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Abstract: Decoupled data and control planes in Software Defined Networks (SDN) allow them to
handle an increasing number of threats by limiting harmful network links at the switching stage. As
storage, high-end servers, and network devices, Network Function Virtualization (NFV) is designed
to replace purpose-built network elements with VNFs (Virtualized Network Functions). A Software
Defined Network Function Virtualization (SDNFV) network is designed in this paper to boost network
performance. Stateful firewall services are deployed as VNFs in the SDN network in this article to
offer security and boost network scalability. The SDN controller’s role is to develop a set of guidelines
and rules to avoid hazardous network connectivity. Intruder assaults that employ numerous socket
addresses cannot be adequately protected by these strategies. Machine learning algorithms are
trained using traditional network threat intelligence data to identify potentially malicious linkages
and probable attack targets. Based on conventional network data (DT), Bayesian Network (BayesNet),
Naive-Bayes, C4.5, and Decision Table (DT) algorithms are used to predict the target host that will be
attacked. The experimental results shows that the Bayesian Network algorithm achieved an average
prediction accuracy of 92.87%, Native–Bayes Algorithm achieved an average prediction accuracy of
87.81%, C4.5 Algorithm achieved an average prediction accuracy of 84.92%, and the Decision Tree
algorithm achieved an average prediction accuracy of 83.18%. There were 451 k login attempts from
178 different countries, with over 70 k source IP addresses and 40 k source port addresses recorded in
a large dataset from nine honeypot servers.

Keywords: software defined network; network function virtualization; firewall; SDNFV; attack
prediction; machine learning; decision table; bayesian network

1. Introduction

In conventional networks, network elements are tightly coupled with both data and
control planes. There is always one control plane for one data plane in any network device.
The management plane acts as an interface to monitor and manage the activities of the
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network. The huge rise in the amount of Internet-connected systems has led to quite a
range of beneficial methods in various areas such as cultivation, medical services, business,
trade. The conventional network architectures have been questioned by such an enormous
rise in bandwidth demand. In order to meet the demands, the network data plane and
control plane is decoupled in Software Defined Network (SDN) [1,2].

1.1. SDN

In Software Defined Networks (SDN), network management is made very simple by
decoupling the control plane, and data plane form network elements, where the control
plane is centralized as a directly programmable controller and the network elements take
care of packet forwarding operations. The flexibility of the network is improved because
the administrator can configure dynamic rules and policies accordingly. Figure 1 shows
the SDN Architecture. SDN facilitates the application to program the network operations
through the open northbound API, OpenFlow protocol acts as the southbound API between
the controller and forwarding elements.
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SDN adapters can be utilized to connect an SDN controller with a legacy network. The
key components of the SDN controller and switch interface are OVS switch kernel module,
ovs-vswitched daemon with operates over kernel module, and OpenFlow protocol as
southbound API. The control agent present in the forwarding element processes all control
instructions from the controller using OpenFlow protocol through the southbound API.
OVS kernel module manages and maintains the switch forwarding table. The forwarding
table is configured by the SDN controller based on functional and management policies.
Both synchronous and asynchronous communication takes place in an SDN environment
with the support of OpenFlow protocol. SDN eliminates the need for purpose-built ded-
icated hardware elements with software switches, which run on top of general-purpose
hardware to reduce the infrastructural cost [3].

1.2. SDN

The service providers are very much in need of new innovative network technologies
to overcome the limitations in traditional proprietary hardware and its application. It is a
difficult task for an administrator to find space and power to add new network function
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services and applications in the legacy network data center. NFV almost removes and
replaces the requirement to install new services, in turn this drastically reduces the capital
and operational expenditure for the service providers. NFV as IT network virtualization
technology is emerging as an overall better alternative solution for purpose-built hardware.
NFV decouples and virtualizes network functions from physical hardware elements and
runs on top of a virtual machine. In NFV, network services like firewall, NAT, DHCP,
DNS, IDS, DPI, and so on are separated and converted as a software instance from its
purpose-built hardware instance.

NFV simplifies the network infrastructure services by consolidating all the virtual
machines into a single data center server to form a fully virtualized infrastructure. Net-
work services are separated and configured as Virtual Network Functions (VNFs), which
can be programmed as software on physical servers. NFV MANO is NFV Management
and Orchestration, in which the MANO control flows focus mainly on the management
and organization of virtual networks. The main concept of NFV MANO is to allow the
adaptable installation and configuration of network elements in a data center and also
to avoid network complexity that is related to network availability. Figure 2 shows the
NFV Architecture.
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NFV Orchestrator, VNF Manager, and Virtualized Infrastructure Manager (VIM) are
the major functional blocks of NFV MANO. NFV Orchestrator takes care of deploying vir-
tual network functions (VNFs) and Network Function Virtualized Infrastructure (NFVI) by
managing, controlling, authorizing, and administrating the network services and resources.
VNF Manager is responsible for VNF components management, where new network ser-
vices are configured and managed as VNFs. VIM synchronizes the virtual components
with hardware components to dynamically deliver and manage network services. As a
whole, NFV is a software virtualized platform, which is responsible for deploying network
services over purpose-built hardware elements [4]. NFV eliminates various problems such
as business expenditure and network complexity by reducing the processing and response
time of the network [5].

The control plane programmability is focused by SDN, and the data plane abstraction
and virtualization programmability are focused by NFV [6]. With SDN, the complexity of
the network has been eliminated without affecting core manual configuration [7]. NFV acts
as a facilitator for SDN solutions such as network programmability and centralized control
to build a highly available, dynamically configurable, secure, robust, and flexible infras-
tructure [8]. Such an architecture has the benefit of improving the average performance of
the network and enabling improved network management [2]. An intruder can sometimes
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carry out brute force assaults on the SDN controller, such as a Secure Shell (SSH) attack,
which may lead to severe potential risks.

The process of identifying the firewall policies and denying attackers is a complex
task. It is observed that attackers commonly use methods such as targeted assaults and
password index exchanging [9]. Various machine learning methods can be used to define
such behaviors. Machine learning techniques have proved extensive user classification
potential [10]. Four distinct machine learning algorithms (BayesNet (BN), Naive-Bayes
(NB), Decision Table (DT) and C4.5) are used for predicting susceptible network access,
using traditional network attack data. The target host for the attacker is predicted by using
AWS honeypot attack data [11] to train different Machine Learning (ML) modules. Using
the results of the ML-algorithm, traffic flow rules are identified on the SDN controller by
preventing the full sub-network from limiting the entry of future attackers.

This paper’s primary contributions are:

• To deploy a virtual stateful Firewall service to create a firewall VNF component in
SDNFV network using the mininet network emulator.

