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Abstract: In order to simplify the complexity and reduce the cost of the microphone array, this paper
proposes a dual-microphone based sound localization and speech enhancement algorithm. Based on
the time delay estimation of the signal received by the dual microphones, this paper combines energy
difference estimation and controllable beam response power to realize the 3D coordinate calculation
of the acoustic source and dual-microphone sound localization. Based on the azimuth angle of the
acoustic source and the analysis of the independent quantity of the speech signal, the separation of
the speaker signal of the acoustic source is realized. On this basis, post-wiener filtering is used to
amplify and suppress the voice signal of the speaker, which can help to achieve speech enhancement.
Experimental results show that the dual-microphone sound localization algorithm proposed in this
paper can accurately identify the sound location, and the speech enhancement algorithm is more
robust and adaptable than the original algorithm.

Keywords: dual-microphone array; sound localization; speech enhancement; time delay estimation;
post-filtering

1. Introduction

Microphone array is a key technology of human–computer interaction (HCI). It can
enhance the efficiency of HCI and adapt intelligent speech device to more complex and
changing environments [1–3]. Microphone array, which can acquire the voice signal by
microphones, uses digital electronic technology to sample, process and analyze the acoustic
field characteristics, so that the collected voice signal is easier to be processed. Due to
factors such as cost control, performance optimization, and environmental adaptability,
acoustic signal processing based on dual-microphones is a challenging task [4,5].

Acoustic signal processing technology based on microphone array includes multiple
technologies such as sound localization, speech separation, and speech enhancement.
As a simple acoustic signal receiving device, the microphone is widely used in various
sound localization experiments [6,7]. Ganguly A. et al. [8] proposed a dictionary-based
singular value decomposition algorithm to solve the sound localization problem with
the help of the non-linear and non-uniform microphone array in the smart phone and
proved the accuracy of the algorithm in an environment with extremely low signal-noise
ratio (SNR) through experimental results. Nevertheless, this algorithm cannot obtain the
spatial position of the acoustic source and the distance from the acoustic source to the
center of the microphone array. Jiaze Li and Jie Liu [9] derived and compared the four-
element cross microphone array and the five-element cross microphone array based on the
generalized cross-correlation time delay estimation algorithm. The experiment showed
that the four-element cross microphone array has a blind spot for sound localization, while
the five-element microphone can better improve localization accuracy and reduce errors.
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However, the structure of the microphone array is very complicated, which increases
the hardware cost. Jelmer Tiete, Federico Domínguez, etc., [10] exploited the sensing
capabilities of the Sound-Compass in a wireless sensor network to localize noise pollution,
whose live tests produced a sound localization accuracy of a few centimeters in a 25 m2

anechoic chamber, while simulation results accurately located up to five broadband acoustic
sources in a 10,000 m2 open field. The system requires 25 sensors, which makes it difficult to
meet the requirements of miniaturization. Hongyan Xing, Xu Yang [11] made a theoretical
model of a three-plane five-element microphone array is established, using time-delay
values to judge the acoustic source’s quadrant position, which derived a formula for the
sound azimuth calculation of a single-plane five-element microphone array based on sound
geometric localization. It is also necessary to detect the environmental adaptability of the
system and the working accuracy in a high-noise environment.

As the main method of acoustic signal processing, speech enhancement is a key issue
to improve the accuracy of acoustic information extraction. Shujau M. et al. [12] proposed a
multi-channel speech enhancement algorithm based on independent component analysis
(ICA) for co-located microphone recording. Experiments show that the algorithm signifi-
cantly improves the quality and clarity of the acoustic signal. This algorithm is more suitable
for linear directional microphone arrays. Xunyu Zhu [13] advanced a deep neural network
combining beamforming and deep complex U-net network to denoise acoustic signals
from small-scale microphone arrays, which has certain advantages in environments such as
homes, conference rooms, and classrooms. The author did not solve the human voice inter-
ference, especially the human voice interference that is in the same direction as the target
acoustic source. On the basis of dual microphone arrays, Hairong Jia et al. [14] proposed
a speech enhancement algorithm based on dual-channel neural network time-frequency
masking, which combines single-channel neural network, adaptive mask orientation and
proper positioning, and convolutional beamforming. Compared with traditional single-
channel and dual-channel algorithms, the algorithm can extract voice information more
clearly. In the algorithm, the network model has a large amount of calculation, which leads
to higher hardware performance requirements for system implementation.

Traditional microphone arrays require many microphones, resulting in high cost and
high design requirements. At present, there are new design concepts for intelligent home
speech modules, such as lightweight, high integration and cost control. Speech module
design based on dual microphones or even single microphone is an increasingly popular
direction in the field of intelligent acoustic signal processing [15,16].

