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Abstract: Polarization (POL) navigation is inspired by insects’ behavior of precepting celestial
polarization patterns to orient themselves. It has the advantages of being autonomous and having no
accumulative error, which allows it to be used to correct the errors of the inertial navigation system
(INS). The integrated navigation system of the POL-based solar vector with INS is capable of 3D
attitude determination. However, the commonly used POL-based integrated navigation system
generally implements the attitude update procedure without considering the performance difference
with different magnitudes of the angles between the solar-vector and body-axes of the platform
(S-B angles). When one of the S-B angles is small enough, the estimated accuracy of the attitude
angle by the INS/POL is worse than that of the strapdown inertial navigation system. To minimize
the negative impact of POL in this situation, an attitude angular adaptive partial feedback method
is proposed. The S-B angles are used to construct a partial feedback factor matrix to adaptively
adjust the degree of error correction for INS. The results of simulation and real-world experiments
demonstrate that the proposed method can improve the accuracy of 3D attitude estimation compared
with the conventional all-feedback method for small S-B angles especially for yaw angle estimation.

Keywords: polarization navigation; the solar vector; 3D attitude estimation; partial feedback

1. Introduction

Polarization (POL) navigation inspired by insects has been widely investigated due to
its full-autonomy and lack of risk of cumulative errors. The celestial polarization pattern
(CPP) is formed under the effect of Rayleigh scattering of the atmosphere on the unpolarized
sunlight. It contains geospatial information of the sun, the predictable feature of which
shows the potential for serving as a natural compass. Many animals can detect the CPP
to orient themselves [1,2]. The bioinspired POL navigation can be used to realize heading
estimation [3–5] and full-autonomous positioning aided by other navigation methods [6–8].

However, the navigational information provided by CPP is incomplete. Generally,
only the yaw angle is obtained from polarization measurements. It has been proved that
the Rayleigh polarization model cannot determine 3D attitude alone in real-time [9]. To
provide more polarization navigation, generally, the POL navigation is often integrated
with an inertial navigation system (INS) to correct the errors of INS [10,11]. There are three
commonly used strategies for integrating POL navigation with INS, which are briefly listed
in Table 1.
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Table 1. A review of current INS/POL integrated navigation strategies.

Integrated Strategies Description

Measurement modeling based on a single
E-vector [12,13]

Measurement equation is established by taking
advantage of the vertical spatial relationship

between E-vector and the solar vector.

Extracting yaw angle from POL measurements

The yaw angle can be calculated from the
AoP [11,14] or the solar meridian [15,16]

extracted from the AoP pattern image. Then
the POL-based yaw is outputted directly or
used for measurement modeling with INS.

Based on the solar vector calculated from
polarization measurements [17,18]

The solar vector in the body coordinate system
is calculated by two or more E-vectors in

different view directions [19,20]. Then, the
solar vector-based measurement equation can

be established.

In the first strategy, the angle of polarization (AoP) obtained by a monocular polar-
ization unit is used to calculate the E-vector in the direction of the observed point on the
celestial sphere. Subsequently, the E-vector is used for measurement modeling based on
the vertical relationship with the solar vector. Although the E-vector is a 3D unit vector
in form, the three elements of the vector are calculated from a single scalar, i.e., AoP. So
the navigation information contained in one E-vector is limited. In the second strategy, the
yaw angle is calculated by POL measurements aided by extra navigation means, such as
inertial device for horizontal angles. Therefore, POL is often used to aid INS only for yaw
estimation for the first two integrated strategies. Although the POL cannot determinate 3D
attitude individually, the third strategy of the solar vector-based POL navigation can aid
INS for 3D attitude angles estimation. It is due to the two uncorrelated scalars, the solar az-
imuth and zenith, contained in the solar vector that provides more navigation information.
Herein, the third strategy of the solar vector-based integrated model is adopted.