• To define security rules on the stateful firewall VNF for all the traffic flows in and out
of the SDNFV network.

• To configure filtering rules in stateful firewall VNF as suggested by the machine
learning algorithms to deny access to the target host.

• The efficiency of four commonly used ML algorithms is compared and evaluated.
Furthermore, the objective is not to highlight the four algorithms used, but to display
the effectiveness of the ML method in SDN security.

• • This work proves that even a tiny likelihood of attack acquired via ML strategy has
an important impact on the security of the SDN.

This research would be the first to use the Machine Learning method on SDN to define
security rules for traffic flows on the stateful firewall VNF to the finest of our understand-
ing. The remaining work is ordered from Sections 2–6 as related works, proposed work,
experimental setup, results and discussion and conclusion, respectively.

2. Background and Related Work

This section presents a short review of related works on SDN, NFV networks, Methods
for machine learning that can be used in Software Defined Networks (SDNs), to manage
attack and Distributed Denial of Service (DDoS) threats. Purpose-built and common hard-
ware elements are configured to co-exist on a network to categorize multicast packets and
improve network scalability and network reliability [12]. Sudden migration from current
traditional networks to SDN and NFV networks is practically difficult to process due to
lack of adaptability and flexibility in the current network. Rather, it is better to take a step-
by-step migration process [13]. Network services are configured as a software program
in hardware element as VNFs, physical hardware resources for VNFs can be configured
and migrated dynamically over a multi-domain network [14]. A novel cooperative VNE
algorithm is built to organize and synchronize the controller to manage and control the
network elements effectively [15]. An SDN architecture is built for virtual tenant networks
to dynamically allocate and deploy the available resources by using dynamic routing and
bandwidth allocation services [16]. By integrating both SDN and NFV architectures, the
performance of the combined architecture is monitored and analyzed using the M/M/1
queuing technique. The performance shows that NFV AC architecture performs better
comparing NFV C architecture [17]. To offer better service chaining for network function, a
new SDN NFV combined architecture is constructed, and the total capital and operational
expenditure are minimized [18]. JANO is introduced in the management plane to dynam-
ically configure and manage virtual network functions, which in turn decrease the time
taken by the administrator to report the network-related problems and reduce the control
traffic [19].

Multipath SDN network flows are configured with NFV to efficiently control and
manage the data plane elements to provide better network performance based on traffic
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path computation, resource maintenance, periodical forwarding table update and network
monitoring [20]. Virtual network Resource (VNR) and Quality of experience (QOE) are
two major factors taken into account for improved multimedia applications performance
in multimedia aware virtual resource management (MAREM) SDN framework [21]. To
resolve problems in linear programming, primal dual algorithm, and heapsort algorithms
are used to build a clustered virtual network (CVN). The controller abstracts required
physical resources from a single pool or from multiple resource pools as per resource re-
quirements for constructing CVN or cross pod CVN [22]. SDN architecture with residential
NFV services is constructed by creating and providing access for Residential Network Man-
agement apps (RENEMA apps) at end-user premises. Core level information is screened to
build an open architecture for users to manage their own network and facilitate services
providers with local network data for better solutions [23]. SDN and NFV technological
ideas are utilized to create an Adaptive Routing Service Customization (ARSC) algorithm
to dynamically provide services for application-specific routing tasks and resource alloca-
tion [24]. Performance analysis and comparison are made for Application-Based Network
Operations (ABNO) and single controller orchestration in the SDN cloud environment. The
comparison for end-to-end connectivity proves that the network performance is efficient in
ABNO SDN model [25]. In the SDN NFV network, a linear programming-based algorithm
is proposed for load balancing, baseline, and aggregation to eliminate VNF placement
problem [26].

NFV with Software Defined Optical Network is proposed to minimize the overall
network delay. It is also observed that bandwidth is inversely proportional to network
latency [27]. The network performance is improved with centralized control and automa-
tion features in SDN network, which is configured with middle-box functions such as
firewall and Intrusion Prevention System (IPS) [28]. SDN and NFV deployed in a cloud
environment provide cloud service personalization and minimize latency for end-users
and service providers [29]. SDN networks utilize the NFV features for improved network
automation, operations, flexibility, fault tolerance, and cost-effectiveness during the process
of policy update, vm migration, and other network changes [30]. SDN in distributed cloud
datacenter is facilitated with Optimized Virtual Network Provisioning (OVNP) paradigm
reduces overall operational expenditure [31]. A performance monitoring architecture for
NFV is implemented to measure and analyze the network performance of single and
multi-domain virtual network functions [32].

The controller placement algorithm proposed in [33] efficiently handles the virtual
node mapping and node links synchronization. To achieve enhancement in network
performance with minimized delay and improved throughput, SDN and NFV architectures
are combined to achieve centralized control on VNFs [34]. QoS aware virtualization enabled
routing (QVR) is implemented to virtualize the routing process in SDN to accomplish less
network delay [35]. Bandwidth Risk Ratio algorithm processes vSDN components based
on flexibility factor, available bandwidth, and fault tolerance to maximize profit and meet
guaranteed SLA policies [36]. An in-depth systematic literature review is conducted on
NVF and SDN integrated architecture in view of studying the characteristics, design, tools,
SDN APIs, and element placement to build state-of-the-art NFV/SDN architecture, which
is open for the future improvements [37]. A network traffic monitoring model for SDN with
NFV is designed at reduced costs with improved network management and agility [38].
The performance of TCP and UDP flows in SDN networks are foreseen with two analytical
network models by predicting in the advent of both flow level and packet level. It is
found that the performance of TCP is much better than the UDP model due to the increased
number of packets in UDP model [39]. An SDN network security survey is conducted based
on attack identification, traffic engineering, and monitoring, network policy management
and configuration, service chaining, and middle-box deployment with smart grid network
infrastructure security [40].

A thorough study on the use of SDN to protect networks and recommend the use
of SDN as a system for security [41]. The study lists a range of distinct problems and
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alternatives suggested to account for network risks in the literature. An SDN-focused study
on programmable networks [42]. The paper discusses the growth of dynamic networks
and shows the design of the SDN network. OpenFlow SDN study and outline OpenFlow’s
fundamental ideas, apps, and secure elements [43].

An assessment of the brute force attacks of the automated SSH [44]. The paper used
the AWS honeypot attack data to evaluate accurately the activity of the attacker and the
attack dynamics, including password dictionary exchanging and targeted attacks. Various
SDN anomaly detection methods such as Bayesian Networks, Expectation Maximization,
k-Nearest Neighbours (kNN), and Ma-chines Support Vector [45]. In terms of SDN apps,
the author discusses various attack situations and their execution. An advanced structure
known as Atlas, which leverages SDN application understanding and is suitable for policy
implementation based on L2/3/4 [10].