With the current lightweight and highly integrated design concepts of intelligent
homes and interactive robots, combined with the current status and development trend of
voice signal processing, this paper proposes a dual-microphone-oriented sound localization
and voice enhancement optimization algorithm. The algorithm can use two microphones
to locate the speaker target, realize the enhancement of the acoustic signal, and output a
high SNR corpus that is more convenient for back-end analysis.

The rest of the paper is arranged as follows. Section 2 introduces two acoustic signal
models in detail. Section 3 describes the improved algorithm of sound localization based
on dual-microphone. Section 4 presents the advanced speech enhancement algorithm
based on sound localization. Section 5 gives the experimental results. Section 6 concludes
the paper.

2. Acoustic Signal Model

On the one hand, analyzed from the propagation mode, the acoustic signal is a
longitudinal wave. That is to say, it is a wave in which the particles in the medium move
along the direction of propagation. On the other hand, the acoustic signal can also be seen
as a spherical wave. After vibration occurs at the acoustic source to generate an acoustic
signal, the medium near the acoustic source appears accompanied by vibration, and the
voice signal spreads around along with the medium simultaneously [17].
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According to the distance between the acoustic source and the microphone array, the
acoustic field model can be divided into two types: Near-field model and far-field model.
The near-field model regards the voice signal as a spherical wave, and it considers the
amplitude difference of the voice signal received by the sensors on the microphone array.

Generally, the near-field model and the far-field model are defined according to the
relationship between the distance between the acoustic source and the center point of the
microphone array element and the acoustic wavelength [18]:{

L > 2d2

λmin
, the far− field model

L < 2d2

λmin
, the near− field model

(1)

In Equation (1), L is the distance between the acoustic source and the center of the
microphone array, and d is the aperture of the array element, and λmin is the minimum
wavelength of the current voice.

3. Sound Localization Algorithm by Dual-Microphone
3.1. Time-Delay Estimation

We can calculate the azimuth angle of the acoustic source by processing multi-channel
signals based on sound localization algorithms. When calculating the azimuth angle, the
phase difference of the signals received by the microphones at different positions is used to
estimate the position of the speaker. Generally, because the distances between the acoustic
source and the two microphones are not same, the arrival time difference of the acoustic
wave is reflected in the waveform diagram as the phase difference of the voice waveforms
received by the two microphones. The distance difference between the speaker and the
microphone array is equal to the product of the acoustic signal propagate speed in the
air and the relative delay between the two microphones. As mentioned in Section 2, the
acoustic signal can be seen as propagating outward in the form of waves.

As shown in Figure 1, referring to the far-field model, we can estimate the azimuth
in a 2D plane by dual-microphone array. However, if it is expanded to a 3D space, the
estimated value of the azimuth angle will be a sector, so that the acoustic wave reaching
the microphone is a spherical wave. At this time, the arrival angle θ cannot be expressed as
a function of time delay, which is the difficulty of the sound localization algorithm based
on dual microphones. After the time delay is obtained, the distance difference between the
two microphones and the speaker can be calculated [19].
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Figure 1. Principle of speaker positioning. Figure 1. Principle of speaker positioning.

As shown in Figure 2, the dual-microphone acoustic field is similar to the hyperbolic
model. The distance difference between the point on the hyperbola and the two focal points
is a fixed quantity, so the acoustic source must be located on the hyperbola. If there is
another distance difference at the same time, the corresponding hyperbolas can also be
calculated [20,21]. The intersection of the two hyperbolas is the speaker position, as shown
in Figure 3.
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Taking the midpoint of microphones i and j as the center of the coordinate system, the
distance between microphones i and j is d. Let the coordinates of microphone i and j be
(−d/2,0) and (d/2,0), respectively, and the acoustic source coordinates are (x,y). Then, the
distance between the speaker and the two microphones is: Lis =

√
(d

2 + x)
2
+ y2

Ljs =

√
(d

2 − x)
2
+ y2

(2)

In Equation (2), Lis, Ljs are the distance between the speaker and dual-microphone.
The distance difference L′ij =

∣∣Lis − Ljs
∣∣ between the speaker and the two microphones can

be obtained. According to the estimated distance difference calculated by the time delay
L̂′ij = c×∆tij, the problem is transformed into the estimation of the position coordinate x of
the speaker by minimizing the error between L′ij and L̂′ij when the microphone coordinates
and ∆tij are known.

The sound localization method based on time delay requires at least two sets of data
to construct two sets of hyperbolas and calculate their intersection points, because only
the linear function relationship between x and y can be obtained by the information of
time delay, which can only be embodied as the azimuth angle between the acoustic source
and the center of the dual microphone array. If there is another distance difference exist,
extra azimuth angle can be calculated by the new set of hyperbolas, and the intersection of
the two hyperbolas is the acoustic source position. It can be seen that in a 2D space, three
microphones can be used to estimate the position of the acoustic source. Therefore, the
problem of sound localization is transformed to a problem of solving the intersection of
two hyperbolas [22].