Regarding the navigation mechanism, the third strategy of the solar vector-based
integrated model is similar to that of the celestial navigation model based on starlight vector
integrated with INS. Generally, multiple stars are used for 3D attitude determination [21,22].
Different from the multiple-star-based celestial navigation, only one solar vector can be
obtained in the POL navigation. The single-star-based celestial navigation integrated with
INS was investigated [23,24]. One limitation of the integrated navigation model is the low
accuracies 3D attitude determination which need to be improved by external navigation
sensors. It can be illustrated by an extreme case when the sun is on the zenith point. The
single-scattering Rayleigh polarization model cannot be used to yaw determination as
shown in Figure 1a. In this extreme case, POL cannot aid INS for yaw estimation in the
third integrated strategy. As shown in Figure 1b, the angles between the solar-vector and
the body-axes of the platform, i.e., axis x, y, and z, (S-B angles) denoted as γx, γy, and
γz, respectively. In this extreme case, γz is nearly zero. Accordingly, a hypothesis is put
forward that there is a relationship between γz and the yaw correlation ability of POL
for INS.

The yaw correction capability of the POL-based solar vector is considered to originate
from the projection vector of the solar vector (as shown in Figure 1b) on the XOY-plane
in the body frame (b-frame). The relative rotation according to the z-axis between the
projection vector and the vehicle provides the change of yaw, which is used to correct the
drifting errors of INS. In subsequence, the angle error of the projection vector affects the
yaw estimation accuracy directly. Under a constant measurement error of each component
of the solar vector, the angle error of the projection vector is influenced by the length of
the projection that depends on the angle between the solar vector and the z-axis, i.e., γz. A
large γz leads to a long projection that further contributes improving the yaw estimation
accuracy. On the contrary, when the sun is near the zenith, the projection decreases and
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approaches zero (see Figure 1a), which impairs the accuracy of the projection vector. Then
the correction capability of POL is decreased. More generally, this phenomenon also exists
in the estimation of two horizontal attitude angles. For the 3D attitude determination,
the S-B angles will possibly affect the corresponding attitude estimation accuracy. Then,
minimizing the negative effect of polarization measurement with small S-B angles will
improve the performance of INS/POL under varying scenarios.
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In the conventional all-feedback method, some states of the INS/POL integrated
navigation filter are fed back to INS completely to correct its drift errors [17,18]. When one
of the S-B angles is small, low-accuracy projection vector results in inaccurate correction
information, which eventually leads to an even larger error than that using INS alone.
Therefore, in the condition of small S-B angles, the attitude estimation should not be fed
back to INS fully. Inspired by a partial feedback principle to avoid the negative effect
of severe serrated output by an all-feedback method in an inversed strapdown inertial
navigation system (SINS) algorithm [25], an attitude angular partial feedback method is
proposed to address this problem. Herein, to minimize the negative effect of POL in the
condition of small S-B angles, the states of misalignment angles estimated by the filter
are fed back to INS partially. The partial feedback strategy can be designed based on the
magnitudes of the S-B angle.

In this work, the solar vector-based POL navigation integrated with INS is adopted
for 3D attitude estimation. To improve the 3D attitude angles estimation accuracy in the
situation of small S-B angles, an adaptive partial feedback (APF) method is proposed. S-B
angles are used as the parameters of partial feedback factors to adjust the correction degree
for INS. A series of simulations and real-world experiments were conducted to analyze
the performance of the proposed method. The results demonstrate that in the condition of
small S-B angles, the negative effect of POL measurement for INS/POL system is reduced,
especially for yaw estimation.

The remainder of this paper is organized as follows: In Section 2, the solar vector-based
INS/POL integrated navigation model is established. Section 3 analyzes the limitations of
the conventional all-feedback method through a group of simulation experiments, based
on which the adaptive partial feedback method is proposed. Then, a series of simulation
experiments were conducted to validate the effectiveness of the proposed method in
Section 4. Furthermore, the performance in the realistic scenario of the proposed method is
evaluated based on a real-world experiment in Section 5. Finally, conclusions are drawn
in Section 6.

For the convenience of the readers, the main acronyms used in the paper are described
in Table 2:
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Table 2. Nomenclature.