Atlas utilizes the C5.0 classifier for categorizing the flows in SDN, and collecting
real-time information using a user-sourcing strategy to incorporate with SDN’s information
reporting system’s centralized command. Their suggested scheme is capable of identifying
a fine-granular mobile app and achieving a 94% median precision for the top 40 android
apps. A general overview on SDN with a specific focus on the current problems in network
setup and control processes and suggest various methods for improving network [46].

Flow N has the ability to provide their clients with personal address space, configu-
ration, and control logic. They do use databases to scale processing across physical and
virtual networks [47]. A strategy is suggested, as it has distinctive characteristics such as
large bandwidth for a fair proportion of data centers, dynamic demand for traffic aimed
at maximizing average bandwidth, and rigorous edge server monitoring [48]. Because of
the following features, B4 optimizes SDNs enhanced network switch control resulting in
nearly 100% use of links.

2.1. Machine Learning Techniques

These algorithms are commonly used in Machine learning to deliver precise outcomes
for a wide range of classification and prediction issues [49]. Below commonly used ML
algorithms defined.

2.1.1. Bayesian Network

Bayes Net computes probabilistic interactions between various interest variables [2].
It comprises a number of factors and a set of vertices, leading to a graph with acyclic
variations [50]. The random variable and its directional edge for each node are reflected
in the resultant graph. All the variables are autonomous of the non-descendants in the
Bayesian network. Bayes Net was used as a classifier and can lead to extremely precise
categories if correctly educated. A comprehensive study can be discovered in [51–53] on
the Bayesian Network.

2.1.2. Native–Bayes

Naive–Bayes utilizes Bayesian theory that employs the training samples to predict the
sort of unidentified samples based on previous results. The model of Bayesian classifica-
tion is based on statistical assessment and the concept of Bayesian, formed for Bayesian
learning [54,55]. Bayesian learning combines the preceding and subsequent probability
and utilizes it to determine the later probability according to the information and data
samples provided. The working of the Native Bayesian algorithm is based on dividing
the instruction set as a choice vector and attribute vector. Whereas the algorithm helps
each component of the attribute vector by applying the choice variables. A comprehensive
discussion can be noticed in [56] on Naive–Bayes.

2.1.3. C4.5

The initial inference process of C4.5 utilizes the decision-making tree in common [57].
The quantified discrete function in C4.5 is used by using a decision tree to reply to the
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learnt function. Hill climbing heuristic technique is used by C4.5 for searches without a
backtracking process on every feasible decision tree. Subgroups information are repeatedly
separated from the data acquired. C4.5 is used to learn different phrases of discontinuity,
as it is capable of handling extremely noisy data.

2.1.4. Decision Table

The simple initiation process is facilitated by (DT) Decision Table by recording and
consolidating the data logic [58]. The machine learning outcomes are used as input data for
DT [59], choosing some of the characteristics of the data. They also help to assess various
kinds of uncertainty and redundancy rules [60]. Comprehensive discussion can be found
outside the range of this document in [58–60].

As mentioned in [57], C4.5 DT’s primary learning phases were:

• It selects an attribute modeled on which to evaluate a logical check.
• A Part of training data for the chile node is extracted from the experimental results.
• All the child nodes run the methods iteratively.
• A node is represented by a leaf depending on specific concluding principles.

All the works in SDN/NFV network conducted before are about the traditional
network to SDN/NFV network migration process, improving scalability and reliability,
dynamic resource allocation, dynamic configuration and management of VNF, VNF service
chaining, and migration of VNFs. None of the studies has addressed using machine
learning methods to define security rules of virtual stateful firewall VNF as service in
SDN/NFV network. This inspired the study.

3. Proposed Work

In this study, the SDN and NFV technologies were combined, and the proposed
network was named Software Defined Network Function Virtualization (SDNFV). Figure 3
shows the Proposed SDNFV network with virtual stateful firewall VNF. This work focused
on combining the benefits of both SDN and NFV technologies to create a secured SDNFV
network with a stateful firewall function.

The proposed stateful firewall was configured to effectively detect and prevent Denial
of Service (DoS) Attacks. When there is a large internet security crisis, it is almost always
the result of a DDoS assault. These fraudsters frequently attack websites, personal accounts,
servers, and other services in order to overwhelm their internet traffic, causing the victim’s
system to become indifferent to genuine requests. A denial-of-service (DoS) attack is a sort
of computer security threat in which an attacker attempts to make a computer or other
network unavailable to authorized users by temporarily or permanently disrupting the
regular operations of a host connected to the Internet. A denial-of-service (DoS) attack
can assault individual machines or entire computer infrastructure. These assaults may be
expensive for a firm until their services, and other impacted resources are restored. The
more information available about inbound traffic, the easier it is to detect an attack. Almost
all DDoS assaults start with large traffic surges. All of these symptoms might be the result
of hackers doing dry runs to test your defenses before launching a full-scale attack. As a
result, it would be necessary to distinguish between a sudden spike of real visitors and the
start of a DDoS attack. The stateful firewall is used to prevent DOS attacks by tracking and
analyzing the status of active network connections while evaluating incoming traffic for
possible traffic and data hazards.

Distributed SDN controllers are programmed to control and manage the network with
three subnets, and NFV virtual stateful firewall function acts as a gateway firewall for the
network. In this design, SDN facilitates NFV ideas to construct a stateful Firewall controlled
SDN network with three subnets. The virtualized firewall function is controlled by the
distributed SDN controllers. SDN and NFV counterparts to each other very well to build
a cost-effective, flexible, and secure network. NFV decouples the network functions to
form a physical network element to create VNFs, and SDN separates the control part from
the forwarding elements. SDNFV architecture has three-layer, Data layer, Control layer,
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Application layer, and two application programming interfaces. Southbound API and
northbound API are the available APIs where NFV is configured on top of the northbound
API. The Control layer and data layer communicate through the southbound interface, and
it supports the controller to interact with the network elements and virtual stateful firewall
function using OpenFlow protocol. The application layer and control layer interacts through
the northbound API. The application layer is configured with basic network function
applications such as routing, traffic engineering, network monitoring, and firewall. NFV,
which works on top of northbound API as the NFVI component, virtualizes the physical
resources to create VNF that is managed by Virtual Infrastructure Manager (VIM). VNFs
are created with the virtual compute, storage, and network resources, which are managed
by their respective Element Management System (EMS). All the EMSs are controlled and
managed by VNF manager. NFV Orchestrator is an overall management interface used to
configure and maintain the components of NFV, such as VIM, VNF manager.
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In this paper, an SDN network is divided into three subnets to basically prevent
packet snooping problems. A virtual stateful firewall function is created and configured
with a set of firewall rules and acts as a gateway for the network. Machine learning
algorithms are used to detect possible target server threats depending on SDN’s traditional
network intrusion data. Four distinct algorithms are used: BayesNet, Naive-Bayes, C4.5,
DT, and [61] to predict the victim being targeted and to evaluate their accuracy results. A
stateful firewall is deployed in distributed SDN controllers, where the OpenFlow protocol
is used by the controllers and switches to send and receive control messages [62–64]. IP
aliases are created on Stateful Firewall VNF and are updated based on machine learning
threat detection algorithms. This way, the traffic flows are matched and allowed in and
out of the network, and the rest of the traffic is denied. Virtual Firewall VNF service acts
as middlebox between SDN controller and network elements, where all the incoming and
outgoing packets are controlled by the controllers. SDN controllers instruct, control, and
manage the Stateful Firewall VNF using OpenFlow protocol through the southbound API.