3.2. Energy Difference Estimation

In the process of acoustic wave propagation, there is energy attenuation except time
delay exist. Considering the energy attenuation and time delay at the same time, the
mathematical model of the signal received by the dual-microphones can be solved.
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The acoustic signals received by microphones i and j are defined as follows: xi =
2L(n−ti)

di

xj =
2L(n−tj)

dj

(3)

In Equation (3), xi and xj are the voice signals received by microphone i and micro-
phone j, respectively. L(n) is the acoustic source, and ti and tj are the time when the two
microphones receive signals. Respectively, di and dj are the distances from the sound
source to the two microphones. We define the sound intensity amplitude of the signal
received by the microphone i as Ei, which can be actually measured. Finally, the sound
intensity amplitude is derived as shown in Equation (4).

Ei

Ej
=

d2
i

d2
j

(4)

Combining Equations (3) and (4), we can get:
√
(−d

2 − xs)
2
+ (0− ys)

2 =
dij
√

Ej√
Ej−
√

Ei√
(d

2 − xs)
2
+ (0− ys)

2 =
dij
√

Ei√
Ej−
√

Ei

(5)

In Equation (5), dij is the distance difference between the sound source and the two
microphones. It can be seen from Equation (5) that the two equations also construct a
coordinate system similar to Figure 3 in the difference estimation of the energy field. In the
energy field, the geometric model is two circles with the microphone i and j coordinates as
the center and dij

√
Ej/(

√
Ej −
√

Ei), dij
√

Ei/(
√

Ej −
√

Ei) as the radius, respectively. The
intersection of the two circles is the acoustic source position.

According to Euclidean geometry, when the distance between the centers of the two
circles is greater than the difference between the radii of the two circles and less than the
sum of the radii of the two circles, the two circles must intersect. Which is:

dij =
dij(
√

Ej −
√

Ei)√
Ej −
√

Ei
≤ d ≤

dij(
√

Ej +
√

Ei)√
Ej −
√

Ei
(6)

Obviously, Equation (6) is always established, so Equation (5) must have two sets
of real number solutions that are symmetrical about the microphone connection. Finally,
combined with the actual scene, the optimal solution in the 2D space is selected.

3.3. Sound Source Localization

Based on the time delay estimation and the energy difference estimation, the sound
source position and the sound source direction angle under 2D coordinates will be obtained.
However, it is still impossible to obtain the acoustic source distance in the 3D space.

In order to solve this problem, this paper introduces the Steered Response Power-
Phase Transform (SRP-PHAT) based on the weighted phase transformation to achieve the
maximum autocorrelation estimation, thereby obtaining the most likely acoustic source
position in the 3D space.

Before the sound localization, pre-emphasis, framing and other pre-processing are
performed on the acoustic signal. Based on short-time Fourier transform (STFT), the
spectrum analysis of two single-channel speech signals is carried out with acoustic equal-
frame modeling technique.

The PHAT algorithm in this paper uses a steerable beam response power algorithm to
sum all possible phase transforms. SRP-PHAT can directly transform and process multi-
channel microphone signals and use multiple microphones to improve the accuracy of
position estimation.
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SRP can be implemented using a block processing scheme that uses a short-time
digital Fourier transform as an estimate of the microphone signal spectrum. Divide the
array signal into blocks in the time domain and calculate the steering response for each
block. The digital Fourier transform of the signal block is denoted by Xk,b[k]. Where, m
is the microphone index, b is the block index, and Gk,b[k] is the Fourier transform of the
discrete-time filter of microphone m, which is performed separately in each block. The
steering response of block b can be defined as follows:

P̃b

[
∆1, ∆2] =

2

∑
k=1

Yb′ [k, ∆1, ∆2]Ỹb[k, ∆1, ∆2] (7)

Ỹb[k, ∆1, ∆2] is a discrete frequency function and successive steering delays with index
k. Where, ∆1, ∆2 represents all successive steering delays of the dual-microphone array in
theory, it is necessary to process the data of all frequency bands in the signal. However, in
actual, the data of one or more frequency bands are generally selected for processing. At
the same time, although the k steering delays are continuous, in actual use, sampling is
performed at a predefined set of spatial positions or directions, and the steering response
power is obtained by summing k discrete frequencies.

Ỹb[k, ∆1, ∆2] =
2

∑
k=1

Gk,b[k]Xk,b[k]e
−jw∆k (8)

The discrete filter G(t) is defined as Equation (9):

Gm,b(k) =
1

Fm,b(k)
, m = 1, 2 (9)

where, b is the block index after framing, Fm,b(k) is the Fourier transform of the signal
block after framing, m is the microphone index.