Acronyms Definitions

POL Polarization

INS Inertial Navigation System

S-B angles the angles between the Solar-vector and Body-axes of the platform

CPP Celestial Polarization Pattern

RSN the Ratio of Signal to Noise

SINS Strapdown Inertial Navigation System

APF Adaptive Partial Feedback

IMU Inertial Measurement Unit

PAHRS Polarization-based Attitude and Heading Reference System

RMSE Root-Mean-Square Errors

2. INS/POL Integrated Navigation System Modeling

Both the all-feedback method and APF are based on the solar vector-based INS/POL
integrated navigation model which can be used for 3D attitude determination. To obtain
the solar vector based on POL, at least two polarization E-vectors from different directions
are required. The solar vector is calculated based on a set of compound eye polarization
sensor. It is equipped with IMU to integrate the bioinspired polarization-based attitude
and heading reference system (PAHRS), which is used in this paper. The solar vector
can be calculated with the polarization E-vectors measured from the compound eye units.
In the following section, the overview of PAHRS and solar vector calculation are first
introduced, followed by the analysis of the conventional all-feedback methods’ limits based
on simulated experiments.

2.1. The Solar Vector Calculation Based on the Compound Eye Polarization Sensor

The compound eye polarization sensor is composed of nine monocular polarization
units to acquire polarization information from nine different points on the celestial sphere.
IMU is mounted inside PAHRS. The features of PAHRS are given in Table 3 (for more about
PAHRS see Ref [26]).

Table 3. The PAHRS features.

Sensors Specifications

Gyroscope Bias stability: 2.5◦/h
Random walk: 0.15◦/

√
h

Accelerometer
Bias stability: 3.6 µg

Random walk: 0.012 m/s/
√

h

Polarization sensor AoP accuracy: 0.15◦ (1 σ)

The coordinate frames used in this work are defined as follows: the navigation frame
(n-frame) which selects the geographic frame (E-N-U frame); the calculation navigation
frame of INS (n’-frame); the body frame (b-frame) of PAHRS; and the model frame (mi-
frame, i = 1, 2, . . . , 9) of each monocular polarization unit. The latter two frames are shown
in Figure 2a.
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The three attitude angles, pitch (θ), roll (ϕ), and yaw (ψ), are defined to form the
attitude transfer matrix Cb

n, which represents the direction cosine matrix from n-frame
and b-frame. The Cb

n is expressed as Cb
n = Rx(θ)Ry(ϕ)Rz(ψ), where Rx(θ), Ry(ϕ), and

Rz(ψ) [12] are the rotation matrix of pitch, roll, and yaw, which are shown as follows:

Rx(θ) =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

, Ry(α) =

 cos α 0 − sin α
0 1 0

sin α 0 cos α

, Rz(ψ) =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (1)

The solar vector in b-frame (sb) calculated by the compound eye polarization sensor,
is used to establish the measurement equation. Figure 3 shows the relationship of the main
vectors used in solar vector calculation. The polarization angle measured by any monocular
polarization unit is represented by αi. The E-vector in mi -frame can be described by

pmi =
[

cos αi sin αi 0
]T (2)
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Then, the E-vector in b-frame is given by pb
i = Cb

mi
pmi , where Cb

mi
denotes the in-

stallation matrix of the monocular polarization unit, the calibration of which is detailed
in Ref [26]. According to the single-scattering Rayleigh based theory, all E-vectors are
orthogonal to the solar vector in CPP. The orthogonal relationship is also valid in b-frame,
i.e., pm

i ·sb = 0. However, a vector that meets the above formula requirement is not just sb,
but also the anti-the solar vector −sb. The ambiguous solar vector is denoted as sb∗ (sb or
−sb). Then the nine E-vectors were represented as

E =
[

pb
1 pb

2 · · · pb
9
]

(3)

As sb∗ is a unit vector, it can be estimated by minimizing the deviation as
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L
(

sb∗, λ
)
= sb∗TEETsb∗ − λ

(∥∥∥sb∗
∥∥∥− 1

)
(4)

∂L/∂sb∗ = 0 lead to
λsb∗ = EETsb∗ (5)

Thus, sb∗ is the eigenvector of the matrix
(
EET) corresponding to the minimum

eigenvalue λmin [19,27].
The ambiguousness of the solar vector is eliminated by the obtuse angle between the

solar vector and gravity vector as

sb = sign
(

sn·gn

sb·gb

)
sb∗ (6)

where, gn is the gravity vector in n-frame; sn is the solar vector in n-frame that is obtained
by solar ephemeris [28] with local position and time; and gb is gravity vector in b-frame
that is calculated by the accelerometer in INS. The black dot (·) means dot product of
two vectors.

