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Abstract: Although Aerial Vehicle images are a viable tool for observing large-scale patterns of fires
and their impacts, its application is limited by the complex optical georeferencing procedure due to
the lack of distinctive visual features in forest environments. For this reason, an exploratory study
on rough and flat terrains was conducted to use and validate the Iterative Ray-Tracing method in
combination with a Bearings-Range Extended Kalman Filter as a real-time forest fire georeferencing
and filtering algorithm on images captured by an aerial vehicle. The Iterative Ray-Tracing method
requires a vehicle equipped with a Global Positioning System (GPS), an Inertial Measurement Unit
(IMU), a calibrated camera, and a Digital Elevation Map (DEM). The proposed method receives
the real-time input of the GPS, IMU, and the image coordinates of the pixels to georeference (com-
puted by a companion algorithm of fire front detection) and outputs the geographical coordinates
corresponding to those pixels. The Unscented Transform B is proposed to characterize the Iterative
Ray-Tracing uncertainty. A Bearings-Range filter measurement model is introduced in a sequential
filtering architecture to reduce the noise in the measurements, assuming static targets. A performance
comparison is done between the Bearings-Only and the Bearings-Range observation models, and
between the Extended and Cubature Kalman Filters. In simulation studies with ground truth, without
filtering we obtained a georeferencing Root Mean Squared Errors (RMSE) of 30.7 and 43.4 m for the
rough and flat terrains respectively, while filtering with the proposed Bearings-Range Extended
Kalman Filter showed the best results by reducing the previous RMSE to 11.7 and 19.8 m, respectively.
In addition, the comparison of both filter algorithms showed a good performance of Bearings-Range
filter which was slightly faster. Indeed, these experiments based on the real data conducted to
results demonstrated the applicability of the proposed methodology for the real-time georeferencing
forest fires.

Keywords: forest fire; aerial vehicle; georeferencing; iterative ray-tracing; cubature kalman and
bearings-range filters; GPS; IMU; DEM

1. Introduction

Forest fires represent one of the biggest catastrophes affecting the land [1]. Every year,
over 3400 km² of land were burned in the European Union [2]. A great percentage of this
burned area includes protected ecosystem areas which will take many years to restore [2].
The problem is exacerbated due to the difficulties of identifying, managing and predicting
the fire propagation [1,3,4]. On 17 June 2017, a complex of at least five wildfires converged
in the region of Pedrógão Grande, Portugal, and burned more than 450 km² while taking the
life of 66 persons [5]. After that dramatic event, a large national research funding program
for wildfire combat and prevention took place. On that context, the FIREFRONT project
(www.firefront.pt, accessed on 15 September 2021) is an initiative to help combat wildfires
using automated image analysis and georeferencing techniques from airborne imagery
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for real-time decision support. The ability to detect, map and forecast the progression of
fires is essential to adequately plan its combat strategy. In this paper, we describe a study
on the techniques to compute the geographical location of the coordinates of observed
image pixels corresponding to a fire front. The methods for detecting the fire front pixels in
images are outside the scope of the present paper, and have been described in [6,7].

In recent years, remote sensing has seen an increased interest in the scientific commu-
nity [8–11]. The development and widespread of Unmanned Aerial Vehicles (UAVs), as
a cheaper solution when compared to manned aerial vehicles, enabled the development
of target geolocalization applications. These range from agriculture [12], natural disaster
management [13] and fire detection and monitoring [14].

The most commonly used sensors regarding target geolocalization are digital cameras,
Global Positioning Systems (GPSs) and Inertial Measurement Units (IMUs). This became
known as Direct Georeferencing, since direct sensor orientation is computed by processing
the information provided by the onboard sensors [15], i.e., the camera’s extrinsic parame-
ters (EPs) are directly calculated. Depending on the accuracy requirements, sensors with
different specifications can be used. However, the higher the desired accuracy, the higher
cost and/or size of the hardware. Due to payload constraints, UAV’s typically use smaller
and error-prone IMU’s, especially in yaw measurements [16], such as MicroElectroMechan-
ical Systems (MEMS). This lack of quality lead to the development of computer vision
algorithms such as Structure from Motion (SfM) that extract and match features between
images. The integration of these algorithms with the poses provided by the IMU and GPS
greatly increase the accuracy of the georeferencing process.

Alternatively, Indirect Georeferencing can be used for systems that lack navigation
equipment. This requires, however, the placement of Ground Control Points (GCP) to
determine the camera’s EPs, which can be time consuming and costly [17]. Furthermore,
in a natural disaster scenario or in rough and inaccessible terrains, it is impracticable to
place GCP. Thus, our work focus on the use of Direct Georeferencing methods to enable
real-time wildfire geolocalization.

There are several studies on direct georeferencing methods that motivate our approach.
Sheng [18] and Sheng [19] test three different algorithms to solve the optic ray-DEM
intersection: Iterative Photogrammetry (IPG), Ray-Tracing (RT) and Iterative Ray-Tracing
(IRT). Ponda et al. [20] developed a Line-of-Sight Bearings-Only EKF for target localization
to filter the noise in the raw observations of the line-of-sight. Xu et al. [21] proposed to use
the Cubature Kalman Filter (CKF) on the same measurement model (Bearings-Only) to take
into account the possible linearization errors induced by the standard EKF. Zhang et al. [22]
proposed a Bearings-Only model with a CKF for relative spacecraft attitude and orientation
estimation. Later, Zhang et al. [23] presents a target geolocation method for UAV’s where
range measurements are obtained from stereo vision but did not use a filtering.

In this work we propose a georeferencing algorithm for forest environments composed
of a EKF with Bearings-Range observation model, where the range is computed via IRT.
This combination is novel as previous filtering architectures use Bearings-Only observa-
tions. Although Bearings-Range Extended Kalman Filters are common in robotics [24], to
the best of the authors knowledge, they have not been applied to target georeferencing
with measurements obtained by Iterative Ray-Tracing. Additionally, we propose using
Unscented Transform (UT) to characterize the uncertainty of the bearing and range obser-
vations in the initialization of the filter. This uncertainty can also be useful in later stages
of the project, e.g., in making more realistic stochastic simulation of fire propagation. We
perform experiments both in simulations and real imagery. In the simulations we perform a
comparative study between the unfiltered IRT measurements and filtered versions of it with
EKF/CKF filters and Bearings-Only/Bearings-Range observation models. We compare
the target geolocalization uncertainties in flat vs. hilly terrains. In real imagery we test
the algorithm with footage from real fire combat situations and from smartphone data,
assessing the quality of the estimations according to different viewpoints. Finally, we
perform an experiment with an indirect method using manually selected GCP to define a
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benchmark and qualitatively compare performance with the direct methods. However, we
note that indirect methods are not easy to automate and not suitable to our problem due to
scarcity of GCP in general forest environments.

