
����������
�������

Citation: Chen, C.-L.; Yang, J.; Tsaur,

W.-J.; Weng, W.; Wu, C.-M.; Wei, X.

Enterprise Data Sharing with

Privacy-Preserved Based on

Hyperledger Fabric Blockchain in

IIOT’s Application. Sensors 2022, 22,

1146. https://doi.org/10.3390/

s22031146

Academic Editor: Juan M. Corchado

Received: 22 December 2021

Accepted: 30 January 2022

Published: 2 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enterprise Data Sharing with Privacy-Preserved Based on
Hyperledger Fabric Blockchain in IIOT’s Application
Chin-Ling Chen 1,2,3 , Jiaxin Yang 1,*, Woei-Jiunn Tsaur 4,* , Wei Weng 1, Chih-Ming Wu 5 and Xiaojun Wei 1

1 School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China;
clc@mail.cyut.edu.tw (C.-L.C.); wwweng@xmut.edu.cn (W.W.); xjwei@xmut.edu.cn (X.W.)

2 School of Information Engineering, Changchun Sci-Tech University, Changchun 130600, China
3 Department of Computer Science and Information Engineering, Chaoyang University of Technology,

Taichung 41349, Taiwan
4 Computer Center, National Taipei University, New Taipei City 237303, Taiwan
5 School of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen 361024, China;

chihmingwu@xmut.edu.cn
* Correspondence: 2022031448@stu.xmut.edu.cn (J.Y.); wjtsaur@mail.ntpu.edu.tw (W.-J.T.)

Abstract: Internet of Things (IoT) technology is now widely used in energy, healthcare, services,
transportation, and other fields. With the increase in industrial equipment (e.g., smart mobile
terminals, sensors, and other embedded devices) in the Internet of Things and the advent of Industry
4.0, there has been an explosion of data generated that is characterized by a high volume but small
size. How to manage and protect sensitive private data in data sharing has become an urgent
issue for enterprises. Traditional data sharing and storage relies on trusted third-party platforms
or distributed cloud storage, but these approaches run the risk of single-node failure, and third
parties and cloud storage providers can be vulnerable to attacks that can lead to data theft. To solve
these problems, this paper proposes a Hyperledger Fabric blockchain-based secure data transfer
scheme for enterprises in the Industrial Internet of Things (IIOT). We store raw data in the IIoT in the
InterPlanetary File System (IPFS) network after encryption and store the Keyword-index table we
designed in Hyperledger Fabric blockchain, and enterprises share the data by querying the Keyword-
index table. We use Fabric’s channel mechanism combined with our designed Chaincode to achieve
privacy protection and efficient data transmission while using the Elliptic Curve Digital Signature
Algorithm (ECDSA) to ensure data integrity. Finally, we performed security analysis and experiments
on the proposed scheme, and the results show that overall the data transfer performance in the IPFS
network is generally better than the traditional network, In the case of transferring 5 MB file size
data, the transmission speed and latency of IPFS are 19.23 mb/s and 0.26 s, respectively, and the
IPFS network is almost 4 times faster than the TCP/IP network while taking only a quarter of the
time, which is more advantageous when transferring small files, such as data in the IIOT. In addition,
our scheme outperforms the blockchain systems mainly used today in terms of both throughput,
latency, and system overhead. The average throughput of our solution can reach 110 tps (transactions
are executed per second), and the minimum throughput in experimental tests can reach 101 tps.

Keywords: Chaincode; data security sharing; IPFS; Industrial Internet of Things (IIoT); Hyperledger
Fabric blockchain; privacy-preserved

1. Introduction
1.1. Background

In recent years, with the rapid development of the Industrial Internet of Things (IIoT),
the increase in productivity has also resulted in a significant challenge-data explosion.
Enterprises in the industrial IoT use smart portable mobile terminals (e.g., drones, smart-
phones, electronic watches), sensors (e.g., infrared sensors, laser scanners, gyroscopes),
and other large embedded devices (e.g., magnetic resonance imaging devices, traffic lights,

Sensors 2022, 22, 1146. https://doi.org/10.3390/s22031146 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22031146
https://doi.org/10.3390/s22031146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4958-2043
https://orcid.org/0000-0002-4247-914X
https://doi.org/10.3390/s22031146
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22031146?type=check_update&version=3

Sensors 2022, 22, 1146 2 of 23

avionics) to collect data, which is mostly unstructured and difficult to store and is main-
tained in traditional relational databases. Moreover, the significant amount of data also
poses a challenge to IIOT terminal devices with limited computing and storage capacity.
Unfortunately, the current industrial IoT still lacks a unified data management service due
to the adoption of different data management systems among enterprises. In addition, the
replicable and easily disseminated nature of data makes it difficult to trace the data shared
among enterprises [1]. Moreover, enterprises store a large amount of data in third-party
cloud storage platforms. This approach is at risk of single-node failure, and once the cloud
storage server is attacked, there is a risk of data leakage, which brings serious asset loss
to enterprises.

Several incidents related to the loss of stored data have already occurred in 2021 alone.
Examples include the database breach of Ubiquiti, one of the world’s largest IoT technol-
ogy providers [2], the database breach of Société Internationale de Télécommunications
Aéronautiques (SITA) [3], the data breach of the healthcare system IT company Captur-
eRx [4], and the data breach of Volkswagen and Audi, a famous car brand [5].

From the above events, the future needs a decentralized storage approach to provide
data storage and sharing services for the enterprise. Fortunately, the nature of blockchain
technology can provide a good solution for such decentralized storage systems. The
blockchain consists of individual blocks connected by a hash function, and each block
contains the hash value of the previous block, a timestamp, transaction data, etc. [6]. The
blockchain can be considered a distributed ledger database, which is decentralized, open
and transparent, tamperproof, and traceable, and it provides a safe and reliable storage
method for enterprise data. However, each client of a blockchain system must maintain
a complete copy of the block data [7], and storing a large amount of data directly in the
blockchain can impose a high overhead on the client. Secondly, blocks are added to the
blockchain on a time-based basis [8], and data for a product in industrial systems are
often contributed by multiple participants at different points in time, and uploading them
directly can place a significant load on the blockchain and may make the system congested.

Therefore, this paper proposes an enterprise data sharing scheme based on the Hy-
perledger Fabric [9] blockchain. Sensitive raw data collected by enterprises in IIOT are
encrypted with Advanced Encryption Standard (AES) [10] and stored in the InterPlane-
tary File System (IPFS) [11], a peer-to-peer distributed file system that provides a high-
throughput content-addressable block storage system. Then, we construct the data hash
address returned by IPFS into a Keyword-index table to upload to the Hyperledger Fabric
blockchain and share the data between enterprises through the Keyword-index table, which
can effectively reduce the load on the blockchain network. In addition, we use Chaincode
deployed in the blockchain to achieve a high degree of automation in the invocation of
data, and the Elliptic Curve Digital Signature Algorithm (ECDSA) [12] to sign the messages
transmitted by all parties to ensure data integrity.

In summary, our contributions are as follows.

(1) We designed a data security sharing and privacy protection framework to solve the
blockchain load problem and achieve enterprise privacy protection of sensitive data
while improving the scalability of the system.

(2) We designed a Keyword-index table for data sharing between enterprises and de-
signed a Chaincode to realize the automatic call of data.

(3) Our scheme realizes mutual authentication of all parties and protection of data integrity.

1.2. Related Works

Few studies have focused on the use of the blockchain to share data between companies
or organizations. We outlined the trends in related research, focusing on discussions that
combine blockchain technology, as shown in Table 1.

Sensors 2022, 22, 1146 3 of 23

Table 1. Comparison between the proposed and existing enterprise data sharing solutions.

Authors Year Objective Technologies Merits Demerits

Teslya et al. [13] 2017

Proposed a
blockchain-based IIOT
trust information
sharing platform

Blockchain, Smart
Contracts, Smart-M3

It can single out the
search for information in
the detachment.