Substituting Equation (9) into Equation (7), the controllable response weighted by the
phase transformation is expressed as:

Ỹ
PHAT
b (∆1, ∆2) =

2

∑
k=1

Fm,b(k)
|Fm,b(k)|

e−jw∆m , m = 1, 2 (10)

Substituting Equation (10) into Equation (8), the controllable response power SRP-
PHAT weighted by phase transformation can be obtained as:

P̃
PHAT
b (∆1, ∆2) =

2

∑
k=1

Ỹ
PHAT
b (k, ∆1, ∆2)Ỹ

PHAT
b′ (k, ∆1, ∆2) (11)

In theory, it is necessary to analyze the data of all frequency bands in the acoustic
signal. However, in the algorithm realization process, the acoustic signal processing method
is somewhat different from the theory. Firstly, a predefined set of spatial positions or
directions. Secondly, the voice signal is sampled, and the discrete frequencies are summed.

Finally, the steering response power P̃
PHAT
b can be obtained.

The sound localization steps are as follows:

(1) Calculating the controllable time delay of the 2D azimuth direction in Section 3.2,
which is according to the physical parameters of the microphone array;

(2) Using the STFT of the acoustic signal and the controllable time delay to calculate the
SRP-PHAT for all frequencies in this direction;

(3) Repeating the above operations until SRP-PHAT in all directions is obtained;
(4) Selecting the direction corresponding to the maximum value as the azimuth angle of

the sound source in 3D;
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(5) Obtaining the 3D position of the sound source;
(6) The sound source localization algorithm flow is shown in Figure 4.
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4. Speech Enhancement Algorithm Based on Sound Localization

Traditional algorithms have insufficient speech enhancement effects in strong-noise
or multi-noise environments. Correlation noise will be generated and there are higher
requirements for the microphone array. With the development of signal processing tech-
nology, more and more speech enhancement algorithms have emerged, such as wavelet
transformation, speech enhancement algorithms based on empirical mode decomposition
and deep learning [23]. New speech enhancement algorithms pay more attention to noise
feature analysis and statistics. According to the analysis results of the noise characteristics,
the noise signal and the original speech signal are separated to further obtain the original
speech signal, but the algorithm time efficiency and economic efficiency are low.

Combining the results of sound localization in Section 3, this paper proposes an opti-
mization algorithm for indoor speech enhancement based on post-filtering. According to
the azimuth information of the acoustic source, the enhancement algorithm only amplifies
the acoustic signal from the speaker, while other signals are judged as background noise
and will be effectively suppressed.

4.1. Speech Separation Algorithm Based on the Azimuth of the Target Sound Source

The ultimate goal of speech enhancement technology is to extract the source signal,
but the source signal is often unclear in the living environment, resulting in the speaker
signal entraining other interference signals or noise during the enhancement process [24].
The speech separation algorithm can not only remove the environmental noise and inter-
ference components, but also effectively separates the speech signals of different speakers.
Independent Component Analysis (ICA) has better performance and higher stability, which
is currently the most conventional and popular speech separation algorithm [25,26]. The
principle of ICA is decomposing the aliased signal to obtain several independent signals. In
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this article, we define multiple independent source signals as S and the observation signal
X after passing through the mixing matrix A, which is expressed as a matrix:

X(t) = AS(t) (12)

where, the observation signal X(t) is the linear aliasing of n mutually independent unknown
source signals S(t), and A is an m×n aliasing matrix whose aliasing weight coefficient of the
matrix is unknown. When both S(t) and A are unknown, the core of the ICA algorithm is to
solve the demixing matrix W so that the final output signal Y(t) optimally approximates
the source signal S(t) according to certain criteria (such as independence criteria):

Y(t) = WX(t) (13)

The process of solving the demixing matrix W is the process of feature extraction. This
paper selects the azimuth angle information between acoustic source and dual-microphone
as ICA analysis feature. Based on the definition of negative entropy, need to define was a
column vector of matrix W. The objective function of the ICA algorithm is:

J(w) ∝
{

E[G(wTX)]− E[G(u)]
}2

(14)

where, u is a Gaussian variable with zero mean unit variance; G is a random non-negative
quadratic function; X is a target sound source position vector, which is as the signal
characteristic value. Taking the partial derivative of Equation (14) to get:

∂J
∂w

= 2
{

E[G(wTX)]− E[G(u)]
}

E[Xg(wTX)] (15)

In Equation (15), the g function is the derivative of the G function. Setting ∂J/∂w = 0
directly will lead to poor convergence of the algorithm. Associating Equation (14) and
Equation (15), it shows that the maximum value of the objective function J(w) can be
obtained by the optimal solution of E[G(wTX)].

