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Abstract: Video surveillance systems process high volumes of image data. To enable long-term
retention of recorded images and because of the data transfer limitations in geographically distributed
systems, lossy compression is commonly applied to images prior to processing, but this causes a
deterioration in image quality due to the removal of potentially important image details. In this paper,
we investigate the impact of image compression on the performance of object detection methods based
on convolutional neural networks. We focus on Joint Photographic Expert Group (JPEG) compression
and thoroughly analyze a range of the performance metrics. Our experimental study, performed over
a widely used object detection benchmark, assessed the robustness of nine popular object-detection
deep models against varying compression characteristics. We show that our methodology can allow
practitioners to establish an acceptable compression level for specific use cases; hence, it can play a
key role in applications that process and store very large image data.

Keywords: deep learning; object detection; image compression

1. Introduction

Real-life applications of object detection, such as intelligent video surveillance systems,
faced a number of practical challenges. One critical challenge is how to handle a large
volume of image data efficiently. Since city surveillance systems are spread geographically
and include hundreds (or even thousands) of cameras, processing captured data requires
compression, usually in a lossy manner. Such lossy compression ultimately degrades
the quality of images because it discards a portion of the contained information. There-
fore, adjusting the compression settings leads to a trade-off between image quality and
storage/transfer requirements and constraints.

Object detection is a prominent task in computer vision. It has received much research
attention because of its cornerstone role in many practical applications ranging from
personal photography to security and surveillance. Additionally, 2D-object detection can
play a key role in many other areas, such as 3D sensing (e.g., when combined with LIDAR
data [1]), or autonomous driving [2], in which detecting tiny objects suchas traffic signs in
real time is crucial [3]). Although there are numerous classical machine learning approaches
for object detection, deep-learning object detectors are advantageous compared to other
kinds of algorithms for the following reasons:

¢  They offer a high object-detection performance that outperforms classical approaches [4];

*  They can be trained to detect new classes of objects without programming new algo-
rithms or feature extractors in a human-dependent manual way [5]; and

¢  Hardware acceleration to address their substantial computational needs is readily
available, thus allowing end-to-end training of large models.

Although there have been attempts to verify the impact of lossy image and video
compression on the performance of deep convolutional architectures applied in various
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computer vision tasks (e.g., human pose estimation, semantic segmentation, object detec-
tion, action recognition, or monocular depth estimation [6,7]), the quality of images after
lossy compression was considered primarily with human perception in mind [8-10]. We
follow the former research pathway, and our main objective is to understand how image
compression affects the performance of deep-learning models for object detection.

1.1. Related Work

Most research into object detection from image data does not concurrently take into
account image quality and lossy compression, or their impact on object detection per-
formance. However, there some works on deep convolutional neural networks (CNNs)
performance under different conditions, sucha as quality degradation resulting from input
data compression. (Note that compressing CNNs and elaborating resource-frugal deep
models is another interesting research area, for which we are aiming to obtain compact
models that occupy less memory and infer faster, ideally without degrading the abilities of
the algorithm [11,12]).

Dodge and Karam [13] investigated the influence of image quality on the performance
of image classification, which is similar to object detection but without the localization
requirement. One of the methods of quality degradation was lossy image compression,
using JPEG and JPEG2000. The study was based on the ImageNet 2012 1000-class dataset,
specifically on 10,000 images drawn from the ILSVRC 2012 validation set [14]. Four
deep architectures, two variants of AlexNet alongside the larger VGG-16 network and
GoogLeNet [15], were exploited in the experimental study that covered five types of image
distortions: (i) additive Gaussian noise, (ii) blur via convolution using a Gaussian kernel,
(iii) contrast reduction via blending with an uniform gray image with a varying blending
factor, (iv) JPEG compression at different quality levels (reflected by the Q parameter), and
(v) JPEG2000 compression with a different target peak signal to noise ratio (PSNR). The
authors measured Top-5 classification accuracy (the percentage of classifications where
the correct class was among the five most confident predictions), as well as the strict
(Top-1) accuracy. The experiments indicated a significant influence of blurring, together
with a medium influence of noise and a high robustness against the contrast degradation.
Both image compression methods were found to have an impact on the classification
performance. For all considered models, the accuracy did not decrease significantly for
quality levels from 20 to 100.

In [16], the authors described methods for generating additive, seemingly random,
noise with low amplitude, causing models to classify modified images wrongly. Although
such alterations are perceivable by humans, they do not affect object recognition capabilities.
This showed that the image quality can be regarded differently for human perception and
for (at least some) deep CNN models. This observation was explored further in [13] for the
image classification task. In the work reported here, we tackle the problem of understanding
the influence of lossy compression on deep-learning object detection, which remains an
open question in the literature.

1.2. Contribution

We investigate the influence of the JPEG compression on the performance of CNNss for
object detection. This compression method is widely used in various real-life applications,
such as digital photography or document archiving. Moreover, other lossy compression
algorithms, including video encoders, are based on the same principles [17]. The insights
learned from our study can be generalized over many other compression techniques as
well. Our contribution centers around the following points:

¢ Wedevise a fully reproducible computational study to thoroughly assess the influence
of varying compression levels on the performance of a representative collection of
models for object detection (including one-stage and two-stage detection pipelines),
using a well-known validation dataset [18].
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¢  We analyze the changes in performance using both an aggregated performance score,
as well as separate metrics of recall and precision to allows us to observe differences
in behaviors between models in detail.

*  We show how different architectures behave with respect to the confidence threshold,
and we present the examples of high and low sensitivity to such threshold, which
needs to be taken into account while balancing precision and recall.

*  We examine the influence of object size (quantified as the object’s area in pixels) on
the robustness of object detection.

Our findings have a practical application in systems using deep CNNs for object detec-
tion, which uses lossy compression for image transfer or storage. The insights concerning
the nature of the trade-off between the compression level and detection performance can
lead to better decisions about the underlying compression parameters and to a reduction
in data storage requirements, while maintaining an acceptable performance of the deep
learning-powered object detectors.