Leading to a slower rate
of information entering
the smart space

Wang et al. [14] 2018

To use blockchain
double-link structure
combined with proxy
re-encryption for
data sharing

Blockchain, Proxy
re-encryption

The two chains store
original data and
transaction data
separately, combined with
proxy re-encryption to
achieve reliable data
sharing

There is no detailed
experimental process to
prove the actual effect of
the program, and the
safety analysis is not
detailed enough

Zhang et al. [15] 2018

To realize data sharing in
the electronic medical
system through
alliance chain

Blockchain, Bilinear
maps and
complexity assumptions

A detailed description of
the sharing of medical
data through the alliance
chain, and detailed
experimental analysis

Security analysis is not
complete enough

Ra Lee et al. [16] 2019
To use blockchain registry
and FHIR to share
healthcare data

Blockchain, FHIR

Improve query efficiency
by storing the registry in
the blockchain and
storing the original data
in the database

There is no analysis
process, and the plan is
not complete enough

Kumar S et al. [17] 2020

To provide controlled
access and secure
transmission of patient
health information
between various
healthcare organizations

Hyperledger Fabric

Investigated related
literature and provided
detailed algorithms
and steps

No comparison with other
programs, no experiments
to demonstrate the actual
effect of the program

Teslya et al. [13] proposed a blockchain-based IIOT trust information sharing platform,
and such a combination made it possible to use the mechanisms implemented in the
blockchain to solve the problems identified in the platforms for IoT. Wang et al. [14]
proposed a blockchain dual-chain structure, where one chain stores the original data and the
other chain stores the transaction data, combined with proxy re-encryption for reliable data
sharing. The scheme proposed by Zhang et al. [15] describes in detail the implementation
of data sharing in eHealth systems through federated chains, where multiple hospitals
form a federated chain and use bilinear mapping to ensure secure data sharing, with a
very detailed evaluation of the efficiency and cost. Ra Lee et al. [16] proposed a healthcare
data-sharing framework using blockchain registries and Fast Healthcare Interoperability
Resources (FHIR) technology to improve operability by storing registries on the blockchain
while storing the raw data in a database. Kumar et al. [17] proposed a method for health
data sharing using Hyperledger Fabric by calling chain codes and listing the specific
algorithmic steps. However, the above schemes are still not perfect in terms of identity
authentication and data traceability, and the communication parties do not have complete
trust, and there is still the risk of data leakage.

Our scheme focuses on proposing a secure data sharing and privacy protection scheme
based on blockchain and smart contract technology that allows data to be shared between
authorized enterprises. We ensure that the entire process from data submission to data
transfer is fully recorded in the blockchain and that ECDSA is used for data integrity
protection. We use data stored independently of each other to increase the scalability of
the blockchain network, reduce latency and energy costs, and improve the transmission
effectiveness of the network. The perfect authentication and access control mechanism can
ensure that the sensitive data of enterprises will not be leaked out and effectively protect
the privacy of enterprises.

The contents of the rest of the paper are as follows: Section 2 presents some related
knowledge of our study. Section 3 describes our proposed architecture and the detailed
workflow. In Section 4, we analyze the security of the scheme. In Section 5, we evaluate the
performance of the scheme. In Section 6, we perform an experimental test of the proposed
scheme. Finally, Section 7 concludes the paper.

Sensors 2022, 22, 1146 4 of 23

2. Preliminary
2.1. Elliptic Curve Digital Signature Algorithm (ECDSA)

Elliptic Curve Cryptography (ECC) [18] is a public key encryption algorithm based on
elliptic curve mathematics. The main advantage of ECC is that it uses a smaller key length
and provides a comparable level of security compared to the Rivest–Shamir–Adleman
(RSA) encryption algorithm. ECDSA is a combination of ECC and DSA (Digital Signa-
ture Algorithm). Compared with RSA, the public key length of ECDSA is shorter and
the encrypted message will be smaller, so the computation and processing time will be
shorter, and the memory and bandwidth requirements will be smaller. The following is the
signature and verification process of ECDSA:

Signing process: Suppose Alice wants to sign a message m, the elliptic curve parameter
used is D = (p, a, b, G, n, h), Alice needs to choose a random number between [1, N−1], dA
as Alice’s private key, and generate a public key QA = dAG. Alice will sign according to
the following steps: First, Alice needs to generate a random number k between [1, N−1];
then calculate (x1, y1) = kG, z = h(m), r = x1 mod n, s = (z + dAr)k−1 mod n. Finally,
Alice sends the ECDSA signature result (r,s) to Bob.

Verification process: Bob needs to verify after receiving the signature. The verification
steps are as follows: First, verify whether (r,s) is between [1, N−1]; then, calculate the fol-
lowing parameters: z′ = h(m), u = 1z′s−1 mod n, u = 2rs−1 mod n, (x′1, y′1) = u1G + u2QA.
Finally, check whether the equation x′1 mod n = r is Equality: If they are equal, Bob confirms
that the signature and message sent by Alice are correct.

2.2. Hyperledger Fabric

Hyperledger Fabric [19] is a platform for blockchain-based distributed ledger solutions
that control transactions through chain codes, based on a modular architecture that provides
a high degree of confidentiality, flexibility, and scalability. The transaction process is divided
into the proposal phase, endorsement phase, sorting and packaging phase, and on-chain
storage phase.

The Hyperledger Fabric architecture is mainly composed of the following parts: Client:
the blockchain network used to connect members, through the SDK to call the proposal for
transactions; Certificate Authorities (CA): Certificate and public and private key issuers,
mainly responsible for the identity of the member’s Management; Peers: can be divided into
Leader Peer, Anchor Peer, Endorsing Peer, and Committing Peer, responsible for storing
copies of the ledger and executing smart contracts (called Chaincode in Hyperledger Fabric)
and approving transactions; Ordering Service (OS): responsible for collecting transaction
of each channel and broadcasting to all Peers in the channel for storage on the chain. The
specific workflow is shown in Figure 1:

(1) Proposal stage: The user sends the transaction to multiple Endorsing Peer through
the Client.

(2) Endorsement stage: EP1, EP2, EP3 are Endorsing Peers. After receiving the pro-
posal from the Client, it verifies and executes the endorsement, and then returns the
endorsement result to the client.

(3) Sorting stage: The Client receives the endorsement results of all Endorsing Peers and
compares whether they are consistent, and then sends the transaction to the Ordering
Service, and the Ordering Service receives the transactions of all channels and sorts
the transactions to form a block.

(4) On-chain stage: The Ordering Service broadcasts the packaged block to all Peers, and
then the Peers verifies the transaction and uploads it to the blockchain.

2.3. Chaincode

The Chaincode in Hyperledger Fabric encapsulates the business logic used to create
and modify business logic in the ledger, which can be written in different programming
languages (e.g., Java, Go, and Node.js) [21]. Chaincode is created and executed by Peers to
facilitate, authenticate, and enforce rules for reading, and the business logic of chain codes

Sensors 2022, 22, 1146 5 of 23

is defined by mutual agreement between members to read, execute, and update the current
state of the ledger. When conditions are triggered, the chain code performs specific tasks,
and the results of the transaction execution are submitted to the blockchain network and
eventually attached to all Peers’ copies of the ledger [22].

Figure 1. Hyperledger Fabric Transaction Flow [20].

2.4. InterPlanetary File System (IPFS)

The Interplanetary File System (IPFS) is a peer-to-peer distributed file system used
as a distributed data storage service where the contents of the resources received by IPFS
correspond to unique hashes 31. Any node in the IPFS network is independent and does not
depend on other nodes, and the nodes do not need to trust each other, so there is no single
point of failure as in traditional HTTP transfers. Data access will select the nearest node,
greatly speeding up data transfer and reducing the storage footprint [23]. IPFS peer-to-peer
transmission can effectively save network bandwidth, distributed files can effectively avoid
potential DDoS attacks, and it has features, e.g., high throughput, content addressing, data
anti-tampering, and de-duplication.

2.5. BAN Logic

BAN Logic [24] was first proposed by Burrows et al. It is a trust-based modal logic
that is usually used to prove the correctness of a protocol or scheme. During the reasoning
of BAN Logic, the trust of the subjects participating in the protocol changes and evolves as
the message exchange evolves. When applying BAN Logic for analysis, it is divided into
the following four steps:

(1) Describe the protocol messages that are not formally described in BAN Logic notation.
(2) Identify the initial assumptions from the protocol description and describe them in

BAN Logic notation.
(3) List the goals to be achieved by the protocol.
(4) Using the messages, initial conditions, and inference rules in the communication,

prove whether the protocol can achieve the goal.

2.6. Threat Model

The threat model is an important consideration for system security issues, and the
following security issues are worth analyzing in our scenario.

(1) Mutual authentication of nodes [25]: Mutual authentication refers to two parties who
authenticate each other simultaneously in an authentication protocol. To ensure data
security, mutual authentication is the ideal solution among authentication schemes
for transmitting sensitive data. The receiver/sender must be able to confirm the

Sensors 2022, 22, 1146 6 of 23

legitimate identity of the sender/receiver of the message during the transmission of
the message, and failure to do so will pose a great threat to data security.