According to KKT constrained optimization, the optimal solution of E[G(wTX)] is an
unconstrained optimization problem:

J′(w) = E[G(WTX)] +ψ(‖w‖ − 1) (16)

where, ψ is a constant parameter. Based on Equation (16), the function H(w) is defined
as follows:

H(w) = E[Xg(wTX)]−ψw (17)

Derivation:
∂H
∂w

= E[XXTg′(wTX)]−ψ (18)

Finally, the matrix W is solved according to the Newton iteration method:{
w(j + 1) = E

{
Xg[wT(j)X]

}
− E

{
g′[wT(j)X]

}
w(j)

w(j + 1) = w(j+1)
‖w(j+1)‖2

(19)

4.2. Speech Enhancement Algorithm Based on Post-Adaptive Filter

The idea of sub-frame block-index in Section 3.3 will also be applied to the adjustment
of Wiener filter parameters in speech enhancement. The core of the adaptive algorithm is
to modify the parameters of the filter based on the analysis of the first three voice framing
blocks of the dual-channel voice signal collected by the front-end dual microphones, so as
to achieve the optimal filtering.

Spectral subtraction is one of the effective technologies to enhance the quality of
the voice signal, it has a good noise reduction effect at low SNR, the convergence rate
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and imbalance are affected by step size in LMS adaptive filtering algorithm. This paper
introduces a method to enhance the quality of speech signal based on the combination of
spectral subtraction and variable-step LMS adaptive filtering algorithm, to adjust the step
size by changing the squared term of error, the step size follows the principle of change
after the first fixed, achieves the purpose to improve the convergence rate and reduces the
steady-state error.

As shown in Figure 5, x(t) is the original signal input, y(t) is the output signal of the
system after the adaptive filter, e(t) is the expected response, and N(t) is the noise signal of
the signal.
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The key to adaptive noise filtering is to obtain the best estimate of noise. The filter
parameters obtained from the previous speech frame are used to adjust the control parame-
ters of the latter speech frame, so as to obtain the error function of the system for improving
the SNR. If the reference noise is related to the noise in the signal, the randomness of the
noise can be better offset, and the noise can be completely eliminated. However, when
the reference noise is not correlated with the noise in the signal or the correlation is weak,
the noise cannot be completely cancelled out, and the filtering effect is not obvious. From
Figure 5, we can get:

e(t) = y(t)− d(t) = S(t) + N1(t)− d(t) (20)

Then:
e2(t) = S2(t) + [N1(t)− d(t)]2 + 2[N1(t)− d(t)]S(t) (21)

Equation (21) takes the expectation on both sides of the equal sign to get:

E[e2(t)] = E[s2(t)] + E[N1(t)− d(t)]2 + 2E[(N1(t)− d(t)·S(t)] (22)

Since S(t) is not related to N1(t), and S(t) is not related to N2(t), 2E[(N(t)−d(t)·S(t)] = 0:

E[e2(t)] = E[s2(t)] + E[N1(t)− d(t)]2 (23)

The weight coefficient is adjusted by the LMS adaptive filter to obtain the minimum
point of the nonlinear function E[e2(t)]. When the value of E[e2(t)] in Equation (23) is
minimum, the value of E[N1(t)− d(t)]2 in Equation (23) is also minimum. When the value
of E[s2(m)] does not change, the output of the adaptive filter d(t) is the best estimate of
N1(t), and the system output is:

e(m) = s(t) + N(t)− d(t) (24)

In this way, when the value of d(t) is closest to the value of N(t), the output of the
adaptive LMS filter is e(m) = s(m).
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This paper proposes a speech enhancement algorithm based on post Wiener filtering.
First, the algorithm uses spectral subtraction to perform speech enhancement on the
speech signal of the current sound source, which will obtain acoustic signal containing
autocorrelation noise. Then, the parameters of the post-wiener filter are used to suppress
noise and amplify the target of the sound source signal. Finally, the algorithm fits the
optimal filter. The principal flow chart of the optimization algorithm is shown in Figure 6.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 18 
 

 

ever, when the reference noise is not correlated with the noise in the signal or the correla-
tion is weak, the noise cannot be completely cancelled out, and the filtering effect is not 
obvious. From Figure 5, we can get: 

1e(t)= y(t)-d(t)=S(t)+N (t)-d(t)  (20)

Then: 

2] 2 ]2 2
1 1e (t)= S (t)+[N (t)-d(t) [N (t)-d(t) S(t)+  (21)

Equation (21) takes the expectation on both sides of the equal sign to get: 

2] ]2 2
1 1E[e (t)]= E[s (t)]+E[N (t)-d(t) + 2E[(N (t)-d(t) S(t)  (22)

Since S(t)  is not related to 1N (t) , and S(t)  is not related to 2(N t) , 
] 02E[(N(t) -d(t) S(t) = : 

2]2 2
1E[e (t)]= E[s (t)]+E[N (t)-d(t)  (23)

The weight coefficient is adjusted by the LMS adaptive filter to obtain the minimum 
point of the nonlinear function 2E[e (t)] . When the value of 2E[e (t)]  in Equation (23) is 
minimum, the value of 2]1E[N (t) - d(t)  in Equation (23) is also minimum. When the value 
of E[s2(m)] does not change, the output of the adaptive filter d(t) is the best estimate of 
N1(t), and the system output is: 

e(m)=s(t)+N(t)-d(t) (24)

In this way, when the value of d(t) is closest to the value of N(t), the output of the 
adaptive LMS filter is e(m) = s(m). 