Sensors 2022, 22, 709 9 of 24

The whole SDNFV network setup is deployed in a mini-net emulation environment. POX
is an open-source controller configured to handle OpenFlow traffic from the southbound
interface and application traffic flows from the northbound interface. After configuring an
SDN network, the NFV integration process is initiated. SDN helps NFV to eliminate the
need for manual configuration of traffic forwarding on switches and routers, which results
in reduced service deployment time.

3.1. Function of NFV in SDNFV Network

NFV comfortably fits using virtualization technology and facilitates the existing net-
work without affecting its operations. This is achieved in NFV by using the server resource
and specific control traffic to build virtualized environment. NFV orchestrator provides
a high degree resource management service and takes the responsibility of aggregating
the compute, storage, and network resources to create a virtual environment that works
in parallel with the existing SDN network. Network Firewall function is programmed
in a VNF component as a virtual stateful firewall, which is managed by synchronizing
element management and VNF Manager Operations. Figure 4 shows the Stateful Firewall
VNF interfaces.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 26 
 

 

with a set of firewall rules and acts as a gateway for the network. Machine learning algo-
rithms are used to detect possible target server threats depending on SDN’s traditional 
network intrusion data. Four distinct algorithms are used: BayesNet, Naive-Bayes, C4.5, 
DT, and [61] to predict the victim being targeted and to evaluate their accuracy results. A 
stateful firewall is deployed in distributed SDN controllers, where the OpenFlow protocol 
is used by the controllers and switches to send and receive control messages [62–64]. IP 
aliases are created on Stateful Firewall VNF and are updated based on machine learning 
threat detection algorithms. This way, the traffic flows are matched and allowed in and 
out of the network, and the rest of the traffic is denied. Virtual Firewall VNF service acts 
as middlebox between SDN controller and network elements, where all the incoming and 
outgoing packets are controlled by the controllers. SDN controllers instruct, control, and 
manage the Stateful Firewall VNF using OpenFlow protocol through the southbound API. 
The whole SDNFV network setup is deployed in a mini-net emulation environment. POX 
is an open-source controller configured to handle OpenFlow traffic from the southbound 
interface and application traffic flows from the northbound interface. After configuring 
an SDN network, the NFV integration process is initiated. SDN helps NFV to eliminate 
the need for manual configuration of traffic forwarding on switches and routers, which 
results in reduced service deployment time. 

3.1. Function of NFV in SDNFV Network 
NFV comfortably fits using virtualization technology and facilitates the existing net-

work without affecting its operations. This is achieved in NFV by using the server re-
source and specific control traffic to build virtualized environment. NFV orchestrator pro-
vides a high degree resource management service and takes the responsibility of aggre-
gating the compute, storage, and network resources to create a virtual environment that 
works in parallel with the existing SDN network. Network Firewall function is pro-
grammed in a VNF component as a virtual stateful firewall, which is managed by syn-
chronizing element management and VNF Manager Operations. Figure 4 shows the State-
ful Firewall VNF interfaces. 

 
Figure 4. Stateful Firewall VNF interfaces. 

Switch Interfaces (SWI) are used for active interaction and information exchange. 
SWI-1 is the interface used for control and forwarding element interaction, as it links the 
virtual firewall function with client nodes. SWI-2 interface is used to exchange lifecycle 
management information with VNF managers, and it is configured as a network link with 
specific IP address. SWI-3 interface is used for EMS and stateful firewall VNF communi-
cation to keep track of VNF runtime information. SW-4 interface communicates with 

Figure 4. Stateful Firewall VNF interfaces.

Switch Interfaces (SWI) are used for active interaction and information exchange.
SWI-1 is the interface used for control and forwarding element interaction, as it links the
virtual firewall function with client nodes. SWI-2 interface is used to exchange lifecycle
management information with VNF managers, and it is configured as a network link with
specific IP address. SWI-3 interface is used for EMS and stateful firewall VNF communica-
tion to keep track of VNF runtime information. SW-4 interface communicates with NVFI to
allocate resources for a VM container to deploy a stateful firewall VNF component. Service
coordination and instantiation process are handled by the orchestrator by communicating
with core NFV platform to create a virtual instance of firewall service on the NFV platform.
Service chaining is used to scale the created stateful firewall service for the configured
network setup. Scaling services are utilized to manage the configured service when the
size of the network scales up. The service monitoring function is used to monitor the
performance of the resources and configure the service to have stable network operations.

NFV orchestrator management features include Network service life cycle manage-
ment, resource management, creating new network services, and VNF and NFVI resource
request authentication and approval. VIM handles the management of NFVI compute,
storage, and network resources, and it helps to interact efficiently with the SDN network el-
ements. VIM function has the network activities tracking feature to maintain and optimize
the allotment, upgrade, release, and reclamation operations. VNF function forwarding
details are maintained by unifying the virtual function, virtual links, subnets, and ports.
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As per VNF requirements, the compute, storage, and network resources are dynamically
allocated and managed by VIM function. VNF components are controlled and managed by
VNF manager. VNF manager supports the virtual network function to maintain standard
interaction between SDN and firewall VNF elements. VNF manager has four operations
starting with VNF Incorporation, VNF scaling, VNF upgrade, and VNF termination. NFV
is utilized to deploy a firewall VNF service in place of a physical hardware firewall service
to enhance the scalability and flexibility of the proposed SDNFV network. The stateful
filtering rule is configured on the firewall VNF. All traffic packets to and from the network
should pass through rules created on a virtual stateful firewall gateway. A firewall rule
is created for ingress and out-gress traffic packets. An alias is created with a set of intra
network IP addresses and added to the firewall allow rule, and the default rule is added as
all remaining IP addresses are blocked.