(2) Data integrity [26]: Data integrity is the key to ensuring data accuracy and consistency,
and to processing or retrieving data. Any accidental changes to data as a result of
storage, retrieval, or processing operations can compromise data integrity. For mes-
sages transmitted in an unencrypted network environment that may be maliciously
modified, data integrity may also be compromised.

(3) Data traceability [27]: Data loss due to malicious data theft by attackers, posing a
serious threat to corporate assets.

(4) Non-repudiation [28]: Non-repudiation means that people cannot deny the act of
sending a message and the content of the message due to the existence of some
mechanism. The sender denies the message it sent, which can cause damage to the
trust relationship between nodes.

(5) Resist known attack [29]: Cyber-attacks may cause data corruption or system paral-
ysis, posing challenges to the stability and security of the system. Common attacks
on blockchain networks are man-in-the-middle attacks, replay attacks, etc. For en-
terprises, cyber-attacks can disrupt critical infrastructure and lead to data leakage
or corruption.

3. Proposed Scheme
3.1. System Architecture

In this article, we elaborate on the Hyperledger blockchain-based framework for
enterprise data sharing and privacy protection, as shown in Figure 2. The framework is
divided into three layers.

(1) Hyperledger Network Layer: This includes Peers, Ordering Service Node, Channels,
and Certificate Authority (CA). The CA is responsible for issuing public and private
keys and digital certificates. Administrators and Peers must be authenticated by the
CA to become part of the blockchain network. The Channel is a private blockchain
built based on data isolation and confidentiality. The data in the channel (e.g., Ledger
information and member information) is known only to the members in the channel,
and the data cannot be shared between different channels, and the channel mechanism
ensures data sharing between different enterprises while protecting privacy. The Or-
dering Service Node only sorts and packs the transactions received in the channel and
does not verify the legitimacy of the transactions, and then broadcasts the packaged
transactions to all Peers in the channel. Peers are a network entity that maintains the
ledger and runs the Chaincode to do read and write operations on the ledger.

(2) Client Layer: Each enterprise in the industrial IoT has an administrator who is respon-
sible for interacting with the Hyperledger Blockchain Network. The administrator is
connected to the blockchain network through the Client, which uses the SDK (Soft-
ware Development Kit) to interact with the blockchain network and can access the
ledger through Peers using the Chaincode, and the administrator needs to register
through CA to participate in transactions in the system.

(3) Storage Layer: Enterprises that join the same channel will also join the channel’s IPFS
network, which is a distributed file system for storing and sharing data, and gener-
ating a hash address for storing data, which is a key component. The administrator
stores the data encrypted using AES in IPFS while constructing a Keyword-index
table of the hash addresses returned by IPFS to upload to the blockchain, which
greatly increases the scalability of the system. Moreover, each data transaction carries
a timestamp and is permanently stored in the blockchain.

The Hyperledger Fabric blockchain can be configured with multiple Channels, and
multiple enterprises can join a single Channel or join different Channels for data sharing.
Enterprise administrators create their own CA in the blockchain network and then apply
for a public-private key and a digital certificate using the X.509 standard from the CA
to provide signatures for transactions and to endorse the results of transactions. The

Sensors 2022, 22, 1146 7 of 23

digital certificate contains basic information, e.g., version number, serial number, business
registration number, public key, enterprise tax number, and valid time.

Figure 2. Hyperledger Fabric-based Framework for Enterprise Data Sharing and Privacy Protection.

3.2. Hyperledger Fabric Detailed Transaction Information Flow

Data sharing among industrial IoT companies is realized through Channel, and differ-
ent companies’ businesses may have crossover, so all parties can join the same Channel for
data sharing. For example, Enterprise Administrator A (A) and Enterprise Administrator
B (B) can join the same Channel for data sharing, which can be divided into four phases:
registration phase, data storage phase, data query phase, and data transfer phase, and the
workflow is shown in Figure 3.

Step 1. A and B need to register with the Fabric CA in Hyperledger Fabric Blockchain
through the Client, and then the Fabric CA issues the public and private keys and
digital certificates to the client of A and B, and the registration phase is completed.

Step 2. B uses the AES encryption algorithm to symmetrically encrypt and sign the sensi-
tive and private data, and the encrypted data is saved to IPFS.

Step 3. IPFS returns the hash address of the encrypted data to the B Client.
Step 4. B Client receives the hash address and generates a Keyword-index table for the

data keywords, and executes the Chaincode to add the Keyword-index table to
the blockchain, and the data storage phase is completed.

Step 5. A sends a data access request containing keywords to the blockchain through
the client.

Step 6. If the request initiated by A is legitimate and the queried data exists in the
blockchain index directory, the blockchain network will return to A the required
Keyword-index table containing the data hash address stored in IPFS, and the data
query phase is completed.

Step 7. A initiates a data request to B, which contains A’s ID.
Step 8. B receives a request from A, requests A’s public key from the blockchain network,

and verifies A’s request message, and then uses A’s public key to encrypt the AES
key to form an encrypted key message and sends the message to A.

Step 9. After receiving the message, A uses its private key to decrypt it to obtain the
AES key, obtains the encrypted data through the hash address provided by the
Keyword-index table in IPFS, and then uses the AES key to decrypt the encrypted
data to obtain the original data. The transfer phase is completed.

Sensors 2022, 22, 1146 8 of 23

Figure 3. Enterprise data sharing process within Channel.

3.3. Registration Phase (Phase 1)

In this phase, enterprises joining the blockchain network for the first time need the
administrator (X) to register with the CA via the client, and the registration phase proceeds
as follows.

Step 1. X hashes the registration information to be submitted to obtain h(MSUBMIT) and
sends it to the CA.

Step 2. CA generates ECDSA private key dX based on the X and calculates QX = dX × G.
If the identity of the registered role is verified as legitimate, the CA sends (dX , QX)
and CertX to the X Client, where CertX contains a unique IDX .

Step 3. X stores (dX , QX) and CertX .

3.4. Data Storage Phase (Phase 2)

In this phase, B will store the original data in IPFS after AES encryption through the
client, and at the same time, construct the hash address of the encrypted data returned from
IPFS to generate a Keyword-index table (as shown in Figure 4) for uploading to Hyperledger
Fabric Blockchain (HFB). The workflow is shown in Algorithm 1 and can be divided into
four steps.

The Keyword-index table structure is as follows:

(1) “Holder”: Name of the enterprise holding the data. “Signature”: Signature of the
enterprise administrator to ensure the integrity of the data. “ID”: The unique identifier
of the enterprise administrator, which is included in the certificate.

(2) “Hash_Address”: The hash address of the data, the only basis for content address-
ing in an IPFS network. “Summary_Data”: a brief description of the data content.
“keyword”: the search basis for the data requester to query this index table in the
blockchain by keyword. “size”: the size of the data. “type”: the type of the data.

(3) “Timestamp”: Indicates the time when this index table was added to the blockchain,
added by Peers. “TXnumber”: transaction serial number, which is the unique value of
the index table to search in the blockchain. “Version”: including IPFS version number
and Fabric version number.

Sensors 2022, 22, 1146 9 of 23

Figure 4. Keyword-index table structure.

Algorithm 1: Data Storing.

Input: DTB;
Step 1: M1;
B chooses a random number kB1;
M1 = (IDB ‖ T1 ‖ DTB);
Sign M1; call function Sign(M1, dB, kB1), return (rB1, sB1);
CB1 ← ESKB (M1) ;
Send CB1 to IPFS;
Step 2: hash address;
Upon receiving; check whether TNOW − T1 ≤ τ;
if TNOW − T1 ≤ τ then

store CB1 and generating Hash_Data;
send Hash_Data to B;

end
Step 3: Keyword-index table;
Upon receiving; Generate Keyword− index table;
B chooses a random number kB2;
M2 = (IDB ‖ T2 ‖ Keyword− index table);
Sign M2; call function Sign(M2, dB, kB2), return (rB2, sB2);
send M2, (rB2, sB2) to HFB;
Step 4: Add to ledger;
Upon receiving; check whether TNOW − T2 ≤ τ;
call function Veri f y(zB2

′, rB2, sB2), return result;
if TNOW − T2 ≤ τ then

if result = “valid” then
call chaincode “Subfile”, add (M2, SubmitB) to ledger;

end
end

Step 1. B selects a random number kB1, selects the data DTB to be stored, and generates
the message:

M1= (IDB ‖ T1 ‖ DTB)

The function Sign(M1, dB, kB1) is called to generate the signature (rB1, sB1) for M1
(as shown in Algorithm 2) and then uses the AES encryption algorithm to symmetrically
encrypt M1 to get CB1 = ESKB(M1). CB1 and (rB1, sB1) are stored in IPFS.