1.3. Paper Structure

The remainder of this paper is organized as follows. Section 2 describes the materials
and methods used in our study. Here, we discuss the JPEG compression algorithm, together
with the deep-learning-powered object detection and the metrics that are commonly used to
quantify the performance of such techniques. We also elaborate on the benchmark dataset
and the models exploited in our study. Section 3 presents and discusses the experimental
results, and Section 4 concludes the paper.

2. Materials and Methods
2.1. JPEG Image Compression

A high-level JPEG image data compression flowchart is rendered in Figure 1. We
discuss its pivotal steps in more detail in the following subsections.

Discrete
8 x 8 block . DCT coefficients . . quantized coefficients Entropy compressed data
8-bit integers Cosine floating-point Quantlzatlon integers Codin g bits
Transform

Figure 1. The JPEG compression pipeline. The lossy step is indicated as a rounded block.

2.1.1. Block Transform

The lossy compression used in the JPEG standard is based on the discrete cosine
transform (DCT) [19]. The forward DCT (FDCT), also known as DCT-II, processes an 8 x 8
block of samples (f(x,y) € [0,255]) producing an 8 x 8 block of DCT coefficients F(u,v)
using the following formula [20]:

7 x u v
F(u,v) = %LC(M)C(U)[Z Zf(x,y) cos 2 %1—61) T cos (2y —;61) n], 1)

x=0y=0

where C(u) and C(v) are the normalization constants defined as follows:

Clu), C(o) = {1/\@ if u,0=0, ?

1, otherwise.

This transform can be reversed using the associated inverse DCT (IDCT), also known
as DCT-III, which is defined as follows:

1YY C(u)C(0)E(u,0) cos =X +161)”” cos ¥ +161)””]. 3)

u=0v=0

flxy) =

N
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2.1.2. Quantization

The output of DCT is quantized—each DCT coefficient in the 8 x 8 block is divided by
its corresponding quantization table (QT) entry Q(u,v) € [1,255] rounded to the nearest
integer. This operation is only approximately reversed during the decompression process:
before the inverse transform, the coefficients are multiplied by their QT entries. The larger
the divisor in the QT becomes, the lower the number of the discrete quantized coefficient
values that can be generated is. Finally, the DCT coefficients that are smaller than a half of
the QT entry become zero.

2.1.3. Setting the JPEG Quality

The Q parameter, which is used to control image quality in JPEG compression, is an
integer in the range [1,100], with the smaller values indicating lower quality and smaller
output size, and higher values corresponding to better quality at the cost of size (hence,
“weaker” compression)—see Figure 2. Interestingly, the value of 100 does not correspond
to the lossless compression, but to the configuration that introduces the smallest possible
information loss, which is achieved when there are only ones in the QT. For Q = 1,
all divisors in the QTs are equal to 255. The QTs used in this research are available at
https:/ /github.com/tgandor/urban_oculus/tree/master/jpeg/quantization (accessed on
19 December 2021).

4 -
Original (8x zoom) Q=80, SSIM=0.92 Q=40, SSIM=0.86 Q=20, SSIM=0.83 Q=10, SSIM=0.80

Figure 2. The JPEG compression quality. An example 64 x 64 image section compressed with the
selected Q values, together with the corresponding SSIM [21]. For visibility, the image section was
zoomed 8 x using the nearest-neighbor interpolation. Source: http://r0k.us/graphics/kodak/kodak/
kodim04.png, license: CCO, accessed on 19 December 2021.

The JPEG data compression ratio may vary since it depends on image content, e.g., a
single-level 8 x 8 block needs to store one DCT coefficient, but high-frequency areas may
have 64 non-zero coefficients even after quantization. Table 1 shows the compression ratio
statistics for a set of the Q values computed on the COCO val2017 set.

Table 1. Descriptive statistics of the compression ratio (as a function of Q) obtained for the COCO
val2017 images.

Q Mean Std Min 25% 50% 75% Max
5 100.51 36.36 1.45 75.61 97.69 125.08 229.79
15 51.34 21.22 1.44 37.01 47.77 61.89 210.04
25 36.45 16.08 1.42 25.97 33.52 43.63 194.23
35 28.96 13.29 1.41 20.43 26.51 34.51 174.91
45 24.31 11.38 1.40 17.13 22.15 28.77 154.25
55 21.46 10.05 1.39 15.26 19.60 25.37 144.08
65 17.64 8.29 1.38 12.54 16.13 20.67 121.30
75 14.78 6.76 1.36 10.61 13.57 17.38 103.31
85 9.60 4.04 1.32 7.05 8.90 11.18 53.47
95 5.56 2.20 1.19 4.15 5.13 6.52 32.92

2.1.4. Relation between the Q Parameter and the Image Quality

Image quality can be defined in multiple ways, one of which uses full-reference image
quality metrics (FIQMs). They can be applied if the reference image is available, so the
similarity can be expressed numerically. Such metrics include the mean squared error
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(MSE) and the root mean square error (RMSE), which depends on the dynamic range of the
image. Still, they are useful in various scenarios, e.g., they can be exploited as loss functions
while training image autoencoders. The peak noise-to-signal ratio (PSNR) is measured in
decibels and is computed as

MSE @)

2

PSNR = 10 - log (MAXI ) .

It is worth mentioning that PSNR is used in the JPEG2000 algorithm to control the
compression quality, but it suffers from several limitations that were pointed out by Wang
and Bovik [22]. A popular FIQM which overcomes these shortcomings is the structural
similarity index metric (S55IM) [21]. In contrast to MSE, which is computed pixel-wise, SSIM
uses a block-wise computation, which is averaged for the entire image. For each block, the
metric compares the average pixel value, the standard deviation, and also the co-variance
of two blocks, and normalizes the result to [0.0,1.0]. Table 2 gathers the SSIM statistics

obtained for the selected Q values over the COCO val2017 set.