3.2. Machine Learning Framework to Define Stateful Firewall Rules

Figure 5 displays the framework based on ML to define SDN controller flow rules.
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To train a model, the traditional dataset was used. The trained framework was further
used with real-time network data to predict threats on particular hosts accurately, and
appropriate rules were defined on the Stateful firewall VNF to prevent the future potential
intruder. The core features of the proposed methodology were

1. The use of traditional data to train ML-based applications, and
2. The use of the trained design to detect possibly susceptible hosts and establish the

safety rules in the VNF module according to the predictive performance of the Ma-
chine learning algorithm. Details are addressed below.
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3.2.1. Train ML-Based Designs Using Traditional Data

To train traditional data, machine learning models were used in order to achieve
precise classifiers to define possible susceptible hosts. The training assisted the model in
learning and achieving better outcomes. The objective utilized the model of traditional
attack data to define the possible host that an intruder can attack. A possible host was
anticipated, which can be breached based on intruder IP and port addresses. These results
can be used to identify SDN module policy rules to determine the safety of the network.
Instead of preventing entry to a single IP and Port address, the full subnet sockets were
suggested to narrow in order to avoid potential attempts by the same attacker, entering in
the same subnet over a distinct IP and port.

3.2.2. Use the Trained Design to Determine Susceptible Host

It is used only after the system is trained to detect possible hosts, which an IP and Port
can attack. Trained design was used during the testing stage to identify the targeted host
depending on the IP and Port socket of the intruder. If, as expected by the ML algorithm,
the intruder effectively violated a host, it states the model is valid and accurate. Model
accuracy is determined with Equation (1).

Accuracy =
Number of attacks correctly predicted

Number of attacks in total
∗ 100 (1)

A threshold level δ percentage is selected as the lowest possible probability needed for
any host to be considered vulnerable during testing. The δ values are changed to assess its
impact on the accuracy of the ranking. Algorithm 1 describes the proposed method.

Algorithm 1 Predictor for SDN network attacks modelled on machine learning

Step 1: Start
Step 2: Procedure SDN ATTACK PREDICTOR BASED ON MACHINE LEARNING
Step 3: Select algorithm for machine learning
Step 4: Train the Machine Learning algorithm with traditional data
Step 5: If the trained framework predicts an IP and Port Socket hit on a host then
Step 6: Update the policies on stateful firewall VNF to restrict the Socket of subnet
Step 7: else Enable IP and Port Socket access in to network
Step 8: End

4. Experimental Setup

The proposed SDNFV network was designed using a POX SDN controller pro-
grammed with python programming language. The SDNFV network has 3 sub networks,
namely subnet 1, subnet 2, and subnet 3. Each sub network has an OpenFlow switch.
subnet 1 had 3 host machines, subnet 2 had 2 host machines with a network printer, subnet
3 had two host machines with a VOIP device, and an NFV Virtual firewall VNF service was
configured as a gateway firewall for all 3-sub networks. Mininet was used as a network
emulation tool with Xming application as display server and putty as a remote client appli-
cation. The virtual stateful firewall VNF service enabled SDNFV network was configured,
deployed, and monitored. The emulation setup is shown in Table 1.

Figure 6 shows the network topology of implemented SDNFV with stateful firewall
VNF services. There are three subnetworks as subnet 1, subnet 2, and subnet 3 each subnet
has three host machines and respective OpenFlow switches. All the OpenFlow switches
are connected to the stateful firewall VNF and POX controller.
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Table 1. Hardware and software configuration and version.

Components Description and Version

CPU Intel core i5-8250U @ 1.60Ghz

Memory 8 GB

OS Windows 10 home edition

hypervisor Oracle VirtualBox-5.1.30

VM OS Ubuntu 14.04 (64 bit)

VM configuration 1 CPU core, 1 GB memory

Mininet emulator 2.2.1

POX controller 0.2.0 (carp)

Coding Python 2.7

Communication Protocol OpenFlow 1.3
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Figure 7 shows the flow of the proposed SDNFV. When incoming packets arrive
in the SDNFV environment, packets are directly forwarded to the controllers, which is
accompanied by a stateful firewall inspection module. The stateful firewall module rules
are configured based on the prediction suggestion from the machine learning algorithm
analysis to predict the DOS attacks based on the training/testing model form the AWS
honeypot dataset. Based on the configured firewall packet filtration policies, the packets
and their current connection status were monitored to detect attack patterns. When an
attack is detected, the firewall policies will be updated on the stateful inspection mechanism.
Thus, all the packets to and from the network elements and their corresponding end devices
are continuously monitored to secure the entire network from security threats.
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5. Results and Discussion

A Spyder machine learning tool is used to assess the accuracy of the used ML models.
Honeypot attack data from “AWS” was used for training purposes. The honeypot from
Amazon web services was a trap spot that can be integrated into the system to identify
incoming attempts from data pullers and malicious bots. If a source accesses the honeypot,
the IP addresses will be registered. AWS honeypot attack dataset also includes analysis of
the data by capturing used IP addresses, profiles, logins, and analyzing resemblance and
the total number of instances utilized attack patterns. As of now, the information is being
collected using nine distinct honeypots. A comprehensive overview of the data is given in
Table 2. Three distinct datasets were being used. Datasets 1 comprised whole data, dataset
2 did not comprise China’s attack data and dataset 3 featured only China’s attack data. ML
algorithms were trained using these three datasets and, from there, tested them to detect
possible susceptible hosts. For training and testing purposes, the datasets were divided
into 30/70, 40/60, 50/50, 60/40, and 70/30 ratios. The threshold values were changed to
display the predictive accuracy of various ML methods for distinct datasets. The maximum
of 99.98 percent accuracy was achieved of Dataset 1 using the Decision Table algorithm with
0%. It is obvious that the prediction accuracy was considerably affected by the selection of
threshold value ubiquity, the machine learning algorithms, and the train/test split ratio.

Table 2. Shows the descriptions about the dataset.