Algorithm 2: Signature and Verification of the Scheme.

func Sign (M string, d string, k string)(r string, s string){
(x, y) = k× G;
z← h(M) ;
r ← x mod n , s← k−1(z + r× d) mod n ;
return r, s
}
func Verify (z string, r string, s string, Q string) (result string){
u1 ← z× s−1 mod n
u2 ← r× s−1 mod n
(x′, y′) = u1 ∗ G + u2 ∗Q
if x′ == r mod n then
return “valid”
else
return “invalid”
end
}

Step 2. IPFS first checks the validity of the timestamp to prevent replay attacks, then stores
the message in the IPFS network and returns the hash address to B.

Sensors 2022, 22, 1146 10 of 23

Step 3. B generates a Keyword-index table for data keywords, and then selects a random
number kB2 to generate a message:

M2= (IDB ‖ T2 ‖ Keyword− index table)

The function Sign(M2, dB, kB2) is called to generate the signature (rB2, sB2) for M2 and
then send M2, (rB1, sB1) to HFB.

Step 4. HFB checks the validity of the timestamp TNOW − T2 ≤ τ and then calls the
function Veri f y(zB2

′, rB2, sB2) (as shown in Algorithm 2) to verify the legitimacy
of the signature. If xB2

′ = rB2 mod n, the signature is legal. Then, the Chaincode
“Subfile” (as shown in Figure 5) is executed to be added (M2, SubmitB) to the
blockchain ledger, SubmitB = h(rB2, sB2). The data storage phase is completed.

Figure 5. Chaincode Subfile of the proposed scheme.

3.5. Data Query Phase (Phase 3)

Enterprises that need to query data, for example, A, need to submit a query request
to HFB, and if the submitted request is legitimate, HFB will return the Keyword-index
table to A. The workflow is shown in Algorithm 3 and can be divided into two steps.

Algorithm 3: Data Querying.

Input: MA−HFB;
Step 1: query
A chooses a random number kA1;
MA−HFB = (IDA ‖ TA−HFB ‖ Keywords);
call function Sign(MA−HFB, dA, kA1), return (rA1, sA1);
send MA−HFB, (rA1, sA1) to HFB
Step 2: return
Upon receiving; check whether TNOW − TA−HFB ≤ τ;
call function Veri f y(zA1

′, rA1, sA1), return result;
if TNOW − TA−HFB ≤ τ then

if result = “valid” then
call chaincode “Querfile”, return Keyword-index table to A;

end
end

Step 1. A selects a random number kA1, enters keywords, and draws up a query message:

MA−HFB= (IDA ‖ TA−HFB ‖ Keyword)

and calls the function Sign(MA−HFB, dA, kA1) to generate the signature (rA1, sA1)
for MA−HFB and then sends MA−HFB, (rA1, sA1) to HFB.

Sensors 2022, 22, 1146 11 of 23

Step 2. HFB checks the timestamp TNOW − TA−HFB ≤ τ and calls the function
Veri f y(zA1

′, rA1, sA1) to verify the validity of the signature. If xA1
′ = rA1 mod n,

the signature is legal. Then, the Chaincode “Querfile” (as shown in Figure 6) is
executed to be added (MA−HFB, QueryA) to the blockchain, QueryA = h(rA1, sA1).
Moreover, then, the blockchain returns the Keyword-index table to A. The data query
phase is completed.

Figure 6. Chaincode Querfile of the proposed scheme.

3.6. Data Transfer Phase (Phase 4)

A request SKB from B, and then the original data is obtained through SKB. See the
workflow Algorithm 4, which can be divided into 3 steps.

Algorithm 4: Data Transferring.

Input: MA−B;
Step 1: request;
A chooses a random number kA2;
MA−B = (IDA ‖ TA−B ‖ IDB ‖ Hash_Data ‖ Txnumber);
call function Sign(MA−B, dA, kA2), return (rA2, sA2);
CA−B ← EPukB (MA−B)
send CA−B, (rA2, sA2) to HFB;
Step 2: return;
Upon receiving; MA−B = DPrkB (CA−B);
check whether TNOW − TA−B ≤ τ;
call function Veri f y(zA2

′, rA2,sA2)
, return result;

if TNOW − TA−B ≤ τ then
if result = “valid” then

B chooses a random number kB3;
MB−A = (IDB ‖ TB−A ‖ IDA ‖ SKB)
call function Sign(MB−A, dB, kB3), return (rB3, sB3);
CB2 ← EPukA (MB−A);
send CB2, (rB3, sB3), to A;

end
end
Step 3: Descrypt data;
MB−A = DPrkA (CB−A); check whether TNOW − TB−A ≤ τ;
call function Veri f y(zB3

′, rB3, sB3), return result;
if TNOW − TB−A ≤ τ then

if result = “valid” then
store SKB; get encrypted data in IPFS;
M1 = DSKB (CB1);

end
end

Sensors 2022, 22, 1146 12 of 23

Step 1. A selects a random number kA2, and draws up the requested message:

MA−B = (IDA ‖ IDB ‖ TA−B ‖ Hash_Data ‖ TXnumber)

and calls the function Sign(MA−B, dA, kA2) to generate the signature (rA1, sA1) for
MA−B and uses PukB to encrypt the MA−B to obtain CA−B = EPukB(MA−B). Then,
send CA−B, (rA2, sA2) to B.

Step 2. After receiving the requested message, B decrypts the message MA−B = DPrkB(CA−B)
using PrkB, and checks the validity of the timestamp TNOW − TA−B ≤ τ. Then, it
calls the function Veri f y(zA2

′, rA2, sA2) to verify the validity of the signature. If
xA2
′ = rA2 mod n, the signature is legal. Next, B selects the random number kB3

and adds SKB to the message:

MB−A = (IDB ‖ IDA ‖ TB−A ‖ SKB)

and calls the function Sign(MB−A, dB, kB3) to generate the signature (rB3, sB3)
for MB−A. Afterward, B uses PukA to encrypt the MB−A to obtain CB−A =
EPukA(MB−A). Then, send CB−A, (rB3, sB3) to A.

Step 3. A decrypts the message MB−A = DPrkA(CB−A) using PrkA to obtain SKB and
checks the validity of the timestamp TNOW − TB−A ≤ τ. Then, it calls the function
Veri f y(zB3

′, rB3, sB3) to verify the validity of the signature. If xB3
′ = rB3 mod n, the

signature is legal. Afterward, A obtains the encrypted data CB1 using the Keyword-
index table in the IPFS network and decrypts the CB1 with SKB, M1 = DSKB(CB1),
M1 = (IDB ‖ T1 ‖ DTB). The data transfer phase is completed.

4. Security Analysis
4.1. Mutual Authentication

In this article, we use BAN Logic to demonstrate the mutual authentication of the two
parties in the data transmission process, mainly to ensure that the data is not tampered
with during the transfer phase. Table 2 shows syntax and semantics are associated with
BAN Logic.

Table 2. BAN Logic.