Table 2. Descriptive statistics of SSIM (as a function of Q) obtained for the COCO val2017 images.

Q Mean Std Min 25% 50% 75% Max

5 0.6271 0.0898 0.1533 0.5741 0.6309 0.6860 0.9657
15 0.7738 0.0637 0.3593 0.7360 0.7802 0.8176 0.9694
25 0.8262 0.0546 0.3900 0.7945 0.8320 0.8643 0.9795
35 0.8549 0.0484 0.4191 0.8276 0.8600 0.8883 0.9760
45 0.8740 0.0436 0.4440 0.8498 0.8785 0.9039 0.9910
55 0.8868 0.0413 0.4674 0.8645 0.8915 0.9150 0.9931
65 0.9047 0.0358 0.5045 0.8865 0.9090 0.9287 0.9881
75 0.9211 0.0331 0.5768 0.9061 0.9256 0.9424 0.9972
85 0.9562 0.0249 0.7819 0.9432 0.9597 0.9757 0.9985
95 0.9947 0.0026 0.9808 0.9931 0.9947 0.9969 0.9996

2.2. Deep Learning in Object Detection

Deep learning has been blooming in the field of object detection [23], and a plethora of
techniques benefiting from automated representation learning have been proposed for this
task so far [24]. The following subsections discuss such approaches in more detail.

2.2.1. The Object Detection Pipeline

A high-level flowchart of the object detection pipeline that exploits deep learning is
rendered in Figure 3. Such deep learning-powered models include

*  One- and two-stage detectors (also referred to as the dense and sparse detectors), and
¢ Detectors, those that use a feature pyramid built on top of the backbone and those that
exploit the final convolutional layer of the backbone.

Detector Dee Detector -
i e A Featur ——(Detections)
backbone head etections

Figure 3. A high-level object detection pipeline that exploits deep learning. The deep CNN-based

object detectors used in this study consist of a backbone and a head. The rectangles represent the
functional elements, whereas the rounded rectangles are their input and output data.

2.2.2. The Backbone for Feature Extraction

The object detection pipeline commonly starts with feature extraction, which may
be followed by feature selection [25]. A flowchart of the backbone that extracts features,
together with an optional feature enhancement pathway, is shown in Figure 4. The en-
hancement is achieved by building a feature pyramid network (FPN) [26], which is a fusion
of high- and low-level features [27].
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Figure 4. The backbone of an object detector. This part of the network extracts the deep features.

Before the features are actually extracted, the input images are pre-processed, a step
that often includes their resizing so they can be fed into the input layer, and standard-
ization. The backbones are usually taken directly from a well-established deep image
classifier [28,29]. The most popular backbones encompass the ResNet [30], ResNeXt [31],
DarkNet [24], MobileNet [32], and EfficientNet [33] architectures.

2.2.3. Single-Stage Detectors

Single-stage detector architectures (also referred to as the single-shot [24,34] and dense
detectors [35]) perform prediction directly on the output features of the backbone network.
Single-shot detectors process the input image (i.e., extract the features) only once [24],
which was not the case in the earlier two-stage detectors. Additionally, every point of the
final feature map (or feature maps for feature pyramids) can potentially detect a specified
number of objects. Finally, localization and classification tasks can be handled by two
separate sub-networks, as in RetinaNet [35], or a single fully convolutional network, as
presented in [36].

2.2.4. Two-Stage Detectors

The two-stage detectors (also referred to as the sparse detectors) are built with two
functional blocks (as shown in Figure 5):

¢ Theregion of interest (ROI) proposal mechanism, which generates the locations (boxes)
in the image (where an any-class object can be found); when implemented as a neural
network, it is known as the region proposal network (RPN).

*  The ROI heads, which evaluate the proposals, producing detections.

Deep Features WJ RPN Proposals

Figure 5. A two-stage detector head, also referred to as the sparse detectors.

In the two-stage detection approach, the detection occurs only in a limited number of
regions, which were produced by the RPN, and not across the entire image. Therefore, the
most important quality metric related to the RPN is its recall.

A ROI head performs the second stage of the sparse-object detection. It takes a
proposal from RPN together with the deep features from the backbone. The features
relevant for a given region are processed through an operation called the ROI pooling and
are fed to the networks that localize and classify the objects.

2.3. Performance Metrics for Object Detection

This section describes the performance metrics that apply to the task of object detection.
Here, we show which count as true positive (TP) and false positive (FP) objects, how the
results are aggregated over a benchmark dataset, and which parameters (thresholds) can
be specified for the metrics.

2.3.1. Assessing a Single Detection

A single detection returned by the model needs to be categorized as a TP or FP. To
determine this, the intersection over union (IoU) is commonly used. This value is the result
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of dividing the areas of the ground-truth and predicted box intersection (or zero if the
boxes are disjoint) by the area of their union.

The threshold value for IoU, denoted as Tj,y, is a parameter of the object detector
evaluation: a detection is treated as a TP, if there exists a ground truth (GT) box for the
same class with an IoU > Tj,;; otherwise, it is treated as a FP. The choice of the Tj,
value strongly influences the quantitative results. Thus, only the values obtained with the
same T}, should ever be compared. Commonly, the metrics found in the literature specify
the threshold used—too low can lead to an over-optimistic evaluation and an incorrect
assignment to the GT boxes, and too large a threshold may cause many correct detections
to be rejected, especially if the GT boxes are not accurate. The lowest widely used T}y is
0.5, followed by 0.75 when the localization accuracy requirements are strict. Each detection
has a confidence p—we apply the confidence threshold T, and process the detections with
p 2> T.

2.3.2. Detecting the Unlabeled Objects: Crowds

The object detection datasets may include some annotations designated as “crowd”.
These regions include many objects of the same class without individual object annotations.
We record the number of such detections, and refer to them as the “extra” detections (EX).