The paper is organized as follows. In Section 2 we review the main approaches for
georeferencing targets observed on images acquired from aerial vehicles. In Section 3 we
present the outline of the proposed algorithms and the methods used in its implementation.
In Section 4 we present simulation results that allow the quantitative assessment of the
performance of the proposed methods and a comparison between different algorithmic
settings and environmental conditions. In Section 5 we present results with real images
and videos, including actual firefighting scenarios, and present a discussion of the obtained
results. Finally, in Section 6 we summarize the main conclusions of the paper and discuss
some open issues for future work.

2. Georeferencing Methods for UAV Observations

This section outlines the problem of target georeferencing from airborne cameras and
provides a summary of the main approaches proposed in the literature.

2.1. Optic-Ray Surface Intersection

When projecting a 3D point from the world to the 2D image plane, there is a loss of
information. The 2D points are defined up to an unknown scale factor, defined by the
distance from the 3D point to the principal point of the camera. To invert the projection,
assuming that the camera’s intrinsic parameters (IP) and extrinsic parameters (EP) are
known, either the distance to the observed point or information regarding the surface
where the point lies needs to be known.

2.2. Flat Earth Hypothesis

Leira et al. [25] propose the intersection of the optic ray, whose direction is defined by
the pixel to map, with a plane with altitude Z equal to zero. The UAV is equipped with a
gimbal and a thermal camera, and the transformation between the camera frame and the
inertial frame is known. By doing this assumption, the scaling factor can be calculated,
and the optic ray is projected to the surface. An accuracy of 7.8 m was achieved for a
variable flight height, between 50 and 100 m. Xiang and Tian [26] propose an automatic
georeferencing algorithm that estimates the target’s world coordinates and mosaics the
images together based on their estimated geographical positions. Since the purpose of
that paper was to find horizontal coordinates, it assumes that all targets are on the same
elevation plane.

2.3. Digital Surface

Sheng [18] tests three different algorithms to solve the optic ray-DEM intersection:
Iterative Photogrammetry (IPG), Ray-Tracing (RT) and Iterative Ray-Tracing (IRT). The
IPG’s convergence depends on the initial elevation, the view angle and profile inclination
angle and is prone to fail with occlusions or rough terrains while IRT’s convergence depends
on the step chosen to iterate along the optic ray. RT actually calculates the intersection
point, so it is the most robust method; however, it is more computationally demanding
when compared to IRT and IPG. If computational power is available, the best option is the
RT, otherwise, the IRT seems the best option as it is not so prone to fail with occlusions as
the IPG and its convergence only depends on the step size.

Sheng [19] continues the previous work and reviews in detail the IPG, as it is the most
promising and efficient of the methods. The convergence condition and convergence speed
are analyzed.

2.4. Structure from Motion

Structure from Motion is a method that relies on feature extraction and matching
from sequential images captured with different camera poses. Having multiple images
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with the 2D coordinates of these features enables stereo-vision techniques to solve their 3D
coordinates. These coordinates are then georeferenced in two possible ways: the camera
pose in the inertial frame is known, via GPS and IMU, or with the placement of GCP. SfM
is usually followed by a Bundle Adjustment (BA), an algorithm that takes as input the
targets’ 3D and 2D positions in the camera and image frames, respectively, and performs a
least-squares minimization with the reprojection error as a cost function. Forlani et al. [27]
propose the use of SfM to match a set of images acquired under poor Global Navigation
Satellite System (GNSS) coverage, designated as the master block, to a set of georeferenced
images acquired under nominal GNSS coverage, designated as the auxiliary block. Features
are extracted and used to match the images from the master to the auxiliary blocks and are
followed by a BA. The method was tested with different camera calibrations. A Root Mean
Squared Error (RMSE) of centimeters was achieved for a master block flown at 30 m and
an auxiliary block flown at 100 m. He et al. [17] present the mathematical premise of SfM
with detail. Prior knowledge of the vehicle trajectory (planar motion) is used to simplify
the problem from 6 Degrees Of Freedom (DOF) to 3DOF, enabling a 2-point approach. An
incremental approach is compared to a global approach in terms of EP recovery, followed
by a BA. The RMSEs obtained for both methodologies are on the centimeter order, with
the global strategy performing slightly better than the incremental, for a maximum flight
height of 50 m.

2.5. Georeferenced Imagery

This methodology consists of matching images captured by an aerial vehicle with
available georeferenced imagery, such as Google Earth. Conte et al. [28] propose an image
registration approach by pattern-matching the images collected at 100 m from a micro aerial
vehicle with satellite imagery. Multiple measurements are taken and a recursive least square
filter is applied. The method is compared against the intersection of the optic ray assuming
the flat earth simplification. The proposed method achieved a RMSE of 2.25 m while
the intersection method best result was a RMSE of 22 m. Hamidi and Samadzadegan [29]
propose the IPG algorithm combined with EP refinement using feature matching with
georeferenced imagery. The DEM used was the Shuttle Radar Topography Mission [30],
with a spatial resolution of 90 m. On a first stage, the EP are computed using the information
provided by the UAV’s IMU and GPS. On a second stage, the EP are adjusted and the IPG is
applied. The mean UAV height in the experimental procedure was 400 m. The refinement
improved the position accuracy by 100 m to 14.476 m.

2.6. Line-of-Sight Filtering

Barber et al. [31] applies the flat earth simplification to calculate the target’s coordinates,
but its main innovation is applying a recursive least square filter to multiple observations
while performing a loitering pattern. By doing so, the geolocation errors decreased from
40 m to less than 5 m. Ponda et al. [20] introduces a bearings-only 3D target coordinate
estimation with an EKF. This model filters the azimuth and elevation angles between the
aerial vehicle and the target for every measurement. Three cases are simulated: stationary
target, slow-moving target and fast-moving target. In all cases, a stationary process is
assumed and the process noise is tuned to allow unknown target motion. The filter
manages to track the target for the stationary and slow-moving cases and fails to do so in
the fast-moving case. Xu et al. [21] also estimate the target’s position by filtering multiple
bearing measurements with a CKF [32] while performing a loitering trajectory, centered
on the target. The filter’s initial state is calculated with the IPG using the ASTER-GDEM
V2 [33], which has 30-m spatial resolution. The CKF method is compared against the
standalone IPG and flat earth simplification. Two experiments are performed on different
terrains, rough and flat. In the two cases, the standalone IPG achieves similar accuracy,
39.6 and 36.2 m. In the flat terrain, the CKF and the flat earth simplification achieve similar
RMSEs, 10.8 and 12.9 m, respectively. Finally, in the rough terrain, the flat earth has a bad
performance (105.6 m), because this approximation is invalid for this terrain type, whereas
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the proposed method achieves a RMSE of 13.8 m. For both experiments, the UAV flew
at a maximum height of 500. Finally, Shao et al. [34] proposed a new model, which can
appropriately represent the actual field of view (FOV) for a camera as a filtering step used
for positioning data and other sensor measurements.