Symbol Description

P|≡ X P trusts X or P is qualified to trust X
P C X P received a message containing X
P|∼ X P has sent a message containing X
P|⇒ X P has jurisdiction over X
#(X) X is the latest

P K↔ Q The shared key K is used for communication by P and Q.
K→ P P has X as a public key
{X}K The message X is encrypted by K

< X >Y This indicates that X combined with Y

In the data transfer phase, the scheme mainly authenticates the legitimacy of the
identity of the communicating parties, and the main objectives of the scheme are:

G1 : A| ≡ A
KA−B←−→ B

G2 : A| ≡ B| ≡ A
KA−B←−→ B

G3 : B| ≡ A
KA−B←−→ B

G4 : B| ≡ A| ≡ A
KA−B←−→ B

G5 : A| ≡ IDB

Sensors 2022, 22, 1146 13 of 23

G6 : A| ≡ B| ≡ IDB

G7 : B| ≡ IDA

G8 : B| ≡ A| ≡ IDA

G9 : A| ≡ SKB

G10 : A| ≡ B| ≡ SKB

In the data transfer phase, BAN Logic is applied to generate the idealized form
as follows:

M : A→ B (
{

IDA, kA2, MRequest
}

PukB
,< h(IDA, kA2, MRequest) >KA−B)

M : B→ A (
{

IDB, kB3, SKB, MReply

}
PukA

,< h(IDB, kB3, SKB, MReply) >KA−B)

The proposed scheme is analyzed and the following assumptions made:

A1 : B| ≡ #(kA2)

A2 : A| ≡ #(kB3)

A3 : A| ≡ B| ⇒ A
KA−B←−→ B

A4 : B| ≡ A| ⇒ A
KA−B←−→ B

A5 : A| ≡ B| ⇒ IDB

A6 : B| ≡ A| ⇒ IDA

A7 : A| ≡ B| ⇒ SKB

A8 : A| ≡ PukB−−→ B

A9 : B| ≡ PukA−−−→ A

According to the assumptions and rules of BAN Logic, the main proofs of the data
transfer phase are as follows:

(1) The administrator of Enterprise B (B) authenticates the administrator of Enterprise A (A).

Through M1 and the seeing rule, we derive:

B C (
{

IDA, kA2, MRequest
}

PukB
,< h(IDA, kA2, MRequest) >KA−B) (1)

Through M1 and the seeing rule, we derive:

B| ≡ #(
{

IDA, kA2, MRequest
}

PukB
,< h(IDA, kA2, MRequest) >KA−B) (2)

Through Formula (1), A9, and the message meaning rule, we derive:

B| ≡ A| ∼ (
{

IDA, kA2, MRequest
}

PukB
,< h(IDA, kA2, MRequest) >KA−B) (3)

Through Formulas (2)–(3), and the nonce verification rule, we derive:

B| ≡ A| ≡ (
{

IDA, kA2, MRequest
}

PukB
,< h(IDA, kA2, MRequest) >KA−B) (4)

Through Formula (4) and the belief rule, we derive (G4)–(G8):

B| ≡ A| ≡ A
KA−B←−→ B (5)

Sensors 2022, 22, 1146 14 of 23

B| ≡ A| ≡ IDA (6)

Through Formula (5), A4, and the jurisdiction rule, we derive (G3):

B| ≡ A
KA−B←−→ B (7)

Through Formula (5), A6, and the jurisdiction rule, we derive (G7):

B| ≡ IDA (8)

(2) The administrator of Enterprise A (A) authenticates the administrator of Enterprise B (B).

Through M2 and the seeing rule, we derive:

A C (
{

IDB, kB3, SKB, MReply

}
PukA

,< h(IDB, kB3, SKB, MReply) >KA−B) (9)

Through A2 and the freshness rule, we derive

A| ≡ #(
{

IDB, kB3, SKB, MReply

}
PukA

,< h(IDB, kB3, SKB, MReply) >KA−B) (10)

Through Formula (9), A8, and the message meaning rule, we derive:

A| ≡ B| ∼ (
{

IDB, kB3, SKB, MReply

}
PukA

,< h(IDB, kB3, SKB, MReply) >KA−B) (11)

Through Formulas (10) and (11), and the nonce verification rule, we derive:

A| ≡ B| ≡ (
{

IDB, kB3, SKB, MReply

}
PukA

,< h(IDB, kB3, SKB, MReply) >KA−B) (12)

Through Formula (12) and the belief rule, we derive (G2), (G6), and (G10):

A| ≡ B| ≡ A
KA−B←−→ B (13)

A| ≡ B| ≡ IDB (14)

A| ≡ B| ≡ SKB (15)

Through Formula (13), A3, and the jurisdiction rule, we derive (G1):

A| ≡ A
KA−B←−→ B (16)

Through Formula (14), A5, and the jurisdiction rule, we derive (G5):

A| ≡ IDB (17)

Through Formula (15), A7, and the jurisdiction rule, we derive (G9):

A| ≡ SKB (18)

Through Formulas (6), (8), (16), and (17), it can be proven that, in the proposed scheme,
A and B authenticate each other. Moreover, it can also be proven that the proposed scheme
can authenticate the private key of A and B.

In the proposed scheme, B authenticates A by verifying:

xA2
′ = rA2 mod n (19)

Sensors 2022, 22, 1146 15 of 23

If it passes the verification, B authenticates the legality of A. A authenticates the B
by verifying:

xB3
′ = rB3 mod n (20)

If it passes the verification, A authenticates the legality of B. The data transfer phase of
the proposed scheme, thus, guarantees mutual authentication between A and B.

4.2. Data Integrity

In our scheme, the parties’ transaction data will be permanently stored in the blockchain
network while we use ECDSA and AES to sign and encrypt the transactions to ensure
data integrity. For example, in the data storage phase, B will sign and add timestamps
to the Keyword-index table, and then upload it to the blockchain network, which will
verify the timestamp TNOW − T2 ≤ τ and signature (rB2, sB2) upon receipt. If the data is
tampered with, then xB2

′ 6= rB2 mod n, M2 does not match (rB2, sB2), and the attacker’s
attack failed. During the data transfer phase, both communicating parties also verify the
signature upon receipt of the message to ensure the integrity of the data. The data uploaded
to the blockchain is stored in the blocks in a chained data structure, and each block is
linked to the previous block through a hash function. If an attacker wants to tamper with
the data, he needs to modify the hash value of the whole chain, which is unrealistic in a
decentralized network system.

4.3. Traceability

Every transaction data stored in the blockchain is signed and stored forever, and the
data is transparent and can be publicly verified. For example, the message is uploaded
to the blockchain with the signed hash SubmitB of B in the data storage phase. In the
data query phase, the signature hash QueryA of A is uploaded to the blockchain MQuery.
All members can trace the transaction process and determine whether the data in the

blockchain is legitimate by verifying SubmitB
?
= h(rB2, sB2) and QueryA

?
= h(rA1, sA1).

4.4. Non-Repudiation

In the proposed scheme, ECDSA’s private key signature is used to achieve non-
repudiation. The messages sent by all members of the system use their private keys to
sign the messages. The receiver will verify the signature after receiving the message. If the
verification is successful, the sender cannot deny the content of the message sent. Table 3
shows the non-repudiation of each role in the proposed scheme.

Table 3. The non-repudiation description.

Phase
Item Signature

Value Sender Receiver Signature Verification

Phase 2 (rB2, sB2) B HFB Veri f y(zB2
′, rB2, sB2)

Phase 3 (rA1, sA1) A HFB Veri f y(zA1
′, rA1, sA1)

Phase 4
(rA2, sA2) A B Veri f y(zA2

′, rA2, sA2)
(rB3, sB3) B A Veri f y(zB3

′, rB3, sB3)

4.5. Resist Known Attacks

In this phase, we analyzed possible attacks against the system, including man-in-the-
middle attacks and replay attacks.

4.6. Man-in-the-Middle Attack

The attacker tries to intercept and tamper with the message content. In our scheme,
both communicating parties do not have to send their public keys to each other, and both
parties can query each other’s public keys in the blockchain network, which can effectively
prevent the attacker from intercepting the message and replacing the public key. For
example, A uses B’s public key to encrypt the message CA−B = EPukB(MRequest). B uses A’s

Sensors 2022, 22, 1146 16 of 23

public key to encrypt the message CB−A = EPukA(MReply). The attacker does not know the
private keys of the communicating parties, so he cannot decrypt the message.

4.7. Replay Attacks

The messages of the two communicating parties may be intercepted by the attacker,
who pretends to be a legitimate sender and sends the same message to the recipient. In our
scheme, a timestamp mechanism is added between two parties of arbitrary communication
to prevent such attacks. For example, during the data transfer phase, B sends a times-
tamped message MB−A to A, who checks that the timestamped message TNOW − TB−A ≤ τ
is valid. Even if the attacker tampers with the timestamp data, because B has added a times-
tamp TB− A (sB3 = k−1(zB3 + rB3dB) mod n, zB3 = h(MB−A)) to the signature (rB3, sB3),
A checks that the timestamp does not match the signature and the replay attack fails.