2.3.3. Precision, Recall and the F1-Score

Once the number of TP and FP detections was determined for the specific values of
Ty and T, we calculated the precision (positive predictive value, PPV), which is the ratio
of TP and the total number of detections:

TP

PPV = 15 Fp

©)

To calculate the recall metric (also called sensitivity, true positive rate, TPR), we
additionally exploited the number of objects in GT that were not detected such an a false
negative (FN). This metric became

TP

TPR = —————.
TP +FN

(6)

The F1-score aggregates TPR and PPV into a single value in the range [0, 1], by using
the harmonic mean:

. = . 7
2 PPV +TPR  2-TP+ FP + EN @

-1
B (TPRl —|—PPV1> . PPV-TPR 2. TP
The T, parameter can be used to tune the above performance metrics—increasing
the threshold potentially increases precision at the cost of recall, and lowering it has the
opposite effect.

2.3.4. The Precision—Recall Curve and Average Precision

All detections for all images in a benchmark dataset are first sorted by their con-
fidence in descending order. When considering the top k elements, the TP, and FPy
values can be used to compute the running precision PPV = TPy /(TP + FPy), and recall
TPRy = TP./GT, where GT is the number of ground-truth objects in the dataset. TPRy is
a non-decreasing series, but PPV}, is not monotonic. To convert PPV} into a non-increasing
curve, we used PPV = max PPV;. To efficiently compute AP, we sampled the precision by

recall (Figure 6D), and therefore we obtained

PPVi, k = min{k | TPR; > r}.

(8)
0,r > max TPRy

PPV'(r) = {
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The AveP in this approximation becomes the arithmetic mean:

S

AveP =
IR|

) PPV'(r),R =[0,0.1,...,1.0]. )
reR

Finally, the set of the recall samples R is evenly spaced from 0 to 1, usually by 0.1 (as
proposed in [37]) or by 0.01 (as exploited in [18]). The code for evaluating the AP metric is
available at https://github.com/cocodataset/cocoapi/ (accessed on 19 December 2021).

A B C D

1.0 1.00 1.0 revvses,s
= 0.81 0.98 0.8 0.8
S
£ 06 §0.96 5061 506+
c 2 E E
S 9 0.94 3 3
é 0.4+ 5 5 0.44 a5 044
5 0.92
202 —— TPR(K) 0.24 —— PPV/(TPR) 0.29 —— AveP = mean(PPV'_i))

PPV'(k) 0.90{ — PPV'(TPR) AveP = AuC(PPV') e PPV
0077 r r r r r r r r 0.0 r r r r 0.0 r ..
0 2000 4000 6000 8000 0.0 0.2 0.4 0.6 00 02 04 06 08 10 0.00 025 050 075 1.00

k (rank) recall recall recall

Figure 6. The AP score derived from a precision-recall curve. (A) Example plot of recall and
monotonic precision on the k top confidence detections. (B) Monotonic precision plotted against
recall. (C) AP as the area under the precision-recall curve in the unit square. (D) AP as the average of
precision sampled at 11 recall values [0.0,0.1, .. .,1.0]. If a recall value is never reached, the precision
becomes zero for that value.

2.3.5. The Performance Metrics Selected for This Study

After each step in the image degradation, the objects are detected using each inves-
tigated model, and the performance metrics are computed. The parameters were set as
follows: T, = 0.5 (the confidence p cutoff), and Tj,y; = 0.5 (for the metrics using a single
IoU threshold except mAP 75, for which Ty = 0.75), and Ty, € [0.5,0.55, . ..,0.9,0.95] for
AP. The following object detection performance metrics were evaluated for all experiments:

*  TP: the number of true positive detections,

e FP: the number of false positive detections,

e EX: the number of the “extra” (crowd) detections,

. PPV: the overall precision of the detections,

e  TPR: the overall recall of the detections,

e  F1: the overall Fl-score,

e AP: the overall AP metric,

o AP, APy, APj: AP separately for small (below 322 = 1024 pixels of area), medium
(between 1024 and 96% = 9216 pixels) and large (above 9216 pixels) objects,

*  mAP 5, mAP 75: the mean average precision for two different T,y values.

2.4. Qualitative Assessment of the Detection Performance

The 5000 images included in the val2017 dataset, multiplied by 100 quality settings
and 9 models gives 4.5M of possible images with detections, which is infeasible to analyze
manually. However, we analyzed a subset of the detections qualitatively, and proposed
names for the unwanted behavior of the detectors. The errors encompass

e  omission of an object (FN), the most common error,

* wrong classifications (a bounding box around an object with the wrong category
returned, sometimes alongside a correct detection of that very object),

*  mistaken objects (detecting real objects with a correct bounding box, but of a category
not present in the GT),

¢ detections of unrelated objects at random places in the image (“halucinating”).

* loss of bounding box accuracy,

* selecting only part of an object or having multiple selections of the object (loss of
continuity),
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*  one box covering multiple objects (cluster) or parts of different objects from the same
category (chimera).

2.5. Reproducibility Information

All Python code and Jupyter notebooks associated with the study were published at
https:/ /github.com/tgandor/urban_oculus (accessed on 19 December 2021). The input
data is available for download at https:/ /cocodataset.org/ (accessed on 19 December 2021),
and the raw output data (detections in the JSON format) was deposited in a public data
repository at https://doi.org/10.7910/DVN/UPIKSF (accessed on 19 December 2021).

2.5.1. Benchmark Dataset

There is a plethora of datasets for object detection [23], such as PASCAL VOC, Im-
ageNet, Open Images and MS COCO. We exploited the validation subset of the COCO
Detection Challenge 2017, which is called val2017 for short. It consists of 5000 images of
objects in natural environments. These are known as non-iconic images [18], in contrast
to iconic images which are typically used for image classification. There were 80 object
categories and 36,781 annotated objects in total. The number of objects in each category
was uneven: the top 3 of them were people (11,004), cars (1932), and chairs (1791), while the
least represented two classes contained only 11 and 9 object instances. The original JPEG
quality of the images had the following distribution: Q = 96:3540, Q = 90:1414, Q = 80:46.
Finally, there were 134 grayscale images.