2.7. Others

Zhang et al. [23] use a stereo-vision technique to determine the target relative height
with respect to the UAV. In addition, the sensor technology used in UAVs is very similar to
that used in today’s smartphones [35]. A yaw bias estimation algorithm is also proposed.
Two different trajectories were tested, overflight and loitering. First, the relative target
height and yaw bias are estimated using multiple bearing measurements of the same target.
Then its coordinates are estimated. The proposed method achieves a horizontal and vertical
accuracy of 0.7 and 0.5 m, respectively, for the loitering trajectory, and 1.77 and 1.15 m for
the overflight, for maximum flight heights of 20 m. That work provides an interesting result
by showing that the trajectory of the UAV is an important factor to take into account when
determining the target’s position. Zhang et al. [36] continue the work developed in [23]
and study the influence of the trajectory on the accuracy of the georeferencing algorithm.
Trajectory planning was again demonstrated to influence the georeferencing accuracy.

3. Methodology

In this section, we present the methods used in the proposed georeferencing algorithm.
We start with a description of the geometry of the problem with corresponding coordinate
frames and, then, we describe the Iterative Ray-Tracing method used, the Unscented
Transform, and the Bearings-Range measurement model. Finally, we describe the metrics
used in the evaluation. Our method assumes that the camera and IMU Bias are calibrated
a priori.

3.1. Camera Calibration

The camera calibration is an important procedure in computer vision that calculates
the camera’s intrinsic parameters and allows the extraction of metric information from
bi-dimensional images. For this reason, before taking off, the camera must be calibrated. If
the lens configuration is not manipulated, these parameters remain constant throughout
the flight.

Using one of the many computer vision tools available (OpenCV or MATLAB Image
Processing and Computer Vision Toolbox), the calibration is done by moving and changing
the pose of a known pattern in the camera’s line of sight [37]. Usually, this pattern is a
checkerboard, and the size of the checkerboard square is measured beforehand.

The output of the calibration process is the camera’s intrinsic parameters matrix Kint:

Kint =

 fx 0 cx
0 fy cy
0 0 1

,

where ( fx, fy) represent the focal length and (cx, cy) is the camera’s principal point. These
parameters are essential to define the observation directions through the optic ray from the
projection center to the target pixel.

3.2. Coordinate Frames

The geometry or our problem is illustrated in Figure 1. The camera is installed in
a gimbal system that rotates in azimuth and elevation angles to control the observation
direction. The gimbal system base and the IMU are rigidly attached to the body of the
aircraft. Five coordinate frames were considered: camera, gimbal, body, vehicle and
inertial (world) frames . These frames are denoted respectively by: FC = (xC, yC, zC),
FG = (xG, yG, zG), FB = (xB, yB, zB), FV = (xV , yV , zV) and FI = (xI , yI , zI). The vehicle’s
frame is a North-East-Down frame centered on the vehicle’s center of mass, where the GPS
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and IMU are supposed to be located, and has the same orientation as the inertial frame.
In fact, since the translations between the camera, gimbal, body and vehicle are typically
much smaller than the distances to targets, we can neglect them and simply calibrate the
rotation transformations between those frames. Therefore, for the sake of simplicity, we
only use the rotation transformations between those frames in the following calculations.

1 
 

 
Figure 1. UAV, gimbal and camera frames [31].

3.2.1. Camera Frame

The camera frame has its origin in the optical center, the xC axis points to the right
of the image plane, the yC axis points downward on the image plane and zC axis points
in the direction of the optical axis of the camera. The rotation from the camera to the
gimbal coordinate frame is, by construction, a simple permutation of the coordinate axes,
defined by:

RG
C =

0 0 1
1 0 0
0 1 0



3.2.2. Gimbal Frame

The gimbal coordinate frame has two degrees of freedom around yG and zG due to its
pan and tilt movements, respectively. Defining the pan (elevation) and tilt (azimuth) angles
as αel and αaz, the rotation from the gimbal coordinate frame to the body coordinate frame
is given by RB

G = Rz(−αaz)Ry(−αel), resulting in :

RB
G =

cαelcαaz −sαaz sαelcαaz
sαazcαel cαaz sαazsαel
−sαel 0 cαel


where cλ , cos λ and sλ , sin λ.

3.2.3. Body Frame

The body frame describes the aircraft Bpose (position and orientation) and has its
origin in the center of mass of the UAV. The xB axis points in the direction of the nose, the
yB axis points towards the right wing and the zB axis points towards the aircraft’s belly.
Defining the roll (φ), pitch (θ) and yaw (ψ) angles as the movement of the UAV around the
axis xB, yB and zB, respectively, the rotation from the body to the vehicle coordinate frame
is defined by RV

B = Rz(−ψ)Ry(−θ)Rx(−φ), i.e.,

RV
B =

cψcθ cψsθsφ− sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ− cψsφ
−sθ cθsφ cβcφ


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3.3. Iterative Ray-Tracing

Iterative Ray-Tracing is a methodology that efficiently computes in an approximate
intersection between the optic ray corresponding to a camera pixel and the DEM of the
observed area. In our work we use the EU DEM v.1.1 [38] which has an approximate
resolution of 20m on the locations that will be used in the experimental studies.