5. Performance Evaluation
5.1. Communication Cost

Table 4 shows the communication cost analysis of the proposed scheme. In the
Gigabit Ethernet environment, the maximum transmission speed is 1 Gbps, and in the
10 Gigabit Ethernet environment, the maximum transmission speed is 10 Gbps. We assume
that the ECDSA signature and key are 160 bits, the asymmetric encryption message is
1024 bits, the hash function operation requires 160 bits, and the length of other messages
(such as ID and timestamp, etc.) is 80 bits. Taking the data transmission phase with
the highest communication cost as an example, A needs to send two signatures, one
hash, one asymmetric encrypted message, and one other message to B. The total size is
2 × 160 bits + 160 bits + 1024 bits + 80 bits = 1584 bits. B needs to send two signatures, one
hash, one asymmetric encrypted message, and one other message to A. The total size is
2 × 160 bits + 160 bits + 1024 bits + 80 bits = 1584 bits. The total communication cost
for the data transfer phase is 1584 bits + 1584 bits = 3168 bits, which takes 3.168 µs in
a Gigabit Ethernet communication environment and 0.3168 µs in a 10 Gigabit Ethernet
environment. These communication costs are very low, so the proposed scheme has
good communication performance.

Table 4. Analysis of the communication cost.

Phase
Item Message

Length Rounds
Gigabit Ethernet

(1 Gbps)
10 Gigabit Ethernet

(10 Gbps)

Phase 1 560 bits 2 0.56µs 0.056µs
Phase 2 560 bits 1 0.56µs 0.056µs
Phase 3 560 bits 2 0.56µs 0.056µs
Phase 4 3168 bits 2 3.168µs 0.3168µs

5.2. Computation Cost

In Table 5, we analyze the computational cost of each phase of the scheme, and we
use asymmetric encryption and decryption, hashing operations, and addition, subtraction,
multiplication, and division operations as the basis for the computational cost analysis.
Taking the data transfer phase (phase 4) with the highest computational cost as an example,
A requires three encryption/decryption operations, two comparison operations, five mod-
ular operations, two hash operations, eight multiplication operations, and one signature
operation. B requires two encryption/decryption operations, two comparison operations,
five modular operations, two hash operations, eight multiplication operations, and one
signature operation. Thus, in our scheme, the calculation cost is acceptable.

5.3. Blockchain Architecture Comparison

There are currently at least four types of blockchain networks: public blockchains, pri-
vate blockchains, consortium blockchains, and hybrid blockchains [30]. Private blockchains
are too centralized and not suitable for data sharing between enterprises but only for

Sensors 2022, 22, 1146 17 of 23

resource management within a specific individual or company. We summarize the compar-
ison between two blockchain platforms, Hyperledger Fabric, a typical representative of
consortium blockchains, and Ethereum, a typical representative of public blockchains, as
shown in Table 6.

Table 5. Analysis of the communication cost.

Phase
Party A B HFB

Phase 2 N/A 1TE/D+4TMod+2TH+8TMul+1TSym+2TSig 2TCmp+3TMod+4TMul+1TH
Phase 3 1TCmp+2TMod+1TH+4TMul+1TSig N/A 2TCmp+3TMod+4TMul+1TH
Phase 4 3TE/D+2TCmp+5TMod+2TH+8TMul+1TSig 2TE/D+2TCmp+5TMod+8TMul+2TH+1TSig N/A

Notes: TE/D : Encryption/Decryption operation, TH : Hash function operation, TMul : Multiplication opera-
tion, TCmp: Comparison of operation, TMod: Modular operation, TSym: Symmetric encryption operation, TSig:
Signature operation.

Table 6. Comparison between Ethereum and Hyperledger Fabric.

Hyperledger Fabric Ethereum

Category Consortium Blockchain Public Blockchain
Description Generic blockchain platform Modular blockchain platform

Consensus algorithms Practical Byzantine
Fault Tolerance (PBFT) Proof of Work (PoW)

Throughput ≥1000 TPS ≥25 TPS
Decentralization Partial de-centralization Completely decentralization

Fault tolerance rate 33% 50%
Success rate Lower Higher

Privacy Yes No
Authentication Yes No

Scalability Yes No
Pluggability Yes No

From the above table, we can see that although Ethereum has advantages in fault
tolerance and the transaction success rate, Hyperledger Fabric outperforms Ethereum
in terms of the average transaction latency, throughput, privacy, and scalability, and the
modularity and channel design of Hyperledger Fabric is more suitable for data sharing
among enterprises [31].

5.4. Function Comparison

Table 7 shows the comparison of the previous scheme with our proposed scheme. It can
be seen from the table that this scheme overcomes the shortcomings of the previous scheme.

Table 7. Functionality comparison of previous schemes and the proposed scheme.

Authors Year Objective 1 2 3 4 5 6

Teslya et al. [13] 2017 Proposed a blockchain-based IIOT trust information
sharing platform Y N Y N N N

Wang et al. [14] 2018 To use blockchain double-link structure combined with
proxy re-encryption for data sharing Y N N N Y N

Zhang et al. [15] 2018 To realize data sharing in the electronic medical system
through alliance chain Y N N N Y Y

Ra Lee et al. [16] 2019 To use blockchain registry and FHIR to share
healthcare data Y Y N N Y Y

Kumar et al. [17] 2020 To provide controlled access and secure transmission of
patient health information Y N Y N Y N

Ours 2021 Propose a solution for corporate privacy-preserved and
data sharing based on Fabric blockchain Y Y Y Y Y Y

Notes: 1: Blockchain architecture, 2: Data integrity, 3: Mutual Authentication, 4: No-repudiation, 5: Scalability,
6: Off-chain storage; (Y) Yes; (N) No.

Sensors 2022, 22, 1146 18 of 23

We compare with previous studies, which, as mentioned before, have some flaws, we
improve on the flaws based on the previous work. Teslya et al. [13] proposed a blockchain-
based IIOT trust information sharing platform. Tis paper describes a possible way of
integrating IoT and blockchain technology to solve these problems. To this end, an architec-
ture combining the Smart-M3 information sharing platform and the blockchain platform
was developed. However, it only proposes an architecture without detailed deployment
and experiments. Furthermore, this paper does not discuss the security of the architecture
and lacks a theoretical basis. This paper has detailed instructions on system security and
experimental testing. Wang et al. [14] proposed a new data-sharing scheme based on
blockchain technology, which combines the blockchain with a double-chain structure and
proxy re-encryption to achieve safe and reliable data sharing. This scheme only discusses
the security and complexity of the system and does not have actual experimental tests. In
addition, this scheme cannot detect the source of data leakage, and the segmentation of
data blocks lacks theoretical support. We experimentally test the proposed scheme, and
we employ signature technology to ensure data traceability. Zhang et al. [15] proposed
a blockchain-based security and privacy-preserving PHI sharing (BSPP) scheme for im-
proving diagnosis in e-health systems. However, the scheme uploads all PHI data to the
blockchain network, which undoubtedly increases the overhead of the blockchain client,
and the scheme does not provide discussion on the authentication between the nodes of
the Consortium chain. Our solution uses off-chain storage of data to reduce the overhead
of the blockchain network, and we use ban logic proof to prove the identity security among
the nodes. Ra Lee et al. [16] proposed a standards-based sharing framework SHAREChain
that combines two properties to deal with reliability and interoperability issues and Kumar
et al. [17] proposed a healthcare application based on a blockchain network with a Hyper-
ledger fabric structure, but these two schemes do not discuss the security and efficiency of
the system. We illustrate the safety of the proposed scheme, and the experimental results
show the good efficiency of our scheme.

We propose a complete system framework focusing on the security issues of enterprise
data transmission among blockchain networks. Therefore, we focus on the security issues
of the system in the analysis phase. Compared to previous studies, our solution has
advantages in data privacy, data protection, and data traceability, which are lacking in
previous solutions, while we adopt off-chain storage of data to increase the scalability of
the blockchain network and use digital signature technology to ensure the authenticity
of data. Finally, the experimental results show that our scheme has good efficiency and
practical prospects.

6. Deployment and Testing

In this section, we experimentally evaluate the proposed scheme. The HyperLedger
Fabric uses Docker container technology to run the Chaincode containing the system
application logic. The Fabric framework includes a certificate authority (CA), order nodes,
and peer nodes. Each peer node maintains a full copy of the blockchain data, and in our
scenario, the Enterprise Administrator is the peer node. Each peer node uses CouchDB
to maintain the state of its ledger. All nodes are run in their own Docker containers. We
deployed 6 peer nodes, 1 order node and 2 CA on a server with Intel Core i7-8700 @3.2GHz
CPU and 8 GB RAM. The operating system of the physical machine is Ubuntu 18.04.2 LTS.
The version of Fabric we used is v1.4.