2.2. Integrated Navigation System Modeling

The 15-state vector of INS/POL is given by X = [ φT δvT δPT εT ∇T ]
T

, in

which φ = [ φE φN φU ]
T are misalignment angles; δv = [ δvE δvN δvU ]

T and

δP = [ δL δλ δh ]
T are velocity and position errors, respectively; ε = [ εE εN εU ]

T

is gyroscope drift rate; and∇ = [ ∇E ∇N ∇U ]
T is accelerometer bias. Then, according

to the INS error model, the error state equation can be expressed as [29]:
.

X = ΦX + W (7)

with,

Φ =

[
ΦN ΦS
06×9 06×6

]
, W = [ ωεx ωεy ωεz ω∇x ω∇y ω∇z 01×9 ]

T
,

where ΦN is the coefficient matrix related to the three misalignment angles, 3D velocities,
and positions of INS. ΦN and ΦS [29] are listed in the supplementary file. ωεx , ωεy , and ωεz

are the gyro random walk, and ω∇x , ω∇y , and ω∇z are the accelerometer random walk.
Considering the misalignment between n-frame and n’-frame, the solar vectors in

n’-frame can be expressed in n-frame as

sn′ = Cn′
n sn ≈ [I− (φ×)]sn. (8)

Then we have
sn′ − sn = (sn×)φ. (9)

Taking into account the measurement noise of the solar vector δs, the calculated
solar vector in n’-frame can also be modeled as sn′ = Cn′

b

(
s̃b − δs

)
, where s̃b repre-

sents the calculated solar vector obtained from the compound eye polarization sensor
by Equations (2)–(6).

Letting Z = Cn′
b s̃b− sn and V = Cn′

b δs, then the POL measurement equation is given as

Z = HX + V, (10)

in which H =
[
(sn×) O3×12

]
. Thus, the polarization measurement model is established.

3. Adaptive Partial Feedback Method

The limitations of the conventional all-feedback method are investigated through a
series of simulation experiments. To address the limitations of the all-feedback method for
attitude estimation, an attitude angular APF method is proposed. The negative effect of
POL measurement is minimized by partial feedback for INS correction. S-B angles are used
in the APF method to adaptively adjust the feedback factors.
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3.1. Performance Analysis of the Conventional All-Feedback Method

In the conventional all-feedback correction, to fuse information from both INS dynamic
and POL-based measurement models, the Kalman filter-based method [30] is used in this
paper. The continuous integrated system of Equations (6) and (9) are firstly transformed
into the following discrete form:

Xk = Φk,k−1Xk−1 + Wk−1 (11)

Zk = HkXk + VK (12)

where Wk−1 ∼ N(0, Qk−1) and VK ∼ N(0, Rk−1) denote the zero-mean white Gaussian
system noise and measurement noise, respectively. Then the Kalman filter can be recursively
implemented in the following two steps:

• Time Update

X̂k/k−1 = Φk/k−1Xk−1 (13)

Pk/k−1 = Φk,k−1Pk−1ΦT
k,k−1 + Qk−1 (14)

• Measurement Update

X̂k = Xk/k−1 + Kk
(
Zk −HkX̂k/k−1

)
(15)

Kk = Pk/k−1HT
k

(
HkPk/k−1HT

k + Rk

)−1
(16)

Pk =
(

P−1
k/k−1 + PT

k R−1
k Hk

)−1
(17)

where X̂k/k−1 and Pk/k−1 represent the predicted state vector and its associated covariance
matrix, respectively; X̂k and Pk denote the estimated state and its associated covariance
matrix, respectively; and Kk is the Kalman gain.