Data Set Size Format

1 451518 (Overall attack data including China) [attacker IP] [attacker Port] [attacked host]
[number of attack attempts] [time stamp]

2 260124 (attack data excluding China) [attacker IP] [attacker Port] [attacked host]
[number of attack attempts] [time stamp]

3 191394 (attack data only from China) [attacker IP] [attacker Port] [attacked host]
[number of attack attempts] [time stamp]

5.1. The Threshold Effect on Predictability

The result findings give a picture that the threshold value has a drastic impact on the
host’s predictive accuracy. It is obvious that the rise in the value of the threshold reportedly
impacts the accuracy of the prediction. The threshold range rise from 0–10% decreased
the accuracy of the prediction by 22.09%. The outcome was noticeable as it suggests that
it should be considered serious and not overlook even the smallest attack probability on
a specific host. The attacker IP and Port Socket should be denied, and the firewall rules
should be updated to suit vulnerable hosts to secure the network.
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Predictive accuracy of specific dataset 3 in ML algorithms with separate training/test
split cases and threshold (δ). Figure 8 shows the accuracy prediction for dataset 1 using the
Bayesian network algorithm. The result has accuracy % in the y-axis and training/testing
split scenarios in the x-axis. The training/testing split scenarios was varied as 30–70, 40–60,
50–50, 60–40, and 70–30 for different threshold (δ) values such as δ = 0%, 5%, 10%, 15%.
Thus, the threshold value δ varied the accuracy percentage of the bayesnet algorithm for
training/testing split scenario 30/70 were (99.85, 86.36, 73.65, and 71.45)%. The accuracy
percentage for training/testing split scenario 40/60 were (99.86, 87.94, 74.98, and 72.38)%.
The accuracy percentage for training/testing split scenario 50/50 were (99.86, 87.95, 75.13,
and 73.62)%. The accuracy percentage for training/testing split scenario 60/40 were (99.88,
88.63, 76.35, and 74.57)%. The accuracy percentage for training/testing split scenario 70/30
were (99.88, 88.76, 76.29, and 74.98)%. When the threshold value keeps on increasing, the
accuracy percentage of the bayesnet algorithm goes down for respective threshold values.
The result showed that the prediction percentage of training/test split ratio 70/30 was high
for all the respective threshold (δ) values.
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Figure 9 shows the accuracy prediction for dataset 1 using the Native–Bayes algorithm.
The result has accuracy % in the y-axis and training/testing split scenarios in the x-axis.
The training/testing split scenarios was varied as 30–70, 40–60,50–50, 60–40, and 70–30
for different threshold (δ) values such as δ = 0%, 5%, 10%, 15%. Thus, the threshold
value δ varied the accuracy percentage of the Native–Bayes algorithm for training/testing
split scenario 30/70 were (99.53, 79.23, 67.60, and 65.72)%. The accuracy percentage for
training/testing split scenario 40/60 were (99.53, 80.42, 68.65, and 66.51)%. The accuracy
percentage for training/testing split scenario 50/50 were (99. 52, 80.56, 69.40, and 67.02)%.
The accuracy percentage for training/testing split scenario 60/40 were (99.53, 81.23, 69.59,
and 67.69)%. The accuracy percentage for training/testing split scenario 70/30 were (99.53,
81.84, 69.79, and 67.74)%. When the threshold value keeps on increasing, the accuracy
percentage of the Native–Bayes algorithm goes down for respective threshold values. The
result showed that the prediction percentage of training/test split ratio 70/30 was high for
all the respective threshold (δ) values.
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Figure 10 shows the accuracy prediction for dataset 1 using the C4.5 algorithm. The
result has accuracy % in the y-axis and training/testing split scenarios in the x-axis. The
training/testing split scenarios was varied as 30–70, 40–60,50–50, 60–40, and 70–30 for
different threshold (δ) values such as δ = 0%, 5%, 10%, 15%. Thus, the threshold value δ

varied the accuracy percentage of the C4.5 algorithm for training/testing split scenario
30/70 were (88.23, 85.45, 78.26, and 76.49)%. The accuracy percentage for training/testing
split scenario 40/60 were (89.21, 87.60, 80.94, and 78.99)%. The accuracy percentage for
training/testing split scenario 50/50 were (89.92, 87.60, 80.94, and 78.99)%. The accuracy
percentage for training/testing split scenario 60/40 were (90.83, 88.48, 81.89, and 79.51)%.
The accuracy percentage for training/testing split scenario 70/30 were (91.42, 89.11, 82.31,
and 80.38)%. When the threshold value keeps on increasing, the accuracy percentage
of the C4.5 algorithm goes down for respective threshold values. The result shows that
the prediction percentage of training/test split ratio 70/30 was high for all the respective
threshold (δ) values.
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Figure 11 shows the accuracy prediction for dataset 1 using Decision Tree algorithm.
The result has accuracy % in the y-axis and training/testing split scenarios in the x-axis.
The training/testing split scenarios was varied as 30–70, 40–60,50–50, 60–40, and 70–30 for
different threshold (δ) values such as δ = 0%, 5%, 10%, 15%. Thus, the threshold value δ

varied the accuracy percentage of Decision Tree algorithm for training/testing split scenario
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30/70 were (99.98, 83.09, 70.35, and 68.21)%. The accuracy percentage for training/testing
split scenario 40/60 were (99.98, 83.97, 71.16 and 69.59)%. The accuracy percentage for
training/testing split scenario 50/50 were (99.98, 85.25, 72.49, and 70.37)%. The accuracy
percentage for training/testing split scenario 60/40 were (99.98, 84.74, 72.05, and 72.68)%.
The accuracy percentage for training/testing split scenario 70/30 were (99.98, 85.77, 73.36,
and 71.26)%. When the threshold value keeps on increasing, the accuracy percentage of the
Decision Tree algorithm goes down for respective threshold values. The result showed that
the prediction percentage of training/test split ratio 70/30 was high for all the respective
threshold (δ) values.
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5.2. The ML Method Effect

Figures 8–19 provide a perspective into the impact of the ML method on predictive
accuracy, and it can be seen that BayesNet achieves the largest overall predictive accuracy
of 92.87%.

5.3. The Train/Test Split Ratio Effect

The divided train/test ratio also impacts the precision of the prediction. However,
with the complexity of the data collected from the “AWS honeypot attack dataset”, the
variation in the training/testing split proportion did not significantly alter the predictive
accuracy for a particular Threshold value.

Predictive accuracy of specific dataset 2 in ML algorithms with separate training/test
split cases and threshold (δ).