Defining ~PV
Target as a vector, of arbitrary scale, pointing from the UAV to the target in

the inertial coordinate frame and ~PI
V as the vector pointing from the inertial frame origin to

the UAV, the target position will be found along the ray starting at ~PI
V with the direction of

~PV
Target. To obtain ~PV

Target (Equation (1)), the vector pointing from the camera optical center
to the target pixel (u, v) must be defined. Assuming fx ≈ fy we obtain:

~PC
Target =

[
u− cx, v− cy, fx+ fy

2

]T

This vector is now transformed to the vehicle coordinate frame using the coordinate
frame transformations described in Section 3.2,

~PV
Target = [X′d Y′d Z′d]

T = RV
B RB

GRG
C
~PC

Target (1)

Given the camera position R0 = [Xs Ys Zs]T in the inertial frame and the normalized
pointing vector Rd from the aerial vehicle to the target, in the vehicle frame is given by:

Rd = [Xd Yd Zd]
T =

1
||~PV

Target||
· ~PV

Target

the ray R that starts in the vehicle and points to the target in the inertial frame is parametri-
cally defined

R(t) = R0 + t ·Rd =

Xs
Ys
Zs

+ t ·

Xd
Yd
Zd

 (2)

where t is the step and represents the distance between a point R(t) on the ray and the
origin R0. When the ray elevation ZR becomes less than the surface elevation ZDEM, the
intersection is detected. To do this, we use a method with a dynamic step size for t. The
algorithm is initialized with a large step value t and when the intersection with the DEM is
detected (ZR ≤ ZDEM), the step size is reduced with a step divider, tdiv, until the t becomes
smaller than a pre-defined threshold, tth (Algorithm 1). Furthermore, the starting iteration
point, R′0 (Equation (3)), is set as the intersection of the ray with the maximum elevation of
the loaded DEM with respect to the inertial frame, Zmax. By defining a scaling factor

λ =
Zmax − ZR0

Zd
, for λ > 0

where ZR0 is the height of the camera and Zd is the third component of the normalized
pointing vector, it is possible to calculate the new starting point, with ZR0 = Zmax

R′0 = R0 + λ ·Rd (3)

Finally, bilinear interpolation was implemented, as in [21], to refine the elevation of
the queried point. Ghandehari et al. [39] concluded in their work that for DEM’s with
finer resolutions, such has the EU-DEM v1.1 [38], the one used in this work, this type of
interpolation achieves good results with low processing times.
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Algorithm 1: Complete Iterative Ray-Tracing.
Input : Telemetry from GPS and IMU, camera IP, target pixels, DEM
Output : Target coordinates in the inertial coordinate frame xI = [x y z]

1 Define ray origin R0;
2 Define ray direction Rd;
3 Define step size t;
4 Define step size threshold tth;
5 Define step size divider tdiv;
6 if ZR0 ≥ Zmax then
7 Update ray origin with Equation (3);
8 end
9 while No Intersection do

10 Extend ray with Equation (2);
11 Interpolate ray;
12 if ZR ≤ ZDEM AND t ≥ tth then
13 Update step t by diving it by step divider tdiv;
14 else if ZR ≤ ZDEM AND t < tth then
15 Intersection;
16 else
17 Augment t with current step value;
18 end
19 end

3.4. Uncertainty Characterization with the Unscented Transform

Three sources of uncertainty were taken into account: the vehicle GPS, IMU and
gimbal. The GPS contributed with three degrees of uncertainty related to the position of the
vehicle in the vehicle frame, σx, σy and σz. The vehicle IMU contributed with three degrees
of uncertainty related to the orientation angles of the vehicle with respect to the vehicle
frame, roll σφ, pitch σθ , and yaw σψ. Finally, the gimbal contributed with two degrees of
uncertainty related to the elevation and azimuth angles that establish the orientation of the
gimbal with respect to the body frame, σαel and σαaz . This makes a total of n = 8 degrees of
uncertainty. The standard deviations presented in Table 1 follow the guidelines in [21] for
typical values of the telemetry errors. The different coordinates are assumed independent,
and the covariance matrix is defined as

Σ = diag(σ2
x , σ2

y , σ2
z , σ2

φ, σ2
θ , σ2

ψ, σ2
αel

, σ2
αaz)

The UT parameters were set according to Table 2. Since we approximate the distribu-
tion as a Gaussian, β = 2 is the optimal choice to minimize higher order information from
the Taylor Series expansion. As for α and κ, these values were chosen so as to have the
sigma points equal to the standard deviations of the equipment.

Table 1. GPS, IMU and Gimbal standard deviations.

Device Standard Deviation σi Value

GPS
σx
σy
σz

10 m
10 m
10 m

IMU
σφ

σθ

σψ

1◦

1◦

3◦

Gimbal σαel
σαaz

1◦

1◦
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Table 2. UT Parameters.

Parameter Value

α 1√
8

κ 0
β 2

The target position and uncertainty are calculated by propagating the sigma points
with the complete iterative ray-tracing using the Algorithm 2:

Algorithm 2: Unscented Transform with IRT.
Output : Geodetic target coordinates x = [φ λ h] and uncertainty σxyz = [σx σy σz]

1 Generate 2n + 1 sigma points;
2 for i← 0 to 2n do
3 Calculate the intersection for each sigma point, yi = IRT(χi);
4 end
5 Recover mean x and covariance P;
6 Convert mean to geodetic coordinates and uncertainty σxyz =

√
diag(P);

3.5. Bearings-Range Measurement Model

Considering measurement errors in the GPS and IMU, this section details the proposed
vision-based target localization method using using a filtering strategy on bearings and
range measurements. Previous works using filtering approaches in the georeferencing
problem [20,21] use a bearings-only approach. In this paper, we propose a new filter
measurement model that takes advantage of the available range information between the
vehicle and the target computed by Iterative Ray-Tracing under the availability of a DEM of
the observed area. Experiments will then compare the new Bearings-Range filter with the
more common Bearings-Only filter, to assess the benefit of the additional depth information
computed by IRT. Taking into account the possible linearization errors induced by the EKF,
a performance comparison is also done with a CKF.

The bearings localization problem is based on the extraction of the azimuth β and
elevation γ angles from the pointing vector, as shown in Figure 2. Since the proposed
georeferencing algorithm calculates the 3D coordinates of the target with the support of a
DEM, it enables the estimation of the distance r between the vehicle and the target.

Figure 2. Azimuth (β), elevation (φ) and range (r) between vehicle (p) and target (x).

The measurement model h(xk) we propose is given by
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h(xk) =

β
γ
r

 =


tan−1

(
ry
rx

)
tan−1

(
rz√

r2
x+r2

y

)
√

r2
x + r2

y + r2
z


where rk = [rx ry rz]Tk = [px − xx, py − xy, pz − xz]Tk is the relative vector between the
vehicle and the target for the kth measurement, pk = [px py pz]Tk is the position of the
vehicle and xk = [xx xy xz]Tk is the position of the target and the state to be estimated.