In the all-feedback method of INS/POL, the first three states estimated by the Kalman
filter are completely fed back to INS for the drift errors correction, then the initial values of
the states for the next time are set to be zero. The all-feedback strategy is expressed as{

φk = φ̂k
φ̂k+1 = 03×3

(18)

A group of simulation experiments under different γz values were conducted to
analyze the inadequacy of the all-feedback strategy of the INS/POL system. In the following
section, the analysis of yaw estimation is given for instance. The simulation experiments
were designed at a fixed position without translation motion. The γz is adjusted by
configuring the solar vector to point in a certain direction in the condition that only the
yaw changes. Each experiment in this group lasts 41 min (standing for 1 min then rotating
for 40 min). The solar vector is set by adjusting the time. During each experiment period,
only the yaw changes continuously from 203.86◦ to 253.86◦, with the horizontal attitude
remaining constant. Despite the solar vector changes during the 41 min, this change
is negligibly small. The details of simulation assumptions are shown in Table 4. The
simulation sensor parameters involved in the simulations are shown in Table 5.

The simulation results are shown in Figure 4. The estimation accuracy drops greatly
as the decreasing of γz. In the case of the small γz below 15◦, the yaw estimation error is
even worse than that of SINS. It indicates that the POL measurement of wide γz can correct
INS effectively. The POL measurement of small γz, however, has a negative correlation for
INS. The results illustrate that the angle γz is able to reflect the correction capability of the
POL measurement for INS.
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Table 4. Simulation assumptions for evaluating yaw estimation.

Nominal γz /◦ Time Interval Date and Location Solar Zenith or Real γz
Min~Max (Mean)/◦

0 11:37:30–12:18:30

1 June 2020
20◦ N
120◦ E

2.11~5.25 (3.34)

15 12:39:30–13:20:30 9.93~19.37 (14.64)

30 13:43:30–14:44:30 24.69~34.17 (29.44)

45 14:49:00–15:30:00 39.83~49.26 (44.55)

60 15:54:30–16:38:30 54.86~64.17 (59.52)

75 17:01:30–17:42:30 70.02~79.11 (74.58)

90 18:12:00–18:53:00 85.50~94.41 (89.69)

Table 5. Sensor parameters for simulation.

Sensors Specifications Frequency

INS

gyroscope
Bias stability: 0.2◦/s

20 Hz
Random walk: 0.01◦/

√
s

accelerometer
Bias stability: 1.6 × 103 µg

Random walk: 100 µg

Polarization sensor
based solar tracker

Solar zenith
Constant error: 1◦

1/3 Hz
Random error: 0.3◦

Solar azimuth
Constant error: 0.5◦

Random error: 0.3◦
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3.2. Adaptive Partial Feedback Strategy Based on S-B Angles

To address the low accuracy of attitude estimation of INS/POL based on the all-
feedback method on the condition of small S-B angles, the states of misalignment angles
estimation are fed back to INS partially. The residual of the state estimation after partial
feedback is treated as the initial state value of the filter for the next time. The partial
feedback strategy is illustrated in Figure 5.
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The feedback factor matrix is represented as w. As the polarization measurement
equation is only used for estimating the three misalignment angles, the feedback factor
matrix w is set as a 3 × 3 diagonal matrix. Then the partial feedback strategy can be
expressed as {

φk = wφ̂k
φ̂k+1 = (I−w)φ̂k

(19)

in which w =

 wx 0 0
0 wy 0
0 0 wz

, where wx, wy, and wz are the feedback factors for φE, φN ,

and φU , respectively. They reflect the degree of correction for three attitude angles, i.e.,
pitch, roll, and yaw. Actually, the three factors depend on the solar vector measurement
noise, the performance of INS, the motion duration in a certain S-B angle, etc. To construct
an appropriate form for the factors, a simplified relationship between S-B angles and three
factors is considered in this paper:

wx = 1
2.01 (tanh(10× (sin γx − 0.6)) + 1.01)

wy =
sin γy+0.01

1+0.01

wz =
1
2 (tanh(10× (sin γz − 0.3)) + 1)

(20)