This paper proposes a speech enhancement algorithm based on post Wiener filtering. 
First, the algorithm uses spectral subtraction to perform speech enhancement on the 
speech signal of the current sound source, which will obtain acoustic signal containing 
autocorrelation noise. Then, the parameters of the post-wiener filter are used to suppress 
noise and amplify the target of the sound source signal. Finally, the algorithm fits the 
optimal filter. The principal flow chart of the optimization algorithm is shown in Figure 
6. 

Framing FFT Amplitude 
squared 

Speech enhancement 
based on

 spectral subtraction

( )kx t 2( )kx t

 previous speech 
block index Noise filter parameter 

fitting 

later Speech
 block index 

phase difference Amplitude evolution

2( )kx t′

( )kx t′speech enhancement 
based on post 
Weiner filter

( )x t

ˆ( )x t
( )y t

IFFT

 
Figure 6. Adaptive speech enhancement flow. 

  

Figure 6. Adaptive speech enhancement flow.

5. Experiment Design and Result Analysis

In order to verify the real performance and effectiveness of the algorithm in this paper,
two experiments were designed. Experiment-I verifies the performance of this algorithm in
real sound localization. Selecting some sound source points, we calculate the sound source
position and compare it with the existing sound source localization method (based on the
TDOA algorithm). Experiment-∏ is to verify the effectiveness of the proposed new method
in speech enhancement. We process speech signals in different noise environments and
compare them with other speech enhancement algorithms.

The experimental hardware uses the Allwinner R328 microphone array. Allwinner
R328 relies on the computing ability of the cost-effective dual-core CortexTM-A7 CPU to
provide the best computing ability at the lowest cost. The highly integrated CODEC can
support key voice pick-and-place solutions without external DSP voice chip circuits. As
shown in Figure 7, the Allwinner R328 microphone array has six microphones, including
two digital microphones and four analog microphones. The back of Allwinner R328
microphone array also has four keys to adjust the recording volume and a LED to indicate
that the device is working normally. In the experiment, only two digital microphones were
used for recording. The distance between the two digital microphones is 15 cm, so the
value of d in Equation (2) is 0.2.

When the voice signal is sampled, the two digital microphones on the array are used as
recording devices. The distance between the two microphones is 20 cm, and the sampling
rate is 16 KHz.

The experimental site was chosen as a hall of 10 m × 15 m × 4 m. The early re-
verberation time of the room is calculated to be 15 m through experiments. In living
environment, there are many kinds of noises such as other people talking, air conditioners,
and computer fans.
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5.1. Acoustic Localization Experiment by Dual-Microphone

Firstly, we build a test prototype for the collection of the circular microphone array,
and the programming the development board. In the experiment, the USB interface is used
to connect with the PC, which not only supplies power to the hardware circuit, but also
transmits the processed voice signal to the computer.

To test the dual-microphone sound source localization function, there are other speak-
ers speaking in the laboratory to interfere with the target speaker’s voice signal, while one
audio is also set to play different volume of interference noise (the noise level is divided
into three levels according to the volume of the sound, and the three-level noise interference
is the most serious).

Determining the accuracy of the acoustic azimuth angle measurement, the target
speaker stands at different angle positions 4 m away from the center of the microphone. In
the serial port tool, entering the relevant commands, the development board will record
the target speaker and calculate its azimuth angle. In the actual positioning experiment,
the measurement is repeated five times at each experimental point, and the average value
is taken as the final positioning result of the point.

We then conduct experiments on the accuracy of sound source distance measurement.
Under four noise environments, the target speaker stands at the same angular position
from different distances to the center of the microphone. Then we use the previous method
to perform recording and 3D distance calculation. Similarly, the measurement is repeated
five times at each experimental point, and the average value is taken as the final positioning
result of the point. The experimental results are shown in the Figure 8.

5.2. Speech Enhancement Experiment
5.2.1. Known Noise Simulation Experiment

In the simulation experiment, we will select 20 groups of speech files in a noise-free
scene as clean speech signal. There are 4 kinds of noise in NOISE-92, which are babble,
street, car and train. The SNR of added noise are −5 dB, 0 dB, and 5 dB. The sampling rate
is 16 kHz. The quantization precision is 16 bits.