Assuming that the target is stationary (in our problem, the displacement of a fire front
is small in the time frame of the filtering process), the target dynamics model is given by

f(xk) = Φk+1|kxk =

1 0 0
0 1 0
0 0 1

xk

and the covariance of the system noise wk is given by

Qk =

0 0 0
0 0 0
0 0 0


For the EKF, the Jacobian of the measurement function with respect to the state is

Hk =


ry

r2
x+r2

y
− rx

r2
x+r2

y
0

rxrz

||r||2
√

r2
x+r2

y

ryrz

||r||2
√

r2
x+r2

y
−
√

r2
x+r2

y

||r||2

− rx
||r|| − ry

||r|| − rz
||r||


k

The sensor noise mentioned in Section 3.4 is used to model the noise covariance matrix,
tuned to the following values

Rk =

σ2
αaz 0 0
0 σ2

αel
0

0 0 σ2
r

 =

12 0 0
0 12 0
0 0 102


where σαaz [

◦] and σαel [
◦] are the gimbal’s azimuth and elevation uncertainties and σr[m] is

the range uncertainty. The IRT and UT results of the first observation initialize the filters’
state and covariance, x̂0 and P̂0.

3.6. Metrics

The metrics presented here will be used throughout the following sections. The
position error

ep = [xx xy xz]
T − [x̂x x̂y x̂z]

T

is used to determine the distance between the target position, x, and its estimates, x̂. To
characterize the accuracy of the algorithm, the average position error (Equation (4)) and
RMSE (Equation (5)) are defined by, respectively

µep =
∑N

i=1

√
e2

pxi
+ e2

pyi
+ e2

pzi

N
, (4)

RMSE =

√
∑N

i=1 e2
pxi

+ e2
pyi

+ e2
pzi

N
. (5)
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Although the former provides the average distance between the estimates and the
target, the latter characterizes their distribution.

The target estimate uncertainty σxyz is given by

σxyz = [σxx, σyy, σzz]
T

based in the square root of the diagonal values of the target estimate covariance matrix P

P =

σ2
xx σ2

xy σ2
xz

σ2
yx σ2

yy σ2
yx

σ2
zx σ2

zy σ2
zz

.

Finally, the average position uncertainty is defined by

µσxyz =
∑N

i=1

√
σ2

xxi
+ σ2

yyi
+ σ2

zzi

N
.

4. Simulation Experiments

For the evaluation of the developed methods with ground truth, we performed graph-
ical simulations with two types of terrains—rough and flat—as in previous works on this
topic [21]. In both cases, a linear trajectory was followed, with the aerial vehicle flying
at a speed of 250 km/h. Ground truth telemetry was generated and perturbed with the
following model:

x̂i(t) = xi(t) + w(t), w ∼ N (0, σxi ), (6)

where x̂i is the noisy variable, xi is the ground truth variable, w is the zero-mean noise with
σxi standard deviation. The assumed values for σxi are the same as the ones used for the
UT, presented in Table 1. For each simulation, 100 runs were performed with independent
noise sequences, and the EKF and CKF performances using the Bearings-Range (BR-EKF,
BR-CKF) and Bearings-Only (BO-EKF, BO-CKF) measurement models were compared. The
results presented are an average of all the runs.

4.1. Rough Terrain Simulation

The chosen rough terrain is located near Coentral, Leiria, Portugal. The main charac-
teristics and geographical coordinates of the terrain are summarized in Table 3. Figure 3
shows the chosen rough terrain area and the respective DEM is presented in Figure 4.

Figure 3. Satellite view of the testing area near Coentral, Leiria.
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Figure 4. DEM of testing area near Coentral, Leiria.

Table 3. Coentral DEM characteristics.

Characteristics

Maximum Height [m] 1088.00
Minimum Height [m] 850.57
WGS84/EPSG:4326 Coordinates [◦] N[40.060, 40.067] E[−8.166,−8.159]

Simulations were performed in the Gazebo Simulator (http://gazebosim.org, accessed
on 15 September 2021) that allowed us to acquire telemetry and imagery data. Gazebo is
an open-source robot simulator useful for simulating robots with a diversity of sensors and
actuators. In the context of this work, it was used to acquire the position and orientation of
a vehicle and imagery of a target using a camera attached to said vehicle. A linear trajectory
parallel to the terrain elevation was simulated, with constant yaw equal to 48◦, roll and
pitch equal to 0◦, and a variable azimuth and elevation angles that kept the target in sight
of the camera. This way, it was possible to manually identify the pixel corresponding to
the target on each image. Because there is no fire model available in the Gazebo library,
a checkerboard was used to represent the target.

A total of 25 measurements were collected at a constant height of 1650 m. Figure 5
shows the resulting measurements following the model presented in Equation (6). The
average distance to the target was 880 m. Figure 6 shows the evolution of the position
error and uncertainty with the number of measurements for the Bearings-Range and
Bearings-Only models with the EKF and CKF filters. Table 4 shows the numerical results
of the average position errors, RMSE and average position uncertainty at the end of the
filtering process.

http://gazebosim.org
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Table 4. IRT, IRT+BR-EKF, IRT+BO-EKF, IRT+BR-CKF and IRT+BO-CKF results for the rough
terrain scenario.

Method µep [m] RMSE [m] µσxyz [m]

IRT 30.527 30.743 35.965
IRT+BR-EKF 6.221 11.726 3.837
IRT+BO-EKF 8.225 13.071 5.137
IRT+BR-CKF 6.222 11.785 3.782
IRT+BO-CKF 8.193 13.136 5.054

Figure 5. Measurements with noise-induced position and attitude on the rough terrain simulation.

(a) (b)

(c) (d)

Figure 6. EKF and CKF filtering results for the rough terrain simulation. (a) BR-EKF and BR-CKF
average norm of the position error; (b) BR-EKF and BR-CKF average norm of the position uncertainty;
(c) BO-EKF and BO-CKF average norm of the position error; (d) BO-EKF and BO-CKF average norm
of the position uncertainty.
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4.2. Flat Terrain Simulation

Regarding the flat terrain dataset, a small area near Porto de Mós, Leiria, Portugal,
represented in Figure 7, was chosen. The main characteristics and geographical coordinates
of the area are summarized in Table 5 and its DEM is presented in Figure 8. The same area
was later used to perform a real experiment, to be presented in the following section.

For this terrain type, MATLAB was used to generate ground truth telemetry data. As
in the previous data set, a linear trajectory was simulated. This time, the vehicle moved
East, therefore with the yaw equal to 90◦, while the roll and pitch were set to 0◦. It was
assumed that the target was always centered in the images, so no camera model was needed
and the azimuth and elevation angles were calculated based on the trigonometric relation
between the aerial vehicle and the target.

Figure 7. Satellite view of the testing area near Porto de Mós, Leiria.

Figure 8. Testing area near Porto de Mós, Leiria.