6.1. Performance of File Transmission in Traditional and IPFS Network

In this experiment, we compared the file upload performance of different file sizes in
traditional TCP/IP networks and IPFS networks. Because the number of IoT devices is
huge in industrial IoT networks and each device can only generate a small amount of data,
we chose files of sizes 1, 5, 10, 50, and 100 MB, respectively. As can be seen from Figure 7,
The latency of the IPFS network was 0.11, 0.26, 0.95, 10.55, and 25.34 s, while the latency
of the TCP/IP network was 0.25, 0.88, 1.55, 10.71, and 25.65 s, respectively. In terms of

Sensors 2022, 22, 1146 19 of 23

transmission speed, the transmission speed of IPFS is 9.09, 19.23, 10.52, 6.73, and 4.94 MB/s
while the transmission speed of TCP/IP is 4.05, 5.68, 6.45, 4.88, and 3.89 MB/s, respectively.

Figure 7. Performance comparison of file transfers in traditional and IPFS networks using different
file sizes.

From the experimental results, almost all the transfer rates in the IPFS network are
faster than in the TCP/IP network, and the IPFS networks are almost 4 times larger than
TCP/IP networks when transferring data of 5 MB file size. Moreover, IPFS networks
take less time than TCP/IP networks, which is more evident when transferring small
files (File Size ≤ 10 MB), IPFS networks take one-half the time of TCP/IP networks when
transferring 1 MB files, and one-quarter the time of TCP/IP networks when transferring
5 MB files. The data transfer performance in IPFS networks is generally better than that in
traditional networks.

6.2. Throughput and Latency of Smart Contract Calling

We designed two smart contracts for the blockchain network and used throughput
and transaction latency as the main performance metrics in our benchmarking. Throughput
is the rate at which transactions are committed to the ledger, measured in terms of how
many transactions are executed per second (tps). Latency is the time it takes from the
time the application sends a transaction proposal to the time the transaction is committed
to the ledger. As can be seen from Figure 8, when the block size and send rate is fixed,
the TPS remains essentially constant as the number of transactions increases. “Querfile”
fluctuates around 110 tps, with a minimum of 101.3 tps and a maximum of 115.6 tps; and
“Subfile” fluctuates around 50 tps, with a minimum of 44. 3 tps and a maximum of 53.2 tps.
In addition, as shown in Figure 9, the latency increases with the increase in the number
of transactions.

Sensors 2022, 22, 1146 20 of 23

Figure 8. System throughput at different transaction volumes.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 25

TPS remains essentially constant as the number of transactions increases. “Querfile” fluc-

tuates around 110 tps, with a minimum of 101.3 tps and a maximum of 115.6 tps; and

“Subfile” fluctuates around 50 tps, with a minimum of 44. 3 tps and a maximum of 53.2

tps. In addition, as shown in Figure 9, the latency increases with the increase in the num-

ber of transactions.

Figure 8. System throughput at different transaction volumes.

Figure 9. System latency at different transaction volumes.

6.3. Performance Comparison of Different Systems

Figure 9. System latency at different transaction volumes.

6.3. Performance Comparison of Different Systems

To demonstrate the good performance of our proposed scheme, we compare it with
other blockchain systems mainly used today: Bitcoin, Ethereum, Litecoin, BitcoinCash, and
Primecoin in terms of the system transaction average latency and average throughput [32].

Sensors 2022, 22, 1146 21 of 23

The sending rate, block size, and some transactions are set to 200 tps, 2 MB, and 400.
Figure 10 gives the comparison results.

Figure 10. Comparison with current major blockchain systems.

From the comparison, it is clear that our scheme has better performance than existing
blockchain systems in terms of the average transaction latency and average throughput.
In terms of throughput, the block size limits the throughput of Bitcoin to only seven
transactions per second. In total, 70, 60, and 56 transactions per second are achieved
for Primecoin, Litecoin, and Bitcoin Cash, respectively, while Ethereum processes about
30 transactions per second. The average throughput of our solution can reach 110 tps,
and the minimum throughput in experimental tests can reach 101 tps. In terms of system
overhead, since the blockchain platform used in this system is Hyperledger Fabric, it does
not need to consume a lot of computational resources for mining; therefore, the overhead
of our solution is extremely low.

7. Conclusions

To solve the data sharing and privacy protection problems brought by the rapid growth
of data in industrial IoT, we proposed an enterprise privacy protection and data sharing
scheme based on the Hyperledger Fabric blockchain. We focused on the security and
privacy of data transmitted by all parties in industrial systems. We utilized the Hyperldeger
Fabric channel mechanism to enable enterprises to share data while keeping sensitive data
private, isolating data between different channels, and all transaction data will carry time
stamps and be permanently stored in the blockchain ledger, and be open, transparent,
and traceable. Moreover, we achieved a high degree of automation in data recall through
the designed Chaincode. The under-chain storage approach can effectively increase the
scalability of the system. In addition, our scheme achieves mutual authentication of all
parties in the system and data integrity protection. Finally, the analysis results show that
our scheme has good traceability, non-repudiation, and resistance against known cyber
attacks, and good performances.

In the future, a potential research direction is how to optimize the consensus algorithm
of Hyperldeger Fabric, in which the backing nodes are responsible for endorsing the
legitimacy of all transaction contents and carry a large amount of sensitive transaction
data. How to protect the backing nodes from attacks and enhance the processing power of

Sensors 2022, 22, 1146 22 of 23

backing nodes to improve the transaction speed of the whole blockchain network is one of
the valuable research directions.

Author Contributions: Conceptualization, C.-L.C. and J.Y.; methodology, C.-L.C., J.Y. and W.W.;
validation, W.-J.T., C.-M.W. and X.W.; investigation, C.-L.C. and J.Y.; data analysis, C.-L.C., J.Y., W.W.,
C.-M.W. and X.W.; writing—original draft preparation, C.-L.C. and J.Y.; writing—review and editing,
W.-J.T., W.W., C.-M.W. and X.W.; supervision, C.-L.C. and W.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(No. 51808474), the Ministry of Science and Technology in Taiwan (No. MOST 110-2218-E-305-
001-MBK), the Education and Teaching Reform Project of the Xiamen University of Technology
(No. JG2021007), and the Education Research Project for Yong and Middle-aged Teachers of Fujian
Province (No. JAT190679).

Institutional Review Board Statement: This study is based entirely on theoretical basic research.
It does not involve humans.

Informed Consent Statement: This study is based entirely on theoretical basic research. It does not
involve humans.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Notations

CertX Certificate of X issued by CA
IDX X’s identity
(rX , sX) Elliptic curve signature value of X
TX Timestamp message of X
CX Ciphertext sent by X
DTX Data sent by X
SKX The AES key of party X
ESKX (M) Use X’s AES key to encrypt M
DSKX (M) Use X’s AES key to decrypt M
PukX The public key of party X
PrkX The private key of party X
EPukX (M) Use X’s public key to encrypt M
EPrkX (M) Use X’s private key to decrypt M
h(.) The one-way hash function
τ Valid timestamp interval
MSUBMIT The submitted registration information

A ?
= B Verify whether A is equal to B

References
1. Qi, S.; Lu, Y.; Zheng, Y.; Li, Y.; Chen, X. Cpds: Enabling Compressed and Private Data Sharing for Industrial Internet of Things

Over Blockchain. IEEE Trans. Ind. Inform. 2021, 17, 2376–2387. [CrossRef]
2. TechCrunch is Part of the Yahoo Family of Brands. Available online: https://techcrunch.com/2021/01/11/ubiquiti-says-

customer-data-may-have-been-accessed-in-data-breach/ (accessed on 20 December 2021).
3. SITA Data Breach Affects Millions of Airline Passengers. Available online: https://www.techradar.com/news/sita-data-breach-

affects-millions-of-airline-passengers (accessed on 20 December 2021).
4. Journal, H. CaptureRx Ransomware Attack Affects Multiple Healthcare Provider Clients and 1,919,938 Individuals. Available

online: https://www.hipaajournal.com/capturerx-ransomware-attack-affects-multiple-healthcare-provider-clients (accessed
on 20 December 2021).

5. Volkswagen, Audi Notify 3.3 Million of Data Breach. Available online: https://www.bankinfosecurity.com/volkswagen-audi-
notify-33-million-people-data-breach-a-16875 (accessed on 20 December 2021).

