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Abstract: Tracking moving objects is one of the most promising yet the most challenging research
areas pertaining to computer vision, pattern recognition and image processing. The challenges
associated with object tracking range from problems pertaining to camera axis orientations to object
occlusion. In addition, variations in remote scene environments add to the difficulties related to
object tracking. All the mentioned challenges and problems pertaining to object tracking make the
procedure computationally complex and time-consuming. In this paper, a stochastic gradient-based
optimization technique has been used in conjunction with particle filters for object tracking. First, the
object that needs to be tracked is detected using the Maximum Average Correlation Height (MACH)
filter. The object of interest is detected based on the presence of a correlation peak and average
similarity measure. The results of object detection are fed to the tracking routine. The gradient
descent technique is employed for object tracking and is used to optimize the particle filters. The
gradient descent technique allows particles to converge quickly, allowing less time for the object to
be tracked. The results of the proposed algorithm are compared with similar state-of-the-art tracking
algorithms on five datasets that include both artificial moving objects and humans to show that the
gradient-based tracking algorithm provides better results, both in terms of accuracy and speed.

Keywords: object recognition; object tracking; gradient descent; particle filters

1. Introduction

Object recognition and tracking is still a major area of interest when it comes to digital
image processing, pattern recognition, convolution neural networks and artificial intelli-
gence [1]. The applications associated with object recognition range from surveillance [2],
optical character recognition [3], human behavior detection [4], remote sensing [5], video
activity localization [6], night-time vision [7] and biomedical image acquisition applications
to deep learning techniques [8]. Although many applications have been developed thus
far, the need for the optimization of the algorithms in terms of convergence and time mini-
mization still persists. Object tracking particularly has many unique challenges associated
with it, such as dealing with variations in scaling [9], occlusion [10], shift [11], camera axis
orientations [12], etc.

Training tracking algorithms, such as approximate proximal gradient methods [13]
and rapid gradient descent [14], is, in general, a very complex optimization issue because
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it involves a large number of secondary variables. Depending on the datasets and the
problem at hand, the goal is to implement a tracking routine that provides faster results
compared to its predecessors [15]. Besides the faster results, the algorithm should be
accurate enough to concentrate on the object of interest only by minimizing the average
tracking error. During the tracking routine, the tuning and assignment of weights are of
utmost importance since they are the ones that mostly result in accurate prediction and
estimation processes. For this purpose, a deep neural network technique known as gradient
descent has been employed, which focuses on setting the weight of the parameters based
on the lowest loss function.

Typically, object tracking is associated with several state-of-the-art techniques that are
based on deep neural networks, artificial neural networks and convolution neural networks
(CNNs) [16,17]. All of the aforementioned techniques have limitations ranging from poor
interpretation and recognition of the object of interest to structural design issues. To solve
these issues and to enhance the convergence of the algorithms, gradient descent training
algorithms were proposed [18,19]. The gradient descent algorithms have the tendency to
overcome most of the shortcomings of their predecessors by quickly converging into local
minima but in an efficient manner [20].

One of the most famous types of gradient descent techniques is known as stochastic
gradient descent (SGD). SGD is known to combine the benefits of basic gradient descent
algorithms, i.e., the stochastic strategy and the backpropagation [21]. SGD can be used for
image processing applications as it uses the backpropagation to converge quickly using
local minima. This enables tracking algorithms such as particle filters to track the object in
an efficient manner by quickly converging towards the object of interest [22–25].

In the previous decade, lots of visual tracking methods have been implemented, each
having its share of pros and cons. The visual tracking methods can be categorized into
two main classes, i.e., discriminative algorithms and generative algorithms. The generative
methods are known to classify the object of interest by convolving it with a kernel first,
followed by the tracking process that selects the most suitable candidate with an appearance
model most suited to the chosen template. The most popular generative methods are
particle-Kalman filters [26], Kalman filters [27], kernel-based object tracking [28], etc. On
the contrary, the discriminative methods use binary classifiers in order to discriminate
the object of interest from the background. The most popular discriminative methods
employed thus far are ensemble tracking methods [29] and LDA and Bayes inference
methods [30].