Table 5. Porto de Mós DEM characteristics.

Characteristics

Maximum Height [m] 224.82
Minimum Height [m] 155.25
WGS84/EPSG:4326 Coordinates [◦] N[39.5940, 39.5998] E[−8.8507,−8.8424]

A total of 21 measurements were collected at a constant height of 950 m. Figure 9
shows the resulting measurements with noisy data. The average distance to the target was
985 m.
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Figure 9. Measurements with noise-induced position and attitude on the flat terrain simulation.

4.3. Discussion of Simulation Results

These simulations demonstrate the advantage of including the range information
in the filtering algorithm. Both in the rough and flat simulations, the Bearings-Range
measurement model achieves lower position errors, position uncertainties and RMSE’s
for the same number of measurements, therefore is more accurate than the Bearings-
Only measurement model. Furthermore, it has a faster convergence, evident for k = 10
in Figures 6 and 10. The results presented in Tables 4 and 6 show the clear improvement on
the accuracy of the estimated target position when applying the Bearings-Range filtering
algorithm versus the standalone IRT. The RMSE is reduced by 61.86% and 54.12% for the
rough and flat terrains, respectively, both for the BR-EKF and BR-CKF. For both achieve
the same final result with an identical progression in the position error and uncertainty,
there is no clear advantage in using the BR-CKF over the BR-EKF. In addition, the EKF
shows a slightly faster processing time (Table 7), making it more appropriate for real-
time applications.

Table 6. IRT, IRT+BR-EKF, IRT+BO-EKF, IRT+BR-CKF and IRT+BO-CKF results for the flat terrain
scenario.

Method µep [m] RMSE [m] µσxyz [m]

IRT 43.121 43.405 48.373
IRT+BR-EKF 11.020 19.910 3.898
IRT+BO-EKF 11.565 21.578 3.909
IRT+BR-CKF 11.000 19.842 3.899
IRT+BO-CKF 11.575 21.573 3.911

Table 7. EKF and CKF processing time comparison.

Kalman Filter Average Processing Time [ms]

Extended 0.795
Cubature 0.83
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(a) (b)

(c) (d)

Figure 10. EKF and CKF filtering results for the flat terrain simulation. (a) BR-EKF and BR-CKF
average norm of the position error; (b) BR-EKF and BR-CKF average norm of the position uncertainty;
(c) BO-EKF and BO-CKF average norm of the position error; (d) BO-EKF and BO-CKF average norm
of the position uncertainty.

5. Results with Real Footage

To test the effectiveness of the proposed algorithm with real data, two experiments
were designed.

Section 5.1 details the procedure where a mobile phone was used to acquire telemetry
and imagery of a target along a pedestrian path, on a hilly terrain near Porto de Mós, Leiria,
Portugal. This experiment allows the verification of the effect of low-viewing angles to the
target. Low angle perspectives can happen in the observation of wildfires from drones.
Drones cannot fly directly above the wildfire due to smoke and heat convection airflow, so
they must take observations from lateral perspectives..

Two simulations, along the same XY coordinates but at different heights were also
performed. This allowed us to assess the dependency of the georeferencing method with
the view angle.

In Section 5.2 the algorithm is applied to a footage recorded by a Portuguese Air Force
UAV near Chaves, Vila Real, Portugal, in a real firefighting scenario.

Finally, in Section 5.3, we perform and experiment using GCP. The GCP are used to ob-
tain precise estimates of the camera pose, correcting telemetry errors. This experiment thus
defines an upper bound to the achievable performance of the standalone IRT georeferencing
method. This method, because it uses GCP, cannot be considered a direct georeferencing
method, and cannot be applied for real-time georeferencing in forest scenarios due to the
difficulty in acquiring reliable landmarks automatically in such scenarios. However, it
allows us to figure out the achievable performance of standalone IRT as if noise in IMU
and GPS could be neglected. This experiment is made with real footage recorded near
Pombal, Leiria, Portugal, in a firefighting scenario in a location where several GCP could
be identified in a nearby village. An optimization problem is formulated to minimize the
reprojection error of the GCP to calculate the camera’s intrinsic parameters and rotations,
which are then used in the georeferencing algorithm.
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5.1. Mobile Phone Procedure

A mobile phone was used to record GPS, IMU and image data along a pedestrian path.
The natural elevation of Serra dos Candeeiros, near Porto de Mós, Leiria, Portugal was used to
capture images of a target (Figure 11) located at a lower height.

Figure 11. Structure used as target (left) and one of the photos used in the georeferencing procedure,
with the target marked with a red circle (right).

A total of 14 images were acquired at an average camera-to-target distance of 605 m.
For this experiment, considering that the IMU of the mobile phone had a lower quality when
compared to the ones used onboard an aerial vehicle, the measurement noise covariance
matrix Rk was tuned to

Rk =

52 0 0
0 52 0
0 0 102

.

The camera was calibrated using a dataset of 20 images. As a result, the following
intrinsic and distortion parameters were obtained:

Kint =

3363.507 0 1967.377
0 3369.501 1419.890
0 0 1


k =

[
0.2265 −1.0227 1.7296

]T

p =
[
−0.0098 −0.0065

]T

A mean reprojection error of 0.68 pixels was achieved with a 3-parameter radial
distortion model.

In Figure 12 the trajectory is plotted in a local ENU coordinate system, with the location
of the images, the target and the estimated locations of the target. The average distance
between the image positions and the target was 640.83 m, with a maximum of 770.92 m
and 493.90 m. The results are presented in Table 8.

Table 8. Standalone IRT and IRT+BR-EKF filtering results of the mobile phone experimental proce-
dure.

Method µep [m] RMSE [m] µσxyz [m]

IRT 74.483 77.498 157.035
IRT+BR-EKF 33.620 41.501 7.250
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Figure 12. Trajectory and IRT results in local ENU coordinate system

Figure 13 provides a clear view of the measurements obtained with the IRT and the
improvement achieved by applying the BR-EKF. A bias along the positive East direction is
visible, since 12 of the 14 IRT measurements are in that area.

Figure 13. Real position of the target (green), IRT measurements (blue) and estimated position with
the EKF (red).

This can be due to the non-ideal experimental setup, i.e., a line-of-sight more parallel
to the ground when compared to a more vertical one from an aerial vehicle. The mean
position and uncertainty are plotted in Figure 14 and evidence this ill-conditioned setup,
with a stretched uncertainty region along the line-of-sight direction. This means that a small
error on the vertical image direction, be it the selected pixel or the roll angle, is amplified
by this configuration. In addition, the images were taken at approximate positions, limiting
the new information added to the BR-EKF.
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Figure 14. Mean position and uncertainty from experimental procedure with real data displayed on
a satellite view of the terrain.