2.5.2. The Investigated Deep Models

For object detection, we used nine pre-trained deep models taken from the De-
tectron2 [38] Model ZOO available at https://github.com/facebookresearch /detectron2
/blob/master/MODEL_ZOO.md (accessed on 19 December 2021). The models were given
the following identifiers: R101, R101_C4, R101_DC5, R101_FPN, R50, R50_C4, R50_DCS5,
R50_FPN, X101 (Table 3). This choice of models wais comprehensive, and covered both
one-stage (RetinaNet) and two-stage (Faster R-CNN) detectors, as well as different variants
of Faster R-CNN (with and without the feature pyramid). As the backbones, we used two
ResNet depths (50 and 101 layers0, and there was one backbone using ResNeXt-101 (X101).
The non-FPN Faster R-CNNs had two kinds of backbones: the first (C4) used a standard
ResNet, and the other (DC5) exploited dilated convolutions (DC). Finally, both RetinaNets
included a FPN. All the models were trained on the train2017 dataset [18], which was
the training subset of the COCO Detection Challenge 2017. It encompassed the same 80
categories as val2017, but there were many more images (117,266) and object annotations
(849,949). The stochastic gradient descent optimizer with a 0.9 momentum value, 270,000
iterations, and 16 images per batch (36 epochs in total) was used to train the deep models.

Table 3. The deep object detection models investigated in this study.

Symbol Description

R101 RetinaNet [35] with ResNet-101 [30] + FPN [26]
R101_C4 Faster R-CNN [39] with ResNet-101 [30]

R101_DC5  Faster R-CNN [39] with ResNet-101 [30] + DC [40]
R101_FPN  Faster R-CNN [39] with ResNet-101 [30] + FPN [26]
R50 RetinaNet [35] with ResNet-50 [30] + FPN [26]
R50_C4 Faster R-CNN [39] with ResNet-50 [30]

R50_DC5 Faster R-CNN [39] with ResNet-50 [30] + DC [40]
R50_FPN Faster R-CNN [39] with ResNet-50 [30] + FPN [26]
X101 Faster R-CNN [39] with ResNeXt-101 [31] + FPN [26]

2.5.3. Image Degradation

This step performs the process of compressing all images from the benchmark set
to a certain quality setting Q. For this task, the mogrify program from the ImageMagick
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suite (available at https://imagemagick.org/; accessed on 19 December 2021) was used
throughout the computational experiments. The following command was run for the
degradation:

$ mogrify -verbose -quality <Q> datasets/coco/val2017/*.jpg

Since this operation is deterministic, there was no need to publish the degraded
images for reproducibility. The set of the Q parameter values was all integers from the
range 1,2,...,100. Importantly, no spatial transformations were applied to the input images;
hence, the object locations and classes remained unchanged throughout the experiment.

3. Experimental Results
3.1. The Baseline Results

The inference was first executed for all the models on unchanged images (the baseline),
with T, = 0.5. These baseline results are presented in Table 4.

Table 4. The baseline performance of all investigated deep models (T, = 0.5).

Model AP  mAPs mAP;; AP, AP, AP, TPR PPV TP FP EX
R101 33.6 47.0 37.2 463 375 153 517 811 18,769 4360 820
R101.C4 385 563 419 53.6 428 191 671 586 24373 17246 4463
R101_DC5 383 56.8 42.0 521 428 194 680 582 24701 17,752 4504
R101_FPN 384 55.5 426 51.2 421 208 649 687 23593 10,751 2605
R50 31.6 443 35.2 443 348 141 497 807 18,043 4320 821
R50_C4 35.9 53.6 39.3 51.0 398 176 653 568 23,733 18,075 4586
R50_.DC5  36.8 55.7 40.5 505 414 182 667 571 24244 18,190 4668
R50_ FPN  36.7 54.1 40.7 494 401 191 638 670 23170 11,428 2763
X101 39.6 57.0 43.9 521 429 226 663 697 24073 10472 2534

The best results are in bold, and the second-best are underlined; AP, AP,,,, AP;—the AP metric for objects classified as large,
medium and small; TPR, PPV—recall and precision at Tjoy = 0.5; TP, FP—true positives and false positives at Ty = 0.5;
EX—"extra” detection of objects in the crowd regions.

3.1.1. The AP and Related Metrics

For the metrics based on the AveP, AP, mAP, and per-size AP values, X101 was the
dominant model except for AP}, where the simple R101_C4 model achieved 1.5 percentage
points more. However, the second places behind X101 in AP and mAP were specific to the
metric:

¢  For AP, the ResNet-101 Faster R-CNNs were only 0.1% from each other, with the
following order of its variants: C4, FPN, DC5.

e  For mAP 5, the order was DC5, C4 (—0.5%), FPN (—0.8%).

e For mAP 75, the order was FPN, DC5 (0.6%), C4 (—0.1%).

This meant that the benefits of FPN were manifesting themselves with a higher
precision of the bounding boxes, which improved mAP for higher T},, and thus also
AP. The RetinaNets fell behind the two-stage models in these metrics because of low TPR
values (around 50%) compared to the 63-68% range of Faster R-CNNs.

3.1.2. Counting the Objects (TP, FP, EX), Recall and Precision

In the baseline results from Table 4 for the detected object counts, the TPR and PPV
of the detection were more nuanced then the AP-related ranking. The largest numbers of
objects were found by the classic Faster R-CNNs (about 24.5k or 67-68% TPR). This was
closely followed by X101 with 66%, and two other FPN-based models achieving 64-65%.
The ranking was concluded by the RetinaNets, which achieved only 50-52% for detecting
18-18.5k objects. Interestingly, the precision ranking was exactly reversed. The RetinaNets
returne only about 4.3k FP, which was less than 20% of their total detections (81% PPV).
This precision was more than 10% higher than that of the next group (FPN-based models),
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which had precision values in the range of 67-70%. The non-FPN two-stage models were
another 10% below that, with a PPV ranging from 57 to 59%. The EX metric, which counted
the additional objects in the “crowd” regions, was similar to the TPR, but there were
greater differences between the RetinaNets (about 800 detections), FPN models (2.5-2.8k
detections) and non-FPN models 4.5-4.7k detections). Surprisingly, the ResNet-50 Faster
R-CNNs produced even more EX detections than those based on ResNet-101.

