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Abstract: The ‘intention’ classification of a user question is an important element of a task-engine
driven chatbot. The essence of a user question’s intention understanding is the text classification.
The transfer learning, such as BERT (Bidirectional Encoder Representations from Transformers) and
ERNIE (Enhanced Representation through Knowledge Integration), has put the text classification
task into a new level, but the BERT and ERNIE model are difficult to support high QPS (queries
per second) intelligent dialogue systems due to computational performance issues. In reality, the
simple classification model usually shows a high computational performance, but they are limited
by low accuracy. In this paper, we use knowledge of the ERNIE model to distill the FastText model;
the ERNIE model works as a teacher model to predict the massive online unlabeled data for data
enhancement, and then guides the training of the student model of FastText with better computational
efficiency. The FastText model is distilled by the ERNIE model in chatbot intention classification. This
not only guarantees the superiority of its original computational performance, but also the intention
classification accuracy has been significantly improved.

Keywords: ERNIE; deep learning; distill; chatbot

1. Introduction

Chatbots have become more widely used in industries and smart cities with the rapid
development of Artificial Intelligence. Chatbots are generally divided into either open-
domain and closed-domain. In an open context, users can chat with chatbots on any topic
such as entertainment, emotional companionship, and socialization, which is known as
Chitchat bots. In a closed context, you can only talk about the topic set by the robot, which
belongs to the closed-domain type of chatbots. In addition, closed-domain chatbots are
designed to accomplish a certain task, such as customer support and shopping guidance,
which is known as a task-oriented chatbot. For example, Ali Xiaomi [1] is an Intelligent
Personal Assistant in the field of e-commerce; based on Ali’s massive consumption and
business data, combined with the needs of online and offline life scenarios, it provides
intelligent shopping guides, services, and assistants with an anthropomorphic interactive
business experience in a smart manual mode. An open-domain chatbot, such as Siri from
Apple or Xiaobing [2] from Microsoft, can provide a 24 h personal assistant for users.

Intention classification is essential to the performance of a task-oriented chatbot. The
user’s intention determines the success of the subsequent chatbot process, as shown in
Figure 1. The core of intention recognition is text classification, which can be regarded
as a traditional problem in the field of natural language processing. Traditional machine
learning methods for text classification include the support vector machine (SVM) [3];
however, it was limited by low accuracy for the text classification task. In recent years, with
the rapid development of deep learning technology, neural networks have been applied
to text classification technology. Convolution neural network (CNN) has achieved great
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success in the field of images [4]. ColloBERT applied CNN to natural language tasks.
The TextCNN [5] applied CNN to text classification with effective results. Since CNN
cannot capture long-distance dependence, and the Recurrent Neural Network (RNN) [6]
can handle time series features, RNN has shown advantages in natural language processing
and feature extraction. To solve the gradient disappearance problem of RNN in the training
process, an RNN-based variant of the Long-Short Term Memory (LSTM) network and GRU
(Gate Recurrent Unit) network structure [7] have been proposed. Additionally, there is an
advance for multivariate time series features extraction [8].
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RNN-based models are limited by performance issues, and it is difficult to have
beneficial real-time applications, such as high-concurrency scenarios in the field of chatbots.
Yang et al. [9] discussed the application of deep learning in the intention classification of
chatbots. Bahdanau et al. in 2015 [10] developed an attention mechanism, while Vaswani
et al. in 2017 [11] proposed a transformer as seq2seq model with parallelized attentions. In
2017, Mikolov et al. [12] proposed the FastText model; the network architecture of FastText is
very similar to CBOW (Continuous Bag-of-Words) [13], and FastText is mainly used for text
classification and displays positive computational efficiency. Peters et al. [14] generalizes
traditional word embedding research ELMo (Embedding from Language Model) along a
different dimension in 2018, and they suggested extracting context sensitive features and
applying pre-training tasks to text classification tasks.

Fine-tuning based on pre-training for a language model has been developed for
text generation tasks (e.g., GPT (Radford et al., 2018) [15]; Google proposed the BERT
(Bidirectional Encoder Representations from Transformers) model in 2018 [16]. The BERT
model is based on a self-attention model architecture. The successful application of BERT
has put the natural language text classification task into a new level.