5.1.1. Simulations from Ground Perspective

The same experiment was simulated to investigate if the ill-conditioning observed
with the real data was due to the non-ideal perspective or pixel measurement errors (the
target pixel coordinates were selected manually). A simulation was performed with the
same trajectory but with the camera orientations computed to center the target with the
image origin, to cancel pixel measurement errors. Noise to GPS and IMU was added
according to Table 1. The mean position and uncertainty are plotted in Figure 15. The
results are presented in Table 9 and Figure 15. The uncertainty ellipsoid in Figure 15 still
shows an East-West elongation, reflecting the ill-conditioning of the problem even without
pixel measurement errors. In fact, the simulated results are worse than with real data,
with an increase of almost 100% in the RMSE and 72 m in the position uncertainty when
compared to Table 8, suggesting that the telemetry noise added in simulation may be larger
than in the real data. Furthermore, the mean estimated target position presented Figure 15
is shifted towards West, instead of what happened with real data (East), suggesting that
the source of the bias is of random nature.

Figure 15. Mean position and uncertainty from ground perspective simulation displayed on a satellite
view of the terrain.
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Table 9. Results from the Porto de Mós experimental procedure simulated with a ground perspective.

Method µep [m] RMSE [m] µσxyz [m]

IRT 134.377 140.2487 229.571
IRT+BR-EKF 73.923 94.686 4.055

5.1.2. Simulation from Aerial Perspective

Finally, the same trajectory was simulated with an aerial perspective at a height of
950 m. The results presented in Table 10 show that higher perspectives are beneficial to the
quality of the results, as expected. The RMSE decreased by 36 m and the position uncertainty
was reduced by 113 m, as a result of a more perpendicular line-of-sight demonstrated
in Figure 16. In addition, the biases identified in the experimental procedure and ground
simulation are no longer present since the mean estimated target position is practically
identical to the real target position. In conclusion, the use of more tilted perspective is
clearly advantageous when applying the proposed algorithm, providing a more accurate
estimate of the target’s position, which is further improved with the Bearings-Range EKF.

Table 10. Results from the Porto de Mós experimental procedure simulated with an aerial perspective.

Method µep [m] RMSE [m] µσxyz [m]

IRT 47.120 47.605 43.560
IRT+BR-EKF 13.908 21.946 5.109

Figure 16. Mean position and uncertainty from aerial perspective simulation displayed on a satellite
view of the terrain.

5.2. Portuguese Air Force UAV Footage

A UAV operated by the Portuguese Air Force recorded a fire burning video near
Chaves, Vila Real, Portugal, at 41.631724 N −7.465919 E. A section of this video was gently
provided by the Portuguese Air Force for this research. A couple of video frames from this
video are shown in Figure 17. The video feed metadata contains the UAV’s position in the
WGS84 reference system and the gimbal azimuth and elevation angles. A total of 7 frames
were extracted and used to test the algorithm.

The used camera is a Sony EV-7500 with a lens of 30× optical zoom, f = 4.3 mm to
f = 129 mm (F 1.6 to F 4.7, HFOV 63.7). Despite the intrinsic parameters being known, the
camera zoom level at the recording time is not specified. However, since the target was
locked in the center of the image, it was possible to perform the georeferencing algorithm
without (he knowledge of the focal distance we assumed the principal point did not change
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with the zoom level, so the optical ray coincides with the Z coordinate of the camera
reference frame, independently of the focal distance.).

Figure 17. Sample frames of the Chaves video.

The UAV flew at approximately 1920 m, and the average distance to the target was
3183 m, meaning that the horizontal component was 2539 m. The results are presented
in Table 11 and Figure 18. We can observe that the filtering strategy, in this case, did not
improve on the results of the unfiltered IRT. As in the Porto de Mós experimental procedure,
the viewing perspective was low. This fact made the observations very similar, thus, not
much information was added on each EKF iteration. Furthermore, only 7 measurements
were available, where one was used to initialize the filter state and covariance and only six
were left to iterate.

Table 11. Portuguese Air Force IRT and IRT+BR-EKF results.

Method µep [m] RMSE [m] µσxyz [m]

IRT 136.250 146.049 292.600
IRT+BR-EKF 198.434 157.056 24.7578

Figure 18. Portuguese Air Force footage georeferencing results displayed on a satellite view of the
terrain. The red marks and ellipses show, respectively, the IRT measurement and the estimated
uncertainty computed by the UT in three sample frames of the video.

5.3. UAVision UAV Footage

In this experiment we used a recorded video of a forest fire near Pombal, Leiria, at
39.832856 N −8.519885 E gently provided by UAVision (uavision.com accessed on 15
September 2021). The camera and video characteristics are the same as in the previous
experiment A couple of video frames from this video are shown in Figure 19.

Figure 19. Sample frames of the Pombal video.

uavision.com
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The video covered a forest area close to small villages where GCP could be easily
identified. Three video frames with visible landmarks and known coordinates were selected.
This allowed the formulation of a minimization problem to estimate the intrinsic parameters
and to refine the rotation matrix of the system when those images were captured.

As a cost function, the reprojection error was used

J(Ri, ti, Kint) =
3

∑
i=1

Nk

∑
k=1

(uik − ûik)
2 + (vik − v̂ik)

2, (7)

where Ri and ti are the rotation matrix and translation vector that establish the transfor-
mation from world to camera coordinates for frame i (initialized from the vehicle teleme-
try), Kint is the IP matrix (initialized from the camera defaults at the widest zoom level –
f = 4.3 mm), (uik, vik) is the measured pixel k in frame i and (ûik, v̂ik) is the predicted pixel
using the current estimates of Ri, ti and Kint. It was assumed that the skew s was zero,
fx = fy and cx = 640 and cy = 360. The optimization problem to solve is:

arg min J(Ri, ti, Kint)

s.t. ||ri1|| = 1, ||ri2|| = 1, ||ri3|| = 1

ri1rT
i2 = 0, ri2rT

i3 = 0, ri1rT
i3 = 0

fx = fy

, (8)

where rik is the row k of rotation matrix i. The six initial constraints are related to the
orthogonality condition of the rotation matrices.

The estimated intrinsic parameters from the minimization problem were

Kint =

1063.17 0 640
0 1063.17 360
0 0 1

. (9)

These parameters and the refined rotation matrices were used to georeference the
position of several landmarks. Table 12 presents the number of landmarks selected in each
frame and the average norm of the position error, average norm of position uncertainty
and RMSE.