3.1.3. Discussing the Impact of T,

For practical applications such as in video surveillance, when detected objects cause
a resource-consuming intervention, an appropriate T, value needs to be determined in
advance. When the benefit of GT annotations is not present, the risk of missing objects
needs to be balanced against the cost of human attention dedicated to reviewing FP, by
means of setting a right T, value. The T, = 0.5 is a good simulation of such a situation,
because it expresses the greater prior probability of a detection being correct than false.
Having collected all detections with the confidence p > 0.05, we examined the baseline
models’ behavior in a wide range of the T, values. Figure 7 shows the precision, recall and
Fl-score of each model in our study as a function of T.

A: R101 B: R101_C4 C: R101_DC5 D: R101_FPN E: X101
1.0 1.0 1.0 1.0 1.0
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Figure 7. Baseline TPR, PPV and F1 as a function of T.. Top row: 101-layer backbone models, bottom
row: 50-layer backbone models. (A) RetinaNet achieves low values of each metric at respective
T, extremes, and a narrow range of the best F1. (B,C) Faster R-CNN without FPN exhibits similar
behavior regardless of using dilated convolutions, the best F1 is returned at a higher T¢. (D,E) Faster
R-CNN with FPN maintains the balance between TPR and PPV in a wide T, spectrum, with the
ResNeXt backbone having better metrics and a symmetrical F1 curve. (F-I) Models with backbones
that are less deep are analogous to their larger equivalents.

The T, value with the best F1-score is not necessarily the best threshold for any given
detection task, but it informs us about the trade-off between the TPR and PPV. When the
shape of F1 as a function of T, is steep, with a small region of values close to maximum, it
means that the corresponding model is highly sensitive to the choice of threshold. A flatter
shape, with a plateau in the neighborhood of the maximum, indicates that the choice of T¢
may be more arbitrary, and favoring either the TPR or PPV does not disproportionately
affect the other metric. Looking at Figure 7, we can confirm that T; = 0.5 was an acceptable
choice for all the models in this study.

3.2. Detection Results on Degraded Images

Examples of highly degraded images together with their detections, and—for TP—the
GT boxes, are presented in Figures 8-10. For every GT object, it is possible to indicate the
minimal compression quality at which it was detected by a selected (or by every) model.
Surprisingly, there are objects that were detected by all investigated deep-learning detectors
even at Q = 1. Conversely, there were cases where the detector made systematic errors
(wrong classification or hallucinating the object), up to a certain quality, above which we
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could observe the correct behavior. Two examples of images demonstrating the “minimal
Q” are gathered in Figure 11.

A: R101 id=11149 Q=05 B: R101id=11149 , 30
: ; 7 >

Figure 8. The R101 detection examples: bicycles and motorcycles. (A) Q = 5: the single FP is a box
around parts of two different bicycle objects (chimera). (B) Q = 10: no person detected, multiple bicycle
FPs, one bicycle detected correctly, the other with extra detections of its parts. The motorcycle detected
both correctly, and falsely as bicycle. (C) Q = 20: both person objects detected, with repeated detections
of one, similar situation for bicycle. (D) Q = 30: person and bicycle correctly detected, the bicycle FP
includes part of the first bicycle and all of the visible motorcycle. Source: http://images.cocodataset.
org/val2017/000000011149.jpg, license: CC-BY, accessed on 19 December 2021.

A: R101 id=20247 Q=10 B: R101 id=20247 Q=15

C: R101 id=20247 Q=25

D: R101 id=20247 Q=45

Figure 9. The R101 detection examples: two bears. The detector localizes the objects correctly, but
there are classification mistakes. (A) Q = 10: classified as teddy bear and person. (B) Q = 20: classified
as teddy bear and dog (left) and as elephant, sheep and teddy bear (right). (C) Q = 25: one bear is correct,
the other classified as dog. (D) Q = 30: finally both bear objects are correct. Source: http://images.
cocodataset.org/val2017,/000000020247 jpg, license: CC-BY, accessed on 19 December 2021.

A: X101 id=1268 Q=10 B: X101 id=1268 Q=15 C: X101 id=1268 Q=20 D: X101 id=1268 Q=25

Figure 10. The X101 detection examples: under a bridge. (A) Q = 10: two person objects; errors: a
mistaken baseball bat. (B) Q = 15: three person objects; errors: a hallucinated train. (C) Q = 20: three
person objects, one bird, one backpack, the fourth person is annotated with the inaccurate bounding box.
(D) Q = 25: all person objects are correct, the bird, a handbag, a boat are annotated with the inaccurate
bounding boxes; errors: one backpack is wrongly classified as suitcase, there is one mistaken suitcase.
Source: http://images.cocodataset.org/val2017/000000001268.jpg, license: CC-BY, accessed on 19
December 2021.
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A: R101id=12062 Q=10

Figure 11. Determining the minimal Q for the correct detection. Two examples of the minimal quality
level for detecting objects, or for avoiding a FP. (A) Q = 10: a sheep’s head is misclassified as bird.
(B) Q = 25: both GT sheep objects are detected (minimal Q), but the head is still mistaken for bird, and
there is a hallucinated bird. (C) Q = 65: the central sheep is correctly detected, but there is a chimera
detection of the head and a pile of wool, there is also a sportsball wrongly classified as cow (this ball is
detected, but never classified correctly, up to Q = 100; it can also be classified as sheep). (D) Q = 10:
both person objects are detected, but the elephant is omitted. (E) Q = 15: the minimal Q for detecting
the elephant. Source: http:/ /images.cocodataset.org/val2017/000000012062.jpg and http://images.
cocodataset.org/val2017/000000021903.jpg, license: CC-BY, accessed on 19 December 2021.

