched line pairs generated by the proposed method.
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Figure 12. The rough matching results for the 0◦and 35◦ images of the first scene: (a) the 0◦ image;
(b) the 35◦ image.

Then, the affine transform is performed on the 35◦ image in Figure 6. Similarly, there
are 70 pairs of matched point pairs yielded by fine matching. The final projection transform
matrix Mac is expressed as Equation (5), and the stitched image is displayed in Figure 13.

Mac =

 0.8920 0.0797 50.3169
−0.1061 1.0623 −81.7635
−0.0003 0.0003 1.0000

 (6)
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In addition, the proposed registration algorithm combining point and line features
are quantitatively compared with the SIFT algorithm and the detailed results are listed in
Table 2. We also compare the proposed method with three classical point-based registration
methods, including BRISK (Binary Robust Invariant Scalable Keypoints) [33], KAZE [34],
and SURF (Speed-Up Robust Features) [35].

Table 2. The registration result comparison of the first scene.

Images Methods NoP
(Lines)

NoP
(Points)

Correct
Matching

Rate
RMSE Time (s)

0◦ and 15◦

SIFT / 100 98% 1.1892 4.370
BRISK / 58 100% 1.1953 2.136
KAZE / 89 98% 1.2137 4.678
SURF / 122 98.3% 1.2059 3.733
Ours 137 85 100% 1.1161 8.527

0◦ and 35◦

SIFT / 73 100% 1.1676 4.292
BRISK / 52 99% 1.1715 2.032
KAZE / 64 100% 1.1708 4.489
SURF / 95 98% 1.1803 3.376
Ours 129 70 100% 1.1389 8.378

In Table 2, it can be noticed that the number of matched features decreases with the
increase of the view angle differences. Although SIFT and SURF can obtain more matching
point pairs than the method proposed in this work, their correct matching rate is not as
completely good as our method. These results indicate that our feature extraction strategy
is more reliable than the other algorithms in terms of correct matching. Moreover, the
RMSE of our registration algorithm is also superior to the other algorithm. Since adding
the line matching process, our algorithm has no significant advantages in speed. However,
its time consumption is still acceptable in general cases.

In addition, it is also found in experiments that our registration strategy can provide
good performances for images with angle differences from 0◦ to 45◦. If an angle difference
is less than 35◦, its RMSE can maintain within 1.10 to 1.15. When the angle difference
reaches 45◦, the RMSE value of our method rises to 1.4149, and its accuracy is still slightly
higher than those of point matching methods. However, with the angle difference increas-
ing continuously, registration accuracy will decline. The reason is that it is difficult to
successfully find a matched line or point features in this case. When the angle difference
exceeds 45◦, the transform angle of an affine model generated by line matching will become
too large, and thus, point features cannot be extracted during fine matching. This situation
will result in matching failure, as illustrated in Figure 14.
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According to the results in Table 3, it can be proved that, for multi-angle images, the 
registration accuracy of our method based on both line and point features is also higher 
than those of the other excellent algorithms. Similarly, although SIFT, KAZE, and SURF 
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rates are, in fact, not superior to our method. Thus, the reliability of our method is also 

Figure 14. An example of matching failure for the 0◦and 50◦ images of the first scene.

The experimental images of the second scene are both of 800 × 1200 pixels with
relatively few overlapping regions. There are 129 matched line pairs obtained by rough
matching. Then, an affine transform is performed on the image to be registered in Figure 15
in order to accomplish fine matching. Figure 15c is the stitched image of the second
scene. The other algorithms are also applied to the images of the second scene and their
comparison results with the proposed algorithm of this work are listed in Table 3.
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Table 3. The registration result comparison of the second scene.

Methods NoP (Lines) NoP (Points)
Correct

Matching
Rate

RMSE Time (s)

SIFT / 121 97.5% 1.5151 11.934
BRISK / 78 96.8% 1.5619 5.466
KAZE / 116 96.3% 1.5722 14.659
SURF / 134 97.8% 1.5312 7.904
Ours 129 112 98.2% 1.4777 48.315

According to the results in Table 3, it can be proved that, for multi-angle images, the
registration accuracy of our method based on both line and point features is also higher
than those of the other excellent algorithms. Similarly, although SIFT, KAZE, and SURF
can obtain more matching point pairs than the proposed method, their correct matching
rates are, in fact, not superior to our method. Thus, the reliability of our method is also
verified. If there are no strict time requirements, the introduction of line features can
generate matched point pairs more effectively, so as to enhance the registration accuracy
for multi-angle images.
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4. Conclusions

Focused on multi-angle optical images of ground scenes, this work combines line
features with point features to improve the quality of image registration. It utilizes line
features to realize rough matching. Furthermore, in order to achieve more accurate reg-
istration, it makes use of the point features of images in fine matching. To begin with,
linear features are extracted through the LSD algorithm. An iteration method is designed
based on GMMs to match extracted linear segments and optimize parameters of affine
transform models. Lastly, the reference image and the roughly-transformed image are finely
registered by using point features. The experiment results indicate that the registration
strategy proposed in this work can register multi-angle images effectively without any
artificial intervention or sample training, and it outperforms the mere point-based registra-
tion methods in registration accuracy. Since it has no special requirements for hardware
and software platforms, our method also has obvious advantages in adaptability. It can
be easily realized on small-size or mobile computing devices in order to satisfy practical
application requirements.

Due to the combination of the detection and matching of different features, our
proposed registration algorithm has no advantages in time. Therefore, it is also a critical
issue to improve calculation efficiency in further research. Meanwhile, the multi-angle
registration in this work is carried out in two-dimensional cases. It cannot cope with those
images with quite large divergences of view angles. Hence, it is challenging to fulfill the
matching in stereo space based on image features and to improve adaptabilities to more
complex scenes in future algorithm design. Moreover, deep learning technology can also
be exploited to improve registration effects for multi-angle images in subsequent research
because of its strong feature extraction capability.
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