The BERT model mainly focuses on words or more fine-grained cloze learning
and does not make full use of the lexical structure in the training data. Li [17] used
the application of the BERT model in text classification at the sub-word level. Baidu
proposed the ERNIE (Enhanced Representation through Knowledge Integration) model
in 2018 [18]. Compared with BERT, ERNIE has improved two masking strategies; the
first is the phrase-based masking strategy, and the second is the entity (name, location,
organization, product, etc.) based masking strategy. Although the BERT and ERNIE
models can achieve positive results in various tasks in the field of natural language
processing, it is difficult for scientific research teams in universities as well as in small-
and medium-sized enterprises to pre-train BERT from the base model due to the large
size of the model, the large amount of data, and the large number of resources required
for training. In the field of computer vision, Hinton et al. [19] proposed a training method
based on the “teacher-student network idea” in 2015. The basic principle was to transfer
the features learned from the “teacher” network with a complex network structure and
strong learning ability to the “student” network with a small number of parameters and
weak learning ability. Sau et al. [20] used a noise-based regularizer to train the student
from the teacher for a higher training efficiency in 2016. Liao et al. [21] tried to use the
BERT model for distillation learning in LSTM and CNN. Sun et al. [22] proposed Patient
Knowledge Distillation for the BERT Model.

In e-commerce, it is usually computationally expensive when the chatbot handles
a large number of real customers online; the simple intention classification model can
show a beneficial computational performance but is limited to the low classification
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accuracy. To improve the performance of the small-scale model, the knowledge ob-
tained by the “teacher” model can guide the training of the original small-scale model
to achieve better results. In this study, we develop a chatbot for after-sale service in
e-commerce to help manage the high computational price issue. The pre-trained ERNIE
model will distill the FastText model to increase the efficiency and maintain the clas-
sification accuracy. Through the knowledge distillation method, the teacher model
ERNIE is used to predict intention labels on a large amount of online data, and the
student model FastText can be distilled through the enhanced data of large-scale corpus
from the teacher model. With these large amounts of unlabeled text, the knowledge
in the teacher model ERNIE can be better transferred to the student model FastText.
In addition, several different text classification models, such as LSTM and BERT, are
performed to the same task for comparison.

2. Pre-Trained Model

Pre-training models have long been used in the field of computer vision. The
transfer learning is pre-training a neural network model on a known task, and then
performing fine-tuning using the trained neural network as the basis to a new purpose-
specific model. Recently, in the field of natural language processing (NLP), the use of
language model pre-training methods has achieved beneficial improvements on multiple
NLP tasks. These tasks include natural text classification, sentence comprehension, and
other sentence-level tasks.

There are two strategies for applying pre-trained language features to tasks: feature-
based and fine-tuning. For example, ELMo uses pre-trained features as additional features;
a pre-trained neural network produces word embeddings, which are subsequently used as
a feature on NLP models. Fine-tuning is to apply the learning ideas of transfer learning
to the deep learning language model. The network model and parameter weights are
determined mainly through pre-training. In practical applications, the pre-trained model is
selectively loaded and then a new data set is added to retrain the model; this is called the
basic step of fine-tuning, such as BERT.

BERT makes use of Transformer, an attention mechanism that learns contextual rela-
tions between words (or sub-words) in a text. The BERT model proposed a new pre-training
target: the masked language model (MLM). The models structure is shown in Figure 2.
MLM randomly selects various words to mask, with the purpose to predict the masked
portion based on the context non-masked words in the sequence, the MLM can access
future context information due to the bidirectional feature provided by the Transformer
architecture. In addition, BERT performs the next sentence prediction task, and the model
receives pairs of sentences as input and learns to predict if the second sentence in the pair
is the subsequent sentence in the original corpus.
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3. Knowledge Distillation

The knowledge distillation is teaching a smaller model that is more suitable for
reasoning by using an already trained network; the process by which is also known as
model compression. Knowledge distillation introduces the soft target of the “teacher”
model with more complex reasoning ability to teach the “student” network with small
parameters and weak learning ability, as shown in Figure 3. The soft label is the probability
vector output for large-scale samples, and the probability vector has more information
compared with the one-hot label for text classification task. By passing the soft label
information of the large model to the student model, the learning ability of the student
model can be improved.
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Due to the large-scale softmax output, the value distributed in the correct position
will be large, while the value of other positions will be small. It is often more effective to
directly use the probability distribution of the teacher network to learn the student network.
It is necessary to improve the softmax function, which is called a heating technique.