3.3. Performance Metrics as a Function of Q

Considering the performance metrics as the functions of Q allowed us to analyze the
rate of change by taking a discrete derivative and plot the metrics against the compression
quality. In the following subsections, we discuss this in more detail.

3.3.1. The Precision, Recall and F1 Metrics

The metrics dependent on T, are presented in Figure 12. Here, we can appreciate
the near constant value of precision across the range of Q. As a consequence of that, the
general decline in performance, in this case measured with the F1 metric, was due to the
worsening of recall. The shape of the curves for these metrics depended on the model
family. The non-FPN Faster R-CNNs had TPR and PPV values closest to one another, with
the TPR starting out higher than the PPV and becoming equal to it near Q = 20. The FPN
Faster R-CNN models had higher precision, and recall starts near the precision value, that
declined slowly until the turning point. Finally, the RetinaNets had lower TPR values
that declined at a comparatively high rate, but they had the highest precision, which was
consequently maintained down to low quality values.

A: R101 B: R101_C4 C: R101_DC5 D: R101_FPN E: X101
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—— TPR

— F
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Figure 12. TPR, PPV and F1 as a function of Q at T. = 0.5. Top row: the 101-layer backbone
models, bottom row: the 50-layer backbone models. (A,F) RetinaNet exhibits high and constant
PPV, (B,C,G,H) Faster R-CNN without FPN exhibits similar behavior regardless of using dilated
convolutions, TPR and PPV are close in a wide range of Q, and recall is better than precision,
(D,LE) Faster R-CNN with FPN exhibits high PPV even for Q < 25 while TPR is above RetinaNets
and below non-FPN Faster R-CNNs.

3.3.2. The AP, mAP 5 and mAP 75 Metrics

The three metrics related to the area under the precision-recall curve behaved as
shown in Figure 13. These metrics are averaged, and therefore the curves look smooth.
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The general shape of AP was the same for all models, manifesting the first gradually, then
suddenly (a famous E. Hemingway’s quote about the process of bankruptcy) shape. The
similarity was visible not only between models, but also between the curves themselves
within each detector.
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Figure 13. AP,mAP 5 and mAP z5 as a function of Q. AP50—mAP 5, AP75—mAP z5. Top row: the
101-layer backbone models, bottom row: the 50-layer backbone models. The results for all the models
for AP and related metrics are approximately identical. Note how close mAP y5 is to AP. The models:
(A,F) RetinaNet, (B,C,G,H) Non-FPN Faster R-CNN, (D,1,E) FPN Faster R-CNN.

3.3.3. The AP Behavior for Different Sizes of Objects

The AP metric computed for small medium and large objects is shown in Figure 14.
There was a high similarity across all models, but in contrast to the AP at different Tj,y,
the AP at different sizes had noticeable differences in the curve shape. Specifically, the
large objects were robustly detected down to low compression quality, and the shape of
the middle-sized objects” AP curve was similar but with a lower value. This can be related
to the influence of the bounding box precision: big objects had high IoU with detections
misaligned by a few pixels, and the GT annotations were also not perfect. In the case of
small objects, the difficulty of detecting them was apparent in the plots. Not only do they
start with APs approximately half of the APy, of the medium objects, but they declined at
a greater rate. This was likely an effect of the lossy compression, which suppresses high
frequency signal in the image, which is highly important for analyzing the fine detail of
small objects. The AP curve was visibly noisier than the other curves: the quantization
that produces a consistent average effect of the size reduction and quality degradation
manifested more randomness in the influence on the small regions, which spanned only
few 8 x 8 compressed blocks.
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Figure 14. AP for large, medium and small objects as a function of Q. Top row: the 101-layer backbone
models, bottom row: the 50-layer backbone models. The results for all the models for the AP metric
for different object sizes are almost identical. The models: (A,F) RetinaNet, (B,C,G,H) Non-FPN
Faster R-CNN, (D,I,E) FPN Faster R-CNN.

3.3.4. Analyzing the Derivative of AP with Respect to Q

To confirm the linear behavior of the performance degradation, we analyzed the
derivative of the AP with respect to Q. The derivative produced a noisy curve, so we
applied smoothing using a running average of five adjacent values—the derivatives are
shown in Figure 15. There was a plateau from Q =100 to Q = 40 (“first gradually”), and
then the degradation accelerated (“and then suddenly”). Using the derivative allowed us
to pinpoint the Q value where the decline in detection performance started.
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Figure 15. The derivative of the AP with respect to Q, smoothed with an averaging windows of size 5.
Top row: the 101-layer backbone models, bottom row: the 50-layer backbone models. This derivative
is very similar for all models: the range 40-100 is noisy with a constant running average, below 40,
there is an increase in the rate of the AP degradation, with the maximum near Q = 15. The models:
(A,F) RetinaNet, (B,C,G,H) Non-FPN Faster R-CNN, (D,I,E) FPN Faster R-CNN.

3.3.5. The Metric Values for Stronger Compression

Table 5 shows the same set of metrics as the baseline Table 4, but calculated for the
dataset degraded by the compression with Q = 25. This value is already below the “turning
point”, but the images with this quality are usually good enough for processing by humans,
despite visible artifacts. The results showed the precision staying close to the baseline
value, and the reduced number of TPs. The number of extra objects was also reduced, as
the rate of detecting these objects was comparable to the TPR. Here, we observed that the
X101 model was still the best in the AP, mAP 75 and APs metrics (related to the precise
localization, especially of smaller objects), but the absolute value of these metrics was low,
and the difference relative to non-FPN Faster R-CNNs was smaller. This suggested that the
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benefits of using the feature pyramid were adversely affected by using too aggressive a
compression.

Table 5. The performance of all investigated models at Q = 25 (T, = 0.5).