In [31], first, the dynamic behavior of the tracking model was assumed to be linear,
which was used to model the motion of the objects using the parametric single acceleration
method. The two sub-model states are estimated using an H filter. The estimates then
act as input to the particle filters, resulting in the optimized state. The local estimates are
mixed with the proposed interactive model for the calculation of the posterior location
of the object of interest. Shi et al. [32] employed sparse representation for modeling of
the target object. The target localization problem was assumed to be an L1 norm-related
minimization problem and was resolved using convex optimization. The method was
further improved [33] by proposing an lp regularization model. The lp regularization
model was minimized using the accelerated proximal gradient approach, which ensured
rapid convergence and less average tracking errors as compared to its predecessors [34].
The conditional random field (CRF) model has been used to combine multiple image
texture, shape, context and location features for multiclass object recognition [35].

An eigenspace model for object tracking employs feature vectors linked with pixels in
the target template, which are regarded as discrete observations of the target object [36].
To arrive at an eigenspace representation, the collection of observations is trained via non-
linear subspace projection. A similarity function in the eigenspace representation is used to
perform localization and segmentation. To optimize the similarity function regarding the
transformation parameters, gradient descent and mean-shift approaches are used.
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In this paper, an optimized algorithm for object recognition and tracking is proposed
using SGD. The aim is also to develop a tracking routine that is able to track the object of
interest under different scenarios. The proposed tracker will be tested on the target objects
which undergo changes in appearance, scale and camera axis orientations. First, the object
of interest is detected using the maximum average correlation height (MACH) filter. The
object is detected using different parameters of the MACH filters. The detected object is
then tracked in successive video frames using the SGD-based particle filters, which are
enhanced forms of the conventional particle filter, providing better convergence than their
predecessors. A comparison with similar state-of-the-art algorithms is performed to prove
the effectiveness of the algorithm.

2. Proposed Methodology

The proposed methodology followed for the implementation of the algorithm is shown
in Figure 1. The main algorithm can be split up into three parts, i.e., preprocessing, object
recognition and object tracking. The trained images are kept in the library for object recogni-
tion purposes. Once the testing images are obtained, they are first fed to the preprocessing
block to cater for any noise and/or any smoothing and sharpening abnormalities.

Figure 1. Proposed model of a system.

2.1. Preprocessing

Preprocessing is considered one of the most fundamental and very important steps
in any image processing application. The step ensures that all the images possess similar
dimensions and properties before the actual algorithm is applied to them. For preprocess-
ing of the images, the difference of Gaussian (DoG) has been applied before the actual
preprocessing of the images. The DoG filter not only reduces the noise by applying the
Gaussian motion blur but also enhances the edges, which can be considered a major advan-
tage when it comes to an image processing application [37]. The DoG simply is a two-step
process. First, the DoG performs edge detection by applying the Gaussian motion blur.
The motion blurring allows the removal of any unwanted noisy components by applying
the smoothing process. The algorithm then applies another motion blur using a sharper
theta. As the name implies, the final image is made by replacing each image pixel with the
difference of blurred images as shown in Figure 2.
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Figure 2. Visual explanation of the difference of Gaussian (DoG) method.

The DoG is a bandpass filter that is used to compute wavelets that are symmetric in
nature. By changing the standard deviation in the equation of DoG, the bandpass frequency
can be altered. The value of the bandpass frequency must be selected so that it can provide
the best tradeoff between intra-class distortion and inter-class discrimination. Combining
DoG with the MACH filter results in much sharper correlation peaks because of the built-in
tendency of DoG to detect edges. The DoG filter enhances the edges by approximating
the Mexican hat wavelet. The DoG is actually a variance between two scaled Gaussian
functions gi(x, y), where i = 1, 2, . . . [38]:

g1(x, y) =
1

2πδ1
2 ·exp(− x2 + y2

2·π·δ1
2 ) (1)

Similarly, for i = 2,

g2(x, y) =
1

2πδ22 ·exp(− x2 + y2

2·π·δ22 ) (2)

The DoG filter is applied by taking the difference between Equations (1) and (2).

g(x, y) = g1(x, y)− g2(x, y) (3)

By combining Equations (1)–(3), we obtain

g(x, y) =
1

2πδ1
2 ·exp(− x2 + y2

2·π·δ1
2 )−

1
2πδ22 ·exp(− x2 + y2

2·π·δ22 ) (4)

The rule of thumb for a successful DoG application is to choose the bandpass of the
Mexican wavelet as the ratio of δ1 and δ2. Experimental results have shown that DoG yields
closest approximation if the ratio of δ1 and δ2 is 1.6.