The S-B angles—dependent feedback factors as expressed by Equation (20) are shown
in Figure 6a. The three feedback factors are determined by data fitting based on simulation.
The results of all-feedback method of different S-B angles show the relationship between the
S-B angles and the correction capability of the solar vector for INS. In order to determine the
factor wz, which directly influences the yaw estimation accuracy, the simulation results of
yaw estimation by all-feedback method in different γz are analyzed. As shown in Figure 6a,
there is a steep fall of the yaw estimation error depending on γz in the simulation results of
INS/POL all-feedback method. A function such as the activation function can be adopted
to establish the relationship between the γz and wz. Here, the hyperbolic tangent function,
y = tanh(x), is selected. The coefficient 10 is introduced to increase the slope near the
mutational site. The range of the hyperbolic tangent function is from −1 to 1, but the
feedback factor should be from 0 to 1. Then, the constant 1 and coefficient 1

2 are used to
modify the function.

wx is determined in a similar strategy. It differs from the wz in that its constant is 1.01
and the coefficient is 1

2.01 . It is meant to make the minimum value of wx is a small value
but not zero. The wy formation is designed as in Equation (11) due to the slow-changing
curve of the roll estimation error, which has a linear relationship with sin γy. More details
about the simulation results of pitch estimation error based on INS/POL all-feedback under
different can be seen in Figure S1 in the supplementary file.
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between the improvement degree and zγ  in the range around 15zγ = ° , a smaller step in the zγ  
range from 2° to 20° is selected for the simulation condition as shown in Figure 7. The error drops 
at 4zγ = ° , trends to easing from 8zγ = ° , and becomes smaller than SINS error (4.48°) from 

10zγ = °  (3.30°), and tend to decrease slowly. Thus, when zγ  is larger than 10°, POL can provide 
effective correction for INS. Around this point, 0.3 is selected by trial-and-error simulation experi-
ments. 

Figure 6. Three attitude feedback factors (a) and estimation errors (b) against different S-B angles.
The blue and gray dash lines in (b) show the transition points of the yaw and pitch estimation error
curves against S-B angles, respectively. It can be seen in Figure 6b that the steep fall of the yaw
estimation error of the all-feedback method occurs at γz = 15◦. To further analyze the relationship
between the improvement degree and γz in the range around γz = 15◦, a smaller step in the γz

range from 2◦ to 20◦ is selected for the simulation condition as shown in Figure 7. The error drops at
γz = 4◦, trends to easing from γz = 8◦, and becomes smaller than SINS error (4.48◦) from γz = 10◦

(3.30◦), and tend to decrease slowly. Thus, when γz is larger than 10◦, POL can provide effective
correction for INS. Around this point, 0.3 is selected by trial-and-error simulation experiments.

Therefore, the attitude angular adaptive partial feedback model is established to
connect the S-B angles and state correction. When the three S-B angles are large enough,
the partial feedback factor matrix w approaches a 3× 3 identity matrix I, and the AFP is
reduced to the conventional all-feedback method.
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4. Simulation

In this section, some series of simulation experiments are performed to verify the
superiority of the APF method. The attitude estimation results of APF and the all-feedback
method are compared using a series of simulated static data of different S-B angles. While
focusing on the yaw estimation on the condition small γz, a dynamic simulation experiment
is designed.