Figure 12 shows the accuracy prediction for dataset 2 using the bayesian network
algorithm. The result has accuracy % in the y-axis and training/testing split scenarios in
the x-axis. The training/testing split scenarios was varied as 30–70, 40–60,50–50, 60–40, and
70–30 for different threshold (δ) values such as δ = 0%, 5%, 10%, 15%. Thus, the threshold
value δ varied the accuracy percentage of the bayesnet algorithm for training/testing
split scenario 30/70 were (99.92, 90.22, 80.09, and 78.08)%. The accuracy percentage for
training/testing split scenario 40/60 were (99.92, 90.53, 80.65, and 78.76)%. The accuracy
percentage for training/testing split scenario 50/50 were (99.93, 90.96, 81.12, and 7.13)%.
The accuracy percentage for training/testing split scenario 60/40 were (99.94, 91.31, 81.71,
and 79.74)%. The accuracy percentage for training/testing split scenario 70/30 were (99.94,
91.68, 81.83, and 79.89)%. When the threshold value increases, the accuracy percentage of
the bayesnet algorithm goes down for respective threshold values. The result shows that
the prediction percentage of training/test split ratio 70/30 was high for all the respective
threshold (δ) values.
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Figure 13 shows the accuracy prediction for dataset 2 using the Native–Bayes algo-
rithm. The result had accuracy % in the y-axis and training/testing split scenarios in the
x-axis. The training/testing split scenarios was varied as 30–70, 40–60,50–50, 60–40, and
70–30 for different threshold (δ) values such as δ = 0%, 5%, 10%, 15%. Thus, the threshold
value δ varies the accuracy percentage of the Native–Bayes algorithm for training/testing
split scenario 30/70 were (99.60, 82.27, 72.11, and 70.14)%. The accuracy percentage for
training/testing split scenario 40/60 were (99.61, 82.81, 73.07, and 71.09)%. The accuracy
percentage for training/testing split scenario 50/50 were (99.62, 83.27, 73.35, and 71.33)%.
The accuracy percentage for training/testing split scenario 60/40 were (99.62, 83.66, 74.66,
and 72.64)%. The accuracy percentage for training/testing split scenario 70/30 were (99.64,
83.79, 74.74, and 72.73)%. When the threshold value keeps on increasing, the accuracy
percentage of the Native–Bayes algorithm goes down for respective threshold values. The
result shows that the prediction percentage of training/test split ratio 70/30 was high for
all the respective threshold (δ) values.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 12. Accuracy Prediction for Dataset 2 using Bayesian Network Algorithm. 

Figure 13 shows the accuracy prediction for dataset 2 using the Native–Bayes algo-
rithm. The result had accuracy % in the y-axis and training/testing split scenarios in the x-
axis. The training/testing split scenarios was varied as 30–70, 40–60,50–50, 60–40, and 70–
30 for different threshold (δ) values such as δ = 0%, 5%, 10%, 15%. Thus, the threshold 
value δ varies the accuracy percentage of the Native–Bayes algorithm for training/testing 
split scenario 30/70 were (99.60, 82.27, 72.11, and 70.14)%. The accuracy percentage for 
training/testing split scenario 40/60 were (99.61, 82.81, 73.07, and 71.09)%. The accuracy 
percentage for training/testing split scenario 50/50 were (99.62, 83.27, 73.35, and 71.33)%. 
The accuracy percentage for training/testing split scenario 60/40 were (99.62, 83.66, 74.66, 
and 72.64)%. The accuracy percentage for training/testing split scenario 70/30 were (99.64, 
83.79, 74.74, and 72.73)%. When the threshold value keeps on increasing, the accuracy 
percentage of the Native–Bayes algorithm goes down for respective threshold values. The 
result shows that the prediction percentage of training/test split ratio 70/30 was high for 
all the respective threshold (δ) values. 

 
Figure 13. Accuracy Prediction for Dataset 2 using Native–Bayes Algorithm. 

Figure 13. Accuracy Prediction for Dataset 2 using Native–Bayes Algorithm.

Figure 14 shows the accuracy prediction for dataset 2 using the C4.5 algorithm. The
result has accuracy % in the y-axis and training/testing split scenarios in the x-axis. The
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training/testing split scenarios was varied as 30–70, 40–60,50–50, 60–40, and 70–30 for
different threshold (δ) values such as δ = 0%, 5%, 10%, 15%. Thus, the threshold value
δ varies the accuracy percentage of the C4.5 algorithm for training/testing split scenario
30/70 were (91.17, 86.78, 84.17, and 82.13)%. The accuracy percentage for training/testing
split scenario 40/60 were (90.99, 86.86, 77.87, and 75.83)%. The accuracy percentage for
training/testing split scenario 50/50 were (90.24, 86.29, 78.63, and 76.64)%. The accuracy
percentage for training/testing split scenario 60/40 were (90.24, 86.29, 78.63, and 76.64)%.
The accuracy percentage for training/testing split scenario 70/30 were (90.44, 86.34, 78.93,
and 76.94)%. When the threshold value keeps on increasing, the accuracy percentage of
the C4.5 algorithm goes down for respective threshold values. The result showed that
the prediction percentage of training/test split ratio 70/30 was high for all the respective
threshold (δ) values.
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Figure 15 shows the accuracy prediction for dataset 2 using the Decision Tree algorithm.
The result has accuracy % in the y-axis and training/testing split scenarios in the x-axis.
The training/testing split scenarios was varied as 30–70, 40–60,50–50, 60–40, and 70–30 for
different threshold (δ) values such as δ = 0%, 5%, 10%, 15%. Thus, the threshold value δ

varies the accuracy percentage of Decision Tree algorithm for training/testing split scenario
30/70 were (99.98, 83.48, 66.26, and 64.24)%. The accuracy percentage for training/testing
split scenario 40/60 were (99.98, 84.51, 66.50, and 64.57)%. The accuracy percentage for
training/testing split scenario 50/50 were (99.98, 84.64, 67.35, and 65.37)%. The accuracy
percentage for training/testing split scenario 60/40 were (99.98, 83.68, 67,61, and 65.67)%.
The accuracy percentage for training/testing split scenario 70/30 were (99.98, 83.98, 68.06,
and 66.12)%. When the threshold value keeps on increasing, the accuracy percentage of the
Decision Tree algorithm goes down for respective threshold values. The result showed that
the prediction percentage of training/test split ratio 70/30 was high for all the respective
threshold (δ) values.

5.4. The Dataset Effects

The dataset also performs a major part in the accuracy of prediction. The greater the
data variability, the greater the likelihood of incorrect prediction will be. Since dataset 2
did not have the Chinese attacker’s data points, the data set pattern was significantly lower
than data set 1 and data set 3. This is why the overall prediction accuracy for dataset 2 is
greater than for datasets 1 and 3.