Original softmax function:

yi =
exp(xi)

N
∑

j=1
exp(xj)

(1)

where, yi is the predicted probability that the document belongs to in the j-th class, xi
denotes the elements of the input vector to the softmax function, and N represents the
number of classes in the multi-class classifier. The term on the bottom of the formula is the
normalization term.

Improved softmax function:

yi =
exp( xi

T )
N
∑

j=1
exp(

xj
T )

(2)

where T is the temperature with a fixed value.

4. Teacher Model (ERNIE)

Compared with BERT, ERNIE 1.0 has improved two masking strategies, the first
based on the phrase, and the second based on the entity (name, location, organization,
product, etc.), such as Beijing. In ERNIE, the phrase or entity composed of multiple words is
regarded as a unified unit. Compared with the word-based mask of BERT, ERNIE is trained
through the mask of the entity unit. In contrast to directly mapping knowledge queries
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into vectors and then adding them up directly, ERNIE can potentially learn knowledge
dependence and longer semantic dependence through a unified mask to make the model
more generalized, as shown in Figure 4.
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In addition, ERNIE 2.0 builds lexical level, grammatical level, and semantic level pre-
training tasks based on ERNIE1.0 and accumulates new knowledge through multi-tasking
and continuous learning. In this task, ERNIE1.0 base is used as the teacher model.

5. Student Model (FastText)

FastText’s network architecture is very similar to CBOW; it is mainly used for text
classification compared to CBOW. For text classification of short text, short text sentences
are represented by a “bag of words” model, and then linear classifiers are used for text
classification. FastText shows a positive computational performance in text classification
tasks based on its network structure. The input layer of the FastText network model
(Figure 5) is the word embedding vector of the word sequence of a sentence or a paragraph
of text.
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These feature vectors are averaged to generate text vectors. The output layer uses
hierarchical softmax, which uses the frequency of the classification label to make the leaf
nodes of HuffmanTree. Each node is associated with a probability, and the probability
value is equal to the product of the probability from the root node to the leaf nodes, which
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belong to this class. If the depth of the leaf nodes is l + 1, their parent node distribution is
n1, n2, · · · , nl .

Its probability can be expressed as:

P(nl+1) =
l

∏
i=1

P(ni) (3)

where, P(ni) denotes the conditional probability of the next word in a sequence.
To optimize the calculation, the hierarchical softmax model is adopted. The Huffman

Tree is constructed by using the occurrence frequency of the term or classification label,
which is used as the leaf node of the Huffman Tree. The input of CBOW is the term in the
context window, and the output layer corresponds to the term with the highest probability.
The input of FastText is the content of the entire sentence, including term and n = gram.
The output layer corresponds to the classified label. The purpose of CBOW is to obtain the
required word vector through repeated iterations. FastText traverses all nodes of the tree
and finds the classification label with the highest probability.

6. Experiment and Result Analysis

It mainly used the after-sales intelligent customer service Q&A of real e-commerce as
the corpus, focusing on 16 task-oriented intention recognitions. The training corpus was
manually labeled, with 120,000 corpora, as shown in Table 1. In the 120,000 corpora, there
were 15 customer business intentions, which mainly included the return of goods, urging
delivery, request of a replacement, application for an exchange, etc. The 16th intention was
other categories (non-business intentions), which mainly included chitchat-related corpus.
This corpus had an average of 7000 samples per business category. In addition, there were
about 10,000 test samples as the test set.

Table 1. Part of the training corpus.