4.1. Attitude Angle Estimation Analysis Separately with Simulated Static Data

To evaluate the effectiveness of APF for the three attitude angles separately, three
groups of static expe γz riments were designed and carried out. In each group of experi-
ments, one of the three S-B angles is fixed at a certain value by setting the angle between
the solar vector and the corresponding platform body axis. The first group of simulation
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experiments are directing toward evaluating yaw estimation by APF under different γz.
The simulation condition is the same as the statement in Section 3.1. The yaw and attitude
curves and errors are shown in Figures 8 and 9, respectively. Here we compare the results
of the proposed APF method with those of the conventional all-feedback method. The top
row of Figure 8 shows yaw estimations on the conditions of different γz from 0◦ to 90◦,
and the middle and bottom rows illustrate pitch and roll estimations in the corresponding
experiment, respectively.
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Both the proposed APF and the conventional all-feedback are proved to be capable
of estimating 3D attitude correction for INS based on the solar vector-based INS/POL
integrated navigation model. It can be seen from the yaw curves that when γz is below
15◦, APF can considerably increase the accuracy of yaw estimation compared with the all-
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feedback method. In particular, when γz is near zero, the root-mean-square errors (RMSE)
of the estimation by APF and the all-feedback are 4.95◦ and 19.94◦, respectively. Compared
with the all-feedback method, APF improves the accuracy by 68.95%. The yaw estimation
error decreases with the increase of γz and tends to be the same as that of the all-feedback
method. This similarity is due to the feedback factor of yaw wz approaching 1 gradually as
the γz increases. This group of simulation experiments show that, in the condition of small
γz, APF boosts the yaw estimation accuracy and maintains the estimation accuracies of the
horizontal attitude angles at the same time.

Despite the performance improvement of APF, the accuracy for small γz is still worse
than that for large γz. This trend also appears in the pitch and roll estimations as shown
in Figure 9b,c. The light blue columns denote the mean values of γx and γy during
each experiment. The horizontal attitude angle errors increase as the S-B angles decrease.
Another two groups of simulation experiments of pitch and roll estimations when the γx
and γy change, respectively, were performed. The results are briefly shown in Figure 10.
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Figure 10. Pitch (a) and roll (b) estimation errors for different γx and γy, respectively.

In the two groups of simulation experiments, the solar vector is fixed and the S-B
angles are set by altering the initial yaw. The details of simulation assumptions and results
are shown in Tables S1 and S2, and Figures S2–S5 in the supplementary file, respectively. As
shown in Figure 9a, for the pitch estimation results, the accuracy of AFP is better than the
all-feedback method, especially for small γx. When γx approaches zero, the pitch estimation
errors (RMSE) of AFP and the all-feedback are 2.67◦ and 3.62◦. The improvement of AFP
reaches 26.24%. Compared with yaw estimation, however, the improvement of APF for
pitch is less. While for roll estimation, the improvement of APF is much less. The roll
estimation errors of these two methods (AFP is 2.35◦ and all-feedback method is 2.39◦)
are almost equivalent. From the results, it is clear that for the small S-B angles, the APF
method can improve 3D attitude estimation accuracy with varying percentages. Yaw has
the highest improvement, followed by the pitch.

The difference of the improvement degree for the three attitude angles is possibly
sought to be the couple between the three attitude angles. The APF method is a simplifica-
tion by using three partial feedback factors to characterize the correction capability of the
solar vector for INS. The complex coupling relationship in the model is ignored.



Sensors 2022, 22, 710 13 of 17

4.2. Yaw Estimation under Small γz with Simulated Dynamic Data

It has been shown above that the improvement of yaw estimation by APF is the most
significant. Then to further verify the dynamic property of APF for yaw estimation, a
dynamic simulation experiment is designed. The sensors’ parameters are the same as the
static experiments. A figure-eight trajectory at noon time from 11:30 to 12:51 when the sun
is near the zenith is simulated, as shown in Figure 11. As the consequence of the solar
motion, γz is not a constant but remains at a small value near 10◦ during this period, as the
purple line in Figure 12b shows.
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Figure 12. Attitude angle estimation and error curves of dynamic simulation.

The yaw, pitch, and roll curves obtained by three methods during the dynamic progress
are shown in Figure 12 and the error statistics (RMSE) are listed in Table 6 For small γz,
the RMSE of the conventional all-feedback method for INS/POL is 8.55◦, larger than the
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7.72◦ obtained by SINS, which indicates that it cannot provide reliable yaw estimation in
the dynamic experiment. The POL measurement even plays a negative effect for INS in
this situation. By contrast, the RMSE of yaw estimation of APF is 4.84◦, which is improved
by about 43.39%. At the same time, the APF method offers comparable pitch and roll
estimation accuracies compared with the all-feedback method.

Table 6. Attitude estimation error statistics of dynamic simulation.