Predictive accuracy of specific dataset 3 in ML algorithms with separate training/test
split cases and threshold (δ).
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Figure 16 shows the accuracy prediction for dataset 3 using the Bayesian network
algorithm. The result has accuracy % in the y-axis and training/testing split scenarios in
the x-axis. The training/testing split scenarios was varied as 30–70, 40–60,50–50, 60–40, and
70–30 for different threshold (δ) values such as δ = 0%, 5%, 10%, 15%. Thus, the threshold
value δ varied the accuracy percentage of the bayesnet algorithm for training/testing
split scenario 30/70 were (99.83, 89.27, 78.73, and 76.76)%. The accuracy percentage for
training/testing split scenario 40/60 were (99.88, 89.56, 79.77, and 77.78)%. The accuracy
percentage for training/testing split scenario 50/50 are (99.92, 89.77, 80.42, and 78.43)%.
The accuracy percentage for training/testing split scenario 60/40 were (99.93, 90.26, 81.51,
and 79.54)%. The accuracy percentage for training/testing split scenario 70/30 were (99.93,
90.55, 82.14, and 80.18)%. When the threshold value keeps on increasing, the accuracy
percentage of the bayesnet algorithm goes down for respective threshold values. The result
shows that the prediction percentage of training/test split ratio 70/30 was high for all the
respective threshold (δ) values.
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Figure 17 shows the accuracy prediction for dataset 3 using the Native–Bayes algo-
rithm. The result has accuracy % in the y-axis and training/testing split scenarios in the
x-axis. The training/testing split scenarios was varied as 30–70, 40–60,50–50, 60–40, and
70–30 for different threshold (δ) values such as δ = 0%, 5%, 10%, 15%. Thus, the threshold
value δ varied the accuracy percentage of the Native–Bayes algorithm for training/testing
split scenario 30/70 were (99.60, 82.87, 72.27, and 70.22)%. The accuracy percentage for
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training/testing split scenario 40/60 were (99.62, 83.51, 73.31, and 71.34)%. The accuracy
percentage for training/testing split scenario 50/50 were (99.65, 84.30, 73.78, and 71.89)%.
The accuracy percentage for training/testing split scenario 60/40 were (99.67, 84.86, 74.68,
and 72.63)%. The accuracy percentage for training/testing split scenario 70/30 were (99.68,
85.48, 75.10 and 73.17)%. When the threshold value keeps on increasing, the accuracy
percentage of Native–Bayes algorithm goes down for respective threshold values. The
result showed that the prediction percentage of training/test split ratio 70/30 was high for
all the respective threshold (δ) values.
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Figure 18 shows the accuracy prediction for dataset 3 using the C4.5 algorithm. The
result has accuracy % in the y-axis and training/testing split scenarios in the x-axis. The
training/testing split scenarios was varied as 30–70, 40–60,50–50, 60–40, and 70–30 for dif-
ferent threshold (δ) values such as δ = 0%, 5%, 10%, 15%. Thus, the threshold value δ varied
the accuracy percentage of C4.5 algorithm for training/testing split scenario 30/70 were
(83.88, 82.54, 79.83, and 77.34)%. The accuracy percentage for training/testing split scenario
40/60 were (85, 83.75, 81.36, and 79.56)%. The accuracy percentage for training/testing
split scenario 50/50 were (85.94, 84.79, 82.45, and 80.43)%. The accuracy percentage for
training/testing split scenario 60/40 were (86.91, 85.81, 83.61, and 81.73)%. The accu-
racy percentage for training/testing split scenario 70/30 were (87.21, 86.29, 84.06, and
82.13)%. When the threshold value keeps on increasing, the accuracy percentage of the
C4.5 algorithm goes down for respective threshold values. The result showed that the
prediction percentage of training/test split ratio 70/30 was high for all the respective
threshold (δ) values.

Figure 19 shows the accuracy prediction for dataset 3 using the Decision Tree algorithm.
The result has accuracy % in the y-axis and training/testing split scenarios in the x-axis.
The training/testing split scenarios is varied as 30–70, 40–60,50–50, 60–40, and 70–30
for different threshold (δ) values such as δ = 0%, 5%, 10%, 15%. Thus, the threshold
value δ varies the accuracy percentage of the Decision Tree algorithm for training/testing
split scenario 30/70 are (99.98, 82.76, 67.69, and 65.64)%. The accuracy percentage for
training/testing split scenario 40/60 are (99.98, 84.44, 69.89, and 67.83)%. The accuracy
percentage for training/testing split scenario 50/50 are (99.98, 85.12, 71.16, and 69.12)%.
The accuracy percentage for training/testing split scenario 60/40 are (99.98, 86.28, 72.16,
and 70.14)%. The accuracy percentage for training/testing split scenario 70/30 are (99.98,
87.43, 73.65, and 71.67)%. When the threshold value keeps on increasing, the accuracy
percentage of the Decision Tree algorithm goes down for respective threshold values. The
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result shows that the prediction percentage of training/test split ratio 70/30 was high for
all the respective threshold (δ) values.
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Figure 19. Accuracy Prediction for Dataset 3 using Decision Tree Algorithm.

The results in Figures 8–19 showed that the susceptible host can be predicted correctly
by ML methods. Then, SDN Moule can leverage such accurate prediction to prevent the
future attacker from entering the network and assist in protecting various hosts from
DOS attacks.

6. Conclusions

The machine learning method is used in this paper to predict the susceptible host that
is extremely probable to be assaulted in the SDNFV network with distributed controllers.
Using the prediction results of machine learning models, it is possible to define the security
flow rules for stateful firewall VNF to avoid unauthorized clients from entering the network.
Experimental findings have shown that machine learning methods can help define stateful
firewall security flow rules by anticipating the potential susceptible host correctly to deny
DOS network attacks. Stateful inspection firewalls have been regarded to be safer than
stateless firewalls. Therefore, they are able to take a deeper look into the transaction
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to understand the network operations. If it is vital to complete a transaction, ports are
dynamically opened and closed. AWS honeypot attack dataset is used to train and test the
proposed system using four machine learning algorithms, Bayesian Network, Native–Bayes
Algorithm, C4.5, and Decision Tree algorithm to predict possible network attacks. Bayesian
Network algorithm achieved an average prediction accuracy of 92.87%, Native–Bayes
Algorithm achieved an average prediction accuracy of 87.81%, C4.5 Algorithm achieved an
average prediction accuracy of 84.92%, and Decision Tree algorithm achieved an average
prediction accuracy of 83.18%. Indicating that out of the total of 450 k attacks, the Bayesian
network was able to identify 419 k attacks correctly. Furthermore, the decrease in prediction
accuracy with the threshold rise stated that the smallest chance of attack threat is not to be
ignored, and the firewall security policies on the stateful firewall VNF module should be
altered to deny the potential risk.
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