Perceptual evaluation of speech quality (PESQ) is an objective, full-reference voice
quality assessment method. The PESQ algorithm requires a noisy attenuated signal and an
original reference signal, which can provide an evaluation criterion for speech. The PESQ
score is from −0.5 to 4.5. The higher the score, the better the voice quality.

Table 1 shows the quality value of noisy speech (not enhanced by the enhancement
algorithm), the quality value enhanced by the GCC/AGSC algorithm, and the quality value
after speech enhancement algorithm proposed in this paper. The processing standard of
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the two algorithms is controlled in the same way, and this quality value is the average of
the 20 groups of speech files.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 18 
 

 

Determining the accuracy of the acoustic azimuth angle measurement, the target 
speaker stands at different angle positions 4 m away from the center of the microphone. 
In the serial port tool, entering the relevant commands, the development board will record 
the target speaker and calculate its azimuth angle. In the actual positioning experiment, 
the measurement is repeated five times at each experimental point, and the average value 
is taken as the final positioning result of the point. 

We then conduct experiments on the accuracy of sound source distance measure-
ment. Under four noise environments, the target speaker stands at the same angular po-
sition from different distances to the center of the microphone. Then we use the previous 
method to perform recording and 3D distance calculation. Similarly, the measurement is 
repeated five times at each experimental point, and the average value is taken as the final 
positioning result of the point. The experimental results are shown in the Figure 8. 

  
(a) (b) 

  
(c) (d) 

  

Sensors 2022, 22, x FOR PEER REVIEW 13 of 18 
 

 

 
(e) 

Figure 8. The experiment result of localization experiment: (a) the comparison of azimuth error 
around no-noise; (b) the comparison of azimuth error around I-noise; (c) the comparison of azimuth 
error around II-noise; (d) the comparison of azimuth error around III-noise; (e) distance error 
around noise for this paper. 

5.2. Speech Enhancement Experiment 
5.2.1. Known Noise Simulation Experiment 

In the simulation experiment, we will select 20 groups of speech files in a noise-free 
scene as clean speech signal. There are 4 kinds of noise in NOISE-92, which are babble, 
street, car and train. The SNR of added noise are −5 dB, 0 dB, and 5 dB. The sampling rate 
is 16 kHz. The quantization precision is 16 bits. 

Perceptual evaluation of speech quality (PESQ) is an objective, full-reference voice 
quality assessment method. The PESQ algorithm requires a noisy attenuated signal and 
an original reference signal, which can provide an evaluation criterion for speech. The 
PESQ score is from −0.5 to 4.5. The higher the score, the better the voice quality. 

Table 1 shows the quality value of noisy speech (not enhanced by the enhancement 
algorithm), the quality value enhanced by the GCC/AGSC algorithm, and the quality 
value after speech enhancement algorithm proposed in this paper. The processing stand-
ard of the two algorithms is controlled in the same way, and this quality value is the av-
erage of the 20 groups of speech files. 

Table 1. The comparison of the PESQ value. 

The Type of 
Noise SNR 

The Speech with 
Noise 

GCC-Enhanced 
Speech 

AGSC-Enhanced 
Speech 

The Speech Enhanced by 
the Algorithm in This Paper 

babble 
−5 db 1.38 1.35 1.53 1.74 

0 1.69 1.55 1.59 1.85 
5 db 2.12 1.97 1.98 2.26 

street 
−5 db 1.23 1.15 1.28 1.55 

0 1.72 1.61 1.80 1.96 
5 db 2.21 2.16 2.27 2.29 

car 
−5 db 1.48 1.33 1.46 1.77 

0 1.89 1.67 1.92 1.91 
5 db 2.45 2.44 2.43 2.63 

train 
−5 db 1.27 1.30 1.28 1.46 

0 1.56 1.67 1.66 1.91 
5 db 2.17 2.18 2.15 2.52 

Figure 8. The experiment result of localization experiment: (a) the comparison of azimuth error
around no-noise; (b) the comparison of azimuth error around I-noise; (c) the comparison of azimuth
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Table 1. The comparison of the PESQ value.