Methods
RMSE (◦)

Yaw Pitch Roll

SINS 7.72 3.24 2.74
APF 4.84 0.86 0.56

All-feedback 8.55 0.80 0.39

As can be seen from Figure 12b there is still error accumulated over time for APF. It
should be noted that, the original aim of the proposed APF method is to reduce the negative
effect of POL measurement for INS/POL system in the condition of small S-B angles, but
not able to improve the accuracy of small S-B angles to the same level of large S-B angles.

5. Real-World Experiment

To verify the yaw estimation performance in the realistic scenario by the APF method,
an experiment was designed to be performed at noon in summer when the solar altitude is
high, which guarantees γz being small enough. The experimental platform was set up, as
shown in Figure 13. The reference system is a set of INS/GNSS integrated system (INS900,
produced by FOGSINS) equipped with a fiber optic gyroscope and double-antenna GPS. It
can provide a high-precision reference with 0.01◦ for yaw and 0.005◦ for horizontal attitude.
The PAHRS and reference system were mounted on a reference platform. The experiment
was performed in a wide-vision square in Licang Qingdao (36.175◦ N, 120.482◦ E) from
13:11 to 13:22 (UTC + 8) on July 14, 2021. It was a clear blue sky to obtain reliable celes-
tial polarization information. The ground mobile platform moved around a rectangular
trajectory as shown in Figure 13b.
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Figure 13. The real-world experiment setup (a) and motion trajectory (b).

Figure 14 shows the 3D attitude angles estimation and error curves of the real-world
experiment. The error statistics are listed in Table 7. The purple line in Figure 13b shows
the γz during the experiment period. It fluctuates around 20◦. The results indicate that
the yaw estimation accuracy of APF is improved compared with the all-feedback method
without losing horizontal attitude angles accuracy. The improvement of yaw estimation
accuracy of APF compared with the all-feedback method reaches 18.73% with the RMSE
of the two methods being 2.82◦ and 3.47◦, respectively. It can be seen that the percentage
improvement achieved by APF for real-world experiment is lower than that for the dynamic
simulation experiment, which can be explained by larger γz in real-world experiment. In
general, this experiment confirms that the proposed APF method can improve the yaw
estimation accuracy in the small γz condition.
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Figure 14. Attitude angle estimation and error curves of real-world experiment.

Table 7. Attitude estimation error statistics of real-world experiment.

Methods
RMSE (◦)

Yaw Pitch Roll

SINS 2.20 5.02 2.15
APF 2.84 2.53 3.81

All-feedback 3.47 2.54 3.79

6. Conclusions

An attitude angular APF method is proposed to reduce the negative effect of po-
larization measurement with small S-B angles on the INS/POL integrated system. The
INS/POL integrated navigation model is established based on the solar vector for 3D atti-
tude determination. In contrast to the conventional all-feedback method, the APF method
is able to restrain the negative effect of polarization measurement with small S-B angles
by partially feeding back the low-accuracy misalignment angle estimations. To adaptively
adjust the correction degree of POL navigation for INS, a feedback factor matrix based
on S-B angles was designed. A series of simulation results proved that the APF method
can improve 3D attitudes estimation accuracy to varying degrees, in which yaw makes
the best. Focusing on the yaw estimation, a real-world experiment was conducted and
further verified that the APF can improve yaw estimation accuracy by 18.16% compared
with the conventional all-feedback method in the condition that γz is around 20◦. This
method is a model simplification without considering the coupling of three attitude angles.
Future work will optimize the determination strategy of the partial feedback factor matrix
by considering the coupling relationship between the three attitude angles.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390
/s22030710/s1, Table S1: Simulation assumptions for evaluating pitch estimation. Table S2: Simulation
assumptions for evaluating roll estimation. Figure S1: The pitch estimation error of INS/POL for
different γx in the range from 22◦ to 46◦. Figure S2: 3D attitude angles estimation curves for different
γx. Figure S3: 3D attitude errors for different γx. Figure S4: 3D attitude angle estimation curves for
different γy. Figure S5. 3D attitude errors for different γy. More details of the state transition matrix
of the INS error model Φ.
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