Corpus Classification

I haven’t received the goods for so long. Urging Delivery
Why haven’t my shoes arrived for so long? Urging Delivery

Haven’t my things arrived yet? Urging Delivery
When will the exchanged goods come? Check the Replacement Progress
When will you send me a replacement? Check the Replacement Progress

When to exchange? Check the Replacement Progress
Where do I apply for exchange? Request a Replacement

I can’t find the place to apply for a replacement. Request a Replacement
The two pairs of children’s shoes I bought yesterday are small, how could I change them? Request A Replacement

Send it back by myself. What about the return shipping fee? Return Shipping Fee
How to calculate the return shipping fee for self-return? Return Shipping Fee
How to deal with the return shipping fee for self-return? Return Shipping Fee

In the experiment, the different models were used to learn the training corpus. The
specific training parameters of BERT and ERNIE are shown in Table 2, with a total of
12 layers and a hidden layer of 768 dimensions. The 12-head model was used (Table 2),
with a total of 110 million parameters. Next, the optimized different models were used to
evaluate the test data separately, as shown in Figure 6. The ERNIE model archived best the
performance of accuracy with increments of the epoch.

Next, we used the ERNIE base model as the teacher model, while the FastText model
was used as the student model for training with different dimensions. The size of ngram
was set to 2 (Table 3).

One million online real customer service chat corpora were used for distillation. The
teacher model was used to obtain the tags, and next the student model FastText was distilled.
We conducted several FastText experiments with different dimensions, as shown in Figure 7,
where the accuracy increased with larger dimension numbers. The best performance of
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accuracy reached 0.95, which did not surpass the teacher model ERNIE in its accuracy
of 0.957. In addition, the experiments of different word-ngrams was also conducted, as
shown in Figure 8. This experiment showed which word-ngrams reached the best accuracy
performance of 0.951, of which there were two.

Table 2. Super parameters of ERNIE and BERT model training.

ERNIE and BERT Parameters Value

Layer Numbers 12
Learning Rate 5 × 10−5

Batch Size 256
Weight Decay 0.01

Epoch 10
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Table 3. Parameters of FastText model training.

FastText Parameters Value

Learning Rate 0.01
neg 10

ngram 2
Dimension 30

In addition, the LSTM and BERT algorithm models were used for intention classifica-
tion on the same corpus for comparison with the same training and test corpus. The results
of Bi-LSTM, BERT base, ERNIE base, FastText, and FastText (ERNIE distillation) are shown
in Table 4.

It can be seen from the experimental results that the FastText model has the lowest
accuracy before distillation, but it shows the best computational performance. For the
Chinese intention classification problem of e-commerce customer service, the ERNIE (base)
model has a significant improvement in accuracy when compared with the BERT (base)
model. There is not much difference in the average time consumption of online services be-
tween these two models. FastText distilled by ERNIE (base) has a significant improvement
in accuracy, 95%, with a beneficial computational performance.

The model complexity and the number of parameters of FastText have no advantages
over the ERNIE model, but it has obvious advantages in computational performance and
has a beneficial performance of accuracy after distillation.
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Table 4. Comparison of accuracy and time-consuming of different models.

Model Accuracy (%) Time-Consuming (ms)

Bi-LSTM 94.36 10.0+
FastText 94.16 0.1

BERT (Base) 94.50 10.0+
ERNIE (Base) 95.70 10.0+

FastText (ERNIE Distillation) 95.10 0.1
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7. Conclusions

This paper applied the teacher-student distillation model, as well as proposed the
teacher model based on ERNIE. Further, it applied it to the student model based on
FastText in its intention recognition task of a chatbot for after-sale services in e-commerce.
Compared with traditional models, the ERNIE model based on transfer learning had a
beneficial advantage in the task of intelligent dialogue intention classifications. However,
the network structure of the ERNIE model was complex, and it was difficult to meet the
online performance requirements under the condition of high concurrent qps in large-
scale e-commerce scenarios. In addition, GPU was expensive and had no cost advantage.
Therefore, the labeling inference of the ERNIE model was performed on one million online
corpora, and then the distillation was carried out on the student model FastText by using
the one million online labeled corpora labeled by teach model of ERNIE.

Experiments on real chatbot corpus demonstrated that the ERNIE model outperformed
the other models, such as LSTM, FastText, and BERT. The intention recognition accuracy of
the ERNIE model could reach 95.7% in 16 tasks of 100,000 intelligent dialogue tasks, which
was higher than LSTM and BERT in the same task. By using ERNIE as the teacher model
and distilling the student model based on FastText, the intention recognition accuracy was
improved by about 0.94%, compared with the native FastText model. The performance of
FastText could reach 0.1 ms, which could meet the online requirements of high concurrency.
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