The Type of Noise SNR The Speech with
Noise

GCC-Enhanced
Speech

AGSC-Enhanced
Speech

The Speech Enhanced
by the Algorithm in

This Paper

babble
−5 dB 1.38 1.35 1.53 1.74

0 1.69 1.55 1.59 1.85
5 dB 2.12 1.97 1.98 2.26

street
−5 dB 1.23 1.15 1.28 1.55

0 1.72 1.61 1.80 1.96
5 dB 2.21 2.16 2.27 2.29

car
−5 dB 1.48 1.33 1.46 1.77

0 1.89 1.67 1.92 1.91
5 dB 2.45 2.44 2.43 2.63

train
−5 dB 1.27 1.30 1.28 1.46

0 1.56 1.67 1.66 1.91
5 dB 2.17 2.18 2.15 2.52

It can be seen from the table that the algorithm proposed in this paper has a higher
quality value than the noisy speech and GCC/AGSC algorithm under all noise conditions,
which proves that the algorithm proposed in this paper can greatly improve the enhanced
speech quality. We compared the PESQ between the algorithm proposed in this paper and
the GCC/AGSC algorithm to intuitively show the improvement of PESQ. From Table 1, it
is clear that the PESQ are increased by the algorithm proposed in this paper is improved
under all three kinds of SNR conditions. Except for babble, the lower the signal noise
ratio, the higher the quality value. The algorithm proposed herein is more advantageous to
improve the quality of the speech under low signal noise ratio.

5.2.2. Unknown Noise Reality Simulation Experiment

In the speech enhancement experiment, the acoustic files in the first-level noise and the
third-level noise environment are selected to perform subsequent enhancement processing
on the acoustic signal. According to the foregoing, the azimuth angle information of the
sound source is used as a feature vector for acoustic signal separation. The voice system
will only amplify the voice signal from this position and suppress other signals to achieve
voice enhancement. Finally, the advantages of the algorithm in this paper are demonstrated
through comparative experiments.

This paper uses the experimental data to test the technical solution in the laboratory
and compares speech enhancement effect of the algorithm in this paper with GCC algorithm
and AGSC algorithm. Figure 9 shows the high-noisy experimental speech and the output
results of the two algorithms. Figure 10 shows the low-noisy experimental speech and the
output results of the two algorithms.

From the comparison of the spectrogram, it can be found that when the GCC algorithm
and the AGSC algorithm enhance the dual-channel speech signal, there will be auto-
correlation noise and speech distortion; while the speech enhancement algorithm in this
paper has neither obvious auto-correlation noise nor speech distortion. In addition, from
the speech waveform information, the GCC algorithm and the AGSC algorithm have no
accuracy of the sound source azimuth estimation with low SNR of the acoustic signal, which
affects the speech enhancement performance. While the speech enhancement algorithm
in this paper has better effect of background noise reduction and acoustic source target
signal amplification.
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Finally, in order to verify the comprehensibility of the corpus enhanced by the algo-
rithm in this paper, eight speech files in the experiment were sequentially used for speech
recognition by the speech transcribing module of iFLYTEK. In each speech file, the speaker
said a total of 52 Chinese characters. The correct rate of speech recognition for each corpus
is shown in Table 2.

Table 2. The correct rate of speech recognition.

Type Test Environment Correct Rate (%)

Original speech file low-noise 67.31
high-noise 57.69

GCC-enhanced speech file low-noise 80.77
high-noise 73.77

AGSC-enhanced speech file low-noise 90.38
high-noise 78.85

the speech file enhanced by
the algorithm in this paper

low-noise 100
high-noise 98.77
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Figure 9. The results of speech enhancement comparison experiment in high-noise: (a) Original
speech wav; (b) Original speech spectrogram; (c) GCC-enhanced speech wave; (d) GCC-enhanced
speech spectrogram; (e) AGSC-enhanced speech wave; (f) AGSC-enhanced speech spectrogram;
(g) the speech wave enhanced by the algorithm in this paper; (h) the speech spectrogram enhanced
by the algorithm in this paper.
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the speech waveform information, the GCC algorithm and the AGSC algorithm have no 
accuracy of the sound source azimuth estimation with low SNR of the acoustic signal, 

Figure 10. The results of speech enhancement comparison experiment in low-noise: (a) Original
speech wave; (b) Original speech spectrogram; (c) GCC-enhanced speech wave; (d) GCC-enhanced
speech spectrogram; (e) AGSC-enhanced speech wave; (f) AGSC-enhanced speech spectrogram;
(g) the speech wave enhanced by the algorithm in this paper; (h) the speech spectrogram enhanced
by the algorithm in this paper.

6. Conclusions

This paper proposes an improved sound source localization and speech enhancement
algorithm. By introducing the maximum controllable response power, based on the tradi-
tional time delay estimation, combined with the energy attenuation estimation, only two
microphones are needed to complete the position settlement of the sound source in the
three-dimensional space, which simplifies the design complexity and reduce cost of the
microphone array. It also improves the accuracy of the sound source localization algorithm.
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Then the results of sound source localization are used to realize speech separation based on
the azimuth of the target speaker, and complete speech enhancement based on adaptive
filtering, and output a corpus with a higher SNR. Finally, related experiments are completed
in combination with actual scenarios and hardware construction. The experimental results
show that the dual-microphone-based sound source localization and speech enhancement
algorithm proposed in this paper has extremely high accuracy and robustness. Compared
with other speech enhancement algorithm, the corpus enhanced by the algorithm in this
paper has a higher SNR.
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