Frames 1 and 2 present similar results in terms of position error and RMSE. Position
uncertainty is greater on the first frame because it is georeferencing targets that are further
from the vehicle than in the second frame. The third and final frame presents the worst
results in terms of position error and RMSE. This is due to being the image with less
landmarks, and consequently is less refined by the minimization problem when compared
to the other frames. Overall, accurate results were obtained for targets that distanced more
than one kilometer from the UAV, as shown in Figure 20. In a real scenario, where the
position error and RMSE will not be available, the uncertainty is taken into account as
metric of the georeferencing algorithm, with a lower value representing a more trustworthy
estimated position.

Table 12. UAVision footage results.

Frame Landmarks µep [m] RMSE [m] µσxyz [m]

1 8 15.166 16.432 81.277
2 6 6.598 6.857 60.226
3 4 25.908 26.029 65.896
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Figure 20. UAVision georeferencing results displayed on a satellite view of the terrain. The red marks
and ellipses show, respectively, the IRT measurement and the estimated uncertainty computed by the
UT in three sample frames of the video.

5.4. Discussion of Experimental Results

The IRT benefits from using an aerial perspective, as demonstrated in the first experi-
ment. With this approach, the line-of-sight is more perpendicular to the terrain, therefore
errors in the system attitude are less amplified. The results presented in Tables 9 and 10
show a decrease of the mean position error, RMSE and mean position uncertainty of 64.74%,
66.06% and 81.03%, respectively. With more accurate IRT measurements, the BR-EKF also
achieves a more accurate target position with a RMSE of 21.946 m when compared to the
94.686 m obtained with the ground simulation.

In contrast with the first experiment, the results of the second experiment were taken
at a line-of-sight more parallel to the ground and a larger distance to the target that
significantly increased the magnitude of the position uncertainty to 292.6 m (Table 11).
Furthermore, the reduced number of measurements and the lack of spatial variability in
the UAV’s position prevented the filtering algorithm from improving the target coordinates.
To surpass these limitations, more measurements are required. Additionally, these mea-
surements should be captured from more diverse positions to provide more information to
the BR-EKF.

Lastly, the final experiment shows the need for accurate telemetry and target iden-
tification. Applying the minimization problem of Equation (8) to each frame allowed us
to determine the unknown camera’s IP and refine the UAV telemetry. With these, the
standalone IRT was able to achieve accurate target positions, with an average RMSE of
16.439 m on the three frames (Table 12) for target distances greater than 1000 m. We note,
however, that this method required the identification of GCP which is difficult to automate,
particularly in forest scenarios where landmarks are not frequent.

6. Conclusions

In this paper, we propose a method to georeference targets in forest environments
from videos acquired at aerial perspectives. The fact that forest environments are not rich
in landmarks, prevents the use of ground control points to perform the geolocalization.
Thus, we have developed a direct georeferencing method combining best practices on the
state of the art, and evaluate it both in simulations and with real footage, in a diversity
of situations, including real firefighting scenarios. Our best method can be summarized
as an Iterative Ray-Tracing, Bearings-Range Extended Kalman Filter, where the measure-
ments are obtained from GPS, IMU and Camera data, supported by a Digital Elevation
Map of the observed area. The IRT algorithm proposed in this work presents a robust
solution for forest fire georeferencing. It only requires the camera’s IPs, the onboard sensor
data (GPS/IMU/gimbal) and a DEM, while current state-of-the-art approaches rely on
feature identification and matching. Equipped with the UT, the georeferencing algorithm
provides an estimate of the target position and characterizes its uncertainty. That is a
relevant achievement since it provides crucial information regarding the confidence of
the estimated target position to initialize the filtering process, to feed eventual stochastic
simulations of fire propagation, and, ultimately, to inform decision support systems to the
firefighting personnel.
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The results obtained in a controlled simulation environment demonstrate the potential
of the developed algorithm. At distances of almost 1000 m, two simulations of the raw IRT
method were run on rough and flat terrains, achieving RMSEs of 30.7 and 43.4 m with 25
and 21 measurements, respectively. After applying the BR-EKF, these errors reduced to 11.0
and 19.9 m, a decrease of 58.5% and 54.7%. This relation was also verified in the experiments
with real data. In the mobile phone experimental procedure, an initial RMSE of 77.5 m
was reduced to 41.5 m with just 14 measurements. Finally, georeferencing with accurate
intrinsic and extrinsic parameters, as was the case in the UAVision experimental procedure,
resulted in accurate estimated positions. An average RMSE of 16.33 m was achieved with a
total of 18 landmarks that distanced more than 1000 m from the UAV. Although this method
requires ground control points, not always available in forest environments, it shows the
potential of the proposed methods, provided good telemetry data.

Future Work

The experiment with the Air Force footage exposed the main limitations of the pro-
posed method. Very distant targets and tilted perspectives make the IRT measurements
noisy. On top of that, if video sequences are short and of low variability in perspective,
the filter has trouble in improving the raw IRT measurements. Therefore, it is important
to assure rich enough camera trajectories. A possible next step would be to design flight
patterns that minimize the error of the IRT algorithm, but also maximize the information
extracted from the Bearings-Range measurement model. In addition, considering the
last experimental procedure, an algorithm could be developed that searches recognizable
landmarks in the imagery acquired by the aerial vehicle, whenever they are available, to
improve the camera calibration.
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Abbreviation Meaning
BA Bundle Adjustment
BO-CKF Bearings-Only Cubature Kalman Filter
BO-EKF Bearings-Only Extended Kalman Filter
BR-CKF Bearings-Range Cubature Kalman Filter
BR-EKF Bearings-Range Extended Kalman Filter
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CKF Cubature Kalman Filter
CRS Coordinate Reference System
DEM Digital Elevation Map
DOF Degrees Of Freedom
ECEF Earth-Centered Earth-Fixed
EKF Extended Kalman Filter
EP Extrinsic Parameters
GCP Ground Control Points
GNSS Global Navigation Satellite System
GPS Global Positioning System
IMU Inertial Measurement Unit
IP Intrinsic Parameters
IPG Iterative Photogrammetry
IRT Iterative Ray-Tracing
MEMS MicroElectroMechanical Systems
OCR Optical Character Reader
QGIS Quantum Geographic Information System
RMSE Root Mean Squared Error
RT Ray-Tracing
SfM Structure from Motion
TIN Triangular Irregular Network
UAV Unmanned Aerial Vehicle
UKF Unscented Kalman Filter
UT Unscented Transform
WGS84 World Geodetic System 1984
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