Model AP mAP 5 mAP 75 AP, APy, AP; TPR PPV TP FP EX
R101 252 36.2 27.8 36.7 28.0 8.8 41.0 80.9 14,900 3511 513
R101_C4 30.3 45.5 32.8 45.5 33.8 12.0 56.8 57.1 20,634 15,478 3253
R101_DC5 30.1 46.6 32.4 43.5 33.7 12.6 57.7 57.3 20,979 15,626 3363
R101_FPN 29.2 43.7 31.9 421 31.9 13.1 53.1 68.8 19,309 8765 1779
R50 23.2 33.4 25.8 35.0 25.8 7.8 38.7 80.3 14,067 3458 470
R50_C4 27.4 425 29.6 41.1 30.1 10.7 54.6 52.1 19,842 18,225 3373
R50_DC5 284 44.7 30.5 41.0 31.5 12.0 56.5 54.7 20,516 16,974 3390
R50_FPN 27.1 421 29.5 38.5 30.2 12.1 51.6 66.2 18,761 9575 1784
X101 30.4 45.6 32.8 42.4 33.5 13.7 54.8 68.2 19,914 9269 1736

The best results are in bold, whereas the second-best are underlined; AP}, APy, APs—the AP metric for objects classified as
large, medium and small; TPR, PPV—recall and precision at Tj,i; = 0.5; TP, FP—true positives and false positives at Tj,y = 0.5;
EX—"extra” detection of objects in the crowd regions.

4. Conclusions and Future Work

In this paper, we reported our study on the effect of JPEG compression on the perfor-
mance of deep-learning object detectors based on CNNs. We exploited the COCO val2017
benchmark dataset and collected a wide range of performance metrics for different levels of
compression controlled by the parameter Q ranging from 1 (strongest compression, lowest
quality) to 100 (weakest compression, nearly lossless). We also established a baseline of
metric values for the original dataset. The baseline results were used to characterize the
models under testing, including their sensitivity to the confidence threshold value and
their trade-off between precision and recall. We performed the qualitative assessment of
the detection behavior and introduced a taxonomy of wrong detections: incorrect bound-
ing boxes; wrongly classified, mistaken and hallucinated objects; clusters; and chimera
detections.

The experiments showed that the one-stage detectors had a narrower range of ad-
missible thresholds than the two-stage detectors, which were influenced by the threshold
but offered a more beneficial trade-off for thresholds further from 0.5. For the metrics
obtained over the degraded dataset, we treated them as functions of the parameter Q.
For precision and recall at T, = 0.5, we observed radically different behavior where the
precision remained constant regardless of compression quality, as well as a decline in recall
that had knee-shaped characteristics and a rapid decrease below Q = 30. The results were
consistent for a wide range of T, values with possible shifts in the precision and recall
curves, but with the same general shape. We studied the AP metric with its specific cases,
the more specialized mAP metrics, and the AP of the large, medium and small objects.
The AP, mAP 5 and mAP 75 curves were similar in all models (with possible differences
in scaling, but not general shape), and the mAP 75 curve was a good approximation of
the more computationally extensive AP. The per-size AP metrics were consistent across
the investigated models, with the AP values having a steeper decline. Therefore, the
small objects were more affected by compression. We speculated that this was related to
high-frequency information and fine detail, which are not preserved by lossy compression.
Finally, we verified the first derivative of the AP curves to find that they are linearly de-
creased from Q = 96 to Q = 40 (the AP value was approximately constant in the 100-96
range of Q values, but these compression levels were impractical because of an increase in
data size). This defined the range of practical compression levels, and the exact Q value for
a specific use depended on the recall value that needed to be achieved and the nature of
the objects. From a practical perspective, the experimental results helped us draw several
important conclusions. Performance decreases with stronger compression following a
knee-shaped curve. This curve, as a function of the Q parameter of the JPEG compression,
is continuous, so it can be sampled sparsely to save processing time. We observed that
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some techniques such as FPN lose their benefits over simpler approaches below a certain
compression quality. To summarize, the JPEG compression is generally friendly to the
deep-learning-powered object detectors, but unlike previous findings about the influence
on image classification there was a measurable influence throughout the whole range of the
quality settings. This effect ccame from reduced recall while the precision value remained
unchanged.

Our study provides a framework for evaluating the influence of image compression
on the performance of object detection methods, which can be applied to asses emerging
methods for this task. It also opens the door to further research, which encompasses three
main directions: broadening the scope of this research, finding the ways to mitigate the
effects of image compression on the deep-learning-powered object detectors, and improving
compression methods to make them more “friendly” to object detection. The following
bullet points summarize a set of potential approaches toward broadening the analysis of
the effects of image compression:

* Inclusion of more deep-learning-powered object detection models;

*  Expansion of the set of detection performance metrics (e.g., LRP [41], PDQ [42]);

¢ Incorporation of image quality metrics (based on feature similarity, such as FSIM [43],
or salience-aware artifact detection [44], among many others);

*  Consideration of related computer vision tasks such as instance segmentation;

¢ Investigation of other compression algorithms, both transformative (e.g., JPEG2000 [45])
and generative/predictive (e.g., WebP [46], PDE-based methods [47]).

Additionally, the methods that could help overcome compression influence encompass
(i) pre-detection quality improvements similar to the super-resolution reconstruction [48,49],
(ii) inclusion of compression-degraded images in the training dataset—models could be
trained separately over the data with and without quality degradation, or a single model
could be built based on the dataset of original and degraded images with the latter treated
as the augmented samples, and (iii) building dedicated models for specific ranges of
compression quality to be used as ensemble or dedicated models for small and non-small
objects, since our results showed that large and medium objects were similar and more
robust to the compression effects. These issues constitute our current research efforts that
should ultimately lead to more robust deep-learning object detectors ready to be deployed
in the wild.
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Abbreviations

The following abbreviations are used in this manuscript:
CNN  convolutional neural network

DCT discrete cosine transform

FDCT forward DCT

FN false negative

FP false positive

GT ground truth

IDCT inverse DCT

ToU intersection over union
QT quantization table

ROI region of interest

RPN region proposal network
P true positive
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