6. Smits, M.; Hulstijn, J. Blockchain applications and institutional trust. Front. Blockchain 2020, 3, 5. [CrossRef]

http://doi.org/10.1109/TII.2020.2998166
https://techcrunch.com/2021/01/11/ubiquiti-says-customer-data-may-have-been-accessed-in-data-breach/
https://techcrunch.com/2021/01/11/ubiquiti-says-customer-data-may-have-been-accessed-in-data-breach/
https://www.techradar.com/news/sita-data-breach-affects-millions-of-airline-passengers
https://www.techradar.com/news/sita-data-breach-affects-millions-of-airline-passengers
https://www.hipaajournal.com/capturerx-ransomware-attack-affects-multiple-healthcare-provider-clients
https://www.bankinfosecurity.com/volkswagen-audi-notify-33-million-people-data-breach-a-16875
https://www.bankinfosecurity.com/volkswagen-audi-notify-33-million-people-data-breach-a-16875
http://doi.org/10.3389/fbloc.2020.00005

Sensors 2022, 22, 1146 23 of 23

7. Tomescu, A.; Devadas, S. Catena: Efficient non-equivocation via bitcoin. In Proceedings of the 2017 IEEE Symposium on Security
and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 393–409.

8. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decent. Bus. Rev. 2008, 21260.
9. Hyperledger—Open Source Blockchain Technologies. Available online: https://www.hyperledger.org/ (accessed on

20 December 2021).
10. Heron, S. Advanced Encryption Standard (AES). Netw. Secur. 2009, 2009, 8–12. [CrossRef]
11. Jianjun, S.; Ming, L.; Jingang, M. Research and application of data sharing platform integrating Ethereum and IPFs Technology.

In Proceedings of the 2020 19th International Symposium on Distributed Computing and Applications for Business Engineering
and Science (DCABES), Xuzhou, China, 16–19 October 2020; pp. 279–282.

12. Johnson, D.; Menezes, A.; Vanstone, S. The Elliptic Curve Digital Signature Algorithm (ECDSA). Int. J. Inf. Secur. 2001, 1, 36–63.
[CrossRef]

13. Teslya, N.; Ryabchikov, I. Blockchain-based platform architecture for industrial IoT. In Proceedings of the 2017 21st Conference of
Open Innovations Association (FRUCT), Helsinki, Finland, 6–10 November 2017; pp. 321–329.

14. Wang, Z.; Tian, Y.; Zhu, J. Data sharing and tracing scheme based on blockchain. In Proceedings of the 2018 8th International
Conference on Logistics, Informatics and Service Sciences (LISS), Toronto, ON, Canada, 3–6 August 2018; pp. 1–6.

15. Zhang, A.; Lin, X. Towards secure and privacy-preserving data sharing in e-health systems via consortium blockchain. J. Med.
Syst. 2018, 42, 140. [CrossRef] [PubMed]

16. Lee, A.R.; Kim, M.G.; Kim, I.K. SHAREChain: Healthcare data sharing framework using Blockchain-registry and FHIR.
In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21
November 2019; pp. 1087–1090.

17. Kumar, N.; Dakshayini, M. Secure Sharing of Health Data Using Hyperledger Fabric Based on Blockchain Technology.
In Proceedings of the 2020 International Conference on Mainstreaming BlockChain Implementation (ICOMBI), Bengaluru, India,
21–22 February 2020; pp. 1–5.

18. Kang, B.; Shao, D.; Wang, J. A fair electronic payment system for digital content using elliptic curve cryptography. J. Algorithms
Comput. Technol. 2017, 12, 13–19. [CrossRef]

19. Available online: https://hyperledgerfabric.readthedocs.io/en/release-2.2 (accessed on 20 December 2021).
20. Transaction Flow—Hyperledger-Fabricdocs Master Documentation. Available online: https://hyperledger-fabric.readthedocs.

io/en/release-2.2/txflow.html (accessed on 20 December 2021).
21. Foschini, L.; Gavagna, A.; Martuscelli, G.; Montanari, R. Hyperledger Fabric Blockchain: Chaincode Performance Analysis.

In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC), Online, 7–11 June 2020; pp. 1–6.
22. Uddin, M. Blockchain Medledger: Hyperledger fabric enabled drug traceability system for counterfeit drugs in pharmaceutical

industry. Int. J. Pharm. 2021, 597, 120235. [CrossRef] [PubMed]
23. Nizamuddin, N.; Salah, K.; Ajmal Azad, M.; Arshad, J.; Rehman, M. Decentralized document version control using ethereum

blockchain and IPFS. Comput. Electr. Eng. 2019, 76, 183–197. [CrossRef]
24. Burrows, M.; Abadi, M.; Needham, R. A logic of authentication. ACM Trans. Comput. Syst. 1990, 8, 18–36. [CrossRef]
25. Chen, C.; Deng, Y.; Weng, W.; Sun, H.; Zhou, M. A Blockchain-Based Secure Inter-Hospital EMR Sharing System. Appl. Sci. 2020,

10, 4958. [CrossRef]
26. Chen, C.; Deng, Y.; Li, C.; Zhu, S.; Chiu, Y.; Chen, P. An IoT-Based Traceable Drug Anti-Counterfeiting Management System. IEEE

Access 2020, 8, 224532–224548. [CrossRef]
27. Kiayias, A.; Tsiounis, Y.; Yung, M. Traceable Signatures. Adv. Cryptol. Eurocrypt 2004, 2004, 571–589.
28. Zhou, J.; Gollman, D. A fair non-repudiation protocol. In Proceedings of the 1996 IEEE Symposium on Security and Privacy,

Oakland, CA, USA, 6–8 May 1996; IEEE: Piscataway, NJ, USA; pp. 55–61.
29. Denning, P.; Denning, D. Discussing cyber attack. Commun. ACM 2010, 53, 29–31. [CrossRef]
30. Blockchain—Wikipedia. Available online: https://en.wikipedia.org/wiki/Blockchain (accessed on 20 December 2021).
31. Nasir, Q.; Qasse, I.; Abu Talib, M.; Nassif, A. Performance Analysis of Hyperledger Fabric Platforms. Secur. Commun. Netw. 2018,

2018, 3976093. [CrossRef]
32. Lin, H.; Garg, S.; Hu, J.; Kaddoum, G.; Peng, M.; Hossain, M. A Blockchain-Based Secure Data Aggregation Strategy Using Sixth

Generation Enabled Network-In-Box For Industrial Applications. IEEE Trans. Ind. Inform. 2021, 17, 7204–7212. [CrossRef]

https://www.hyperledger.org/
http://doi.org/10.1016/S1353-4858(10)70006-4
http://doi.org/10.1007/s102070100002
http://doi.org/10.1007/s10916-018-0995-5
http://www.ncbi.nlm.nih.gov/pubmed/29956061
http://doi.org/10.1177/1748301817727123
https://hyperledgerfabric.readthedocs.io/en/release-2.2
https://hyperledger-fabric.readthedocs.io/en/release-2.2/txflow.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/txflow.html
http://doi.org/10.1016/j.ijpharm.2021.120235
http://www.ncbi.nlm.nih.gov/pubmed/33549813
http://doi.org/10.1016/j.compeleceng.2019.03.014
http://doi.org/10.1145/77648.77649
http://doi.org/10.3390/app10144958
http://doi.org/10.1109/ACCESS.2020.3036832
http://doi.org/10.1145/1810891.1810904
https://en.wikipedia.org/wiki/Blockchain
http://doi.org/10.1155/2018/3976093
http://doi.org/10.1109/TII.2020.3035006

	Introduction
	Background
	Related Works

	Preliminary
	Elliptic Curve Digital Signature Algorithm (ECDSA)
	Hyperledger Fabric
	Chaincode
	InterPlanetary File System (IPFS)
	BAN Logic
	Threat Model

	Proposed Scheme
	System Architecture
	Hyperledger Fabric Detailed Transaction Information Flow
	Registration Phase (Phase 1)
	Data Storage Phase (Phase 2)
	Data Query Phase (Phase 3)
	Data Transfer Phase (Phase 4)

	Security Analysis
	Mutual Authentication
	Data Integrity
	Traceability
	Non-Repudiation
	Resist Known Attacks
	Man-in-the-Middle Attack
	Replay Attacks

	Performance Evaluation
	Communication Cost
	Computation Cost
	Blockchain Architecture Comparison
	Function Comparison

	Deployment and Testing
	Performance of File Transmission in Traditional and IPFS Network
	Throughput and Latency of Smart Contract Calling
	Performance Comparison of Different Systems

	Conclusions
	References