2.2. Object Recognition

Object recognition has been performed using the MACH filter, which is a class of cor-
relation filters. The identification of an object is a straightforward approach, but identifying
an object in the case of change in camera axis orientations or in the presence of noise is a
challenging task. The correlation filters are chosen because of their ability to detect and
identify the object of interest under challenging circumstances. Another advantage of cor-
relation filters is they are computationally less expensive as compared to their counterparts.
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The MACH filter uses a set of training images for the computation of correlation peaks.
The MACH distinguishes the training images into true and false classes, where the true
class of training images depicts the set of images that the filter retains, while the false class
represents the discarded set of images.

The MACH filters are known for their ability to suppress noise as well. The noise
suppression ability comes with their ability to maximize average similarity measure (ASM)
and reduce distortion. The MACH filter is based on enhancing the four main parameters,
i.e., average correlation energy (ACE), average similarity measure (ASM), output noise
variance (ONV) and average correlation energy (ACE). However, the most important aspect
is the ASM, which is directly associated with the correlation peak. As mentioned above,
the energy equation associated with MACH is based on four parameters.

E( f ) = α(ONV) + β(ACE) + γ(ASM) − δ(ACH) (5)

For the MACH implementation, Equation (5) needs to be minimized. The “T” sign in
superscript represents the transpose of the function

α f TC f + β f T Dx f + γ f TSx f − δ f Tmx (6)

As stated earlier, MACH is known to recognize the object of interest by minimizing
the ACE and ASM while maximizing the average correlation height. The minimization of
ASM is achieved using Equation (7). “*” represents the complex conjugate of the function.

ASM = h+
[

1
N

N

∑
i=1

(
Xi − X

)∗(Xi − X
)]

h = h+Sxh (7)

where the similarity of the training images is represented by the matrix S. Similarly, the
minimization of ACE is achieved using Equation (8)

ACE = h+
(

1
N

N

∑
i=1

XiX∗i

)
h = h+Dxh (8)

|u|2 =
∣∣h+x

∣∣2 = h+xx+h (9)

The average correlation intensity, which is depicted by |u|2, is maximized by the filter
h. The same h is also used for the minimization of ASM and ACE.

While minimizing Equation (5), Equation (10) can easily be extracted after calculating
the ASM and ACE.

f =
m∗x

αC + βDx + γSx
(10)

The three parameters mentioned in the denominator of Equation (10) are considered
crucial in the performance of MACH. The optimal value selection of these parameters is
called optimal tradeoff (OT), which was initially proposed by Bone et al. [39]. The OT
values of the parameters are based on two parameters, i.e., peak-to-correlation energy (PCE)
and correlation output peak intensity (COPI) [40,41]. The PCE and COPI are calculated
using Equations (11) and (12).

COPI = max
{∣∣∣C(x, y)

∣∣∣2} (11)

PCE =
COPI − |C(x, y)|2{

∑

[
|C(x,y)|2−|C(x,y)|2

]2

Nx Ny−1

}1/2 (12)

where |C(x, y)|2 = ∑|C(x, y)|2/Nx Ny is the average correlation output intensity.
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Bone et al. [39] suggested that the values of 0.01, 0.1 and 0.3, respectively, for α, β and
γ for the COPI cost function may be considered optimal.

Figure 3 shows a Blurred Vehicle along with the MACH filter results. It is pertinent to
note here that even though the vehicle is undergoing severe blurriness, MACH is still able
to detect the object of interest using the PCE and COPI indexes. The PCE and COPI values
achieved for the object mentioned in Figure 3 are 2.3047 × 10−5 and 32.1376.

Figure 3. (a) A sample image of Blur Car (Data Set-1) and (b) MACH results.

As mentioned earlier, MACH has the ability to detect the object of interest even if it
undergoes changes in scaling, shifting or camera axis orientations. Figure 4 shows a vehicle
traveling at night, and it has been scaled out by a factor of 3. MACH can still extract the
correlation peak with a PCE value of 29.21.

Figure 4. (a) Vehicle traveling at night (Data Set-3) (b) MACH results.

Figure 5 shows a dog in a running mode along with its MACH results. The dog
is the object of interest, which needs to be detected using MACH. The dog is currently
encountering in-plane rotation and is not showing its original physical attributes. Even in
such a tricky case like this, the MACH can detect the object of interest using a PCE value
of 66.01.

Figure 6 shows a partially occluded case of a vehicle traveling on a road along with its
MACH results. Besides the natural attributes of MACH providing invariance against shift,
scales and camera axis orientations, it also possesses the ability to detect an object even it is
partially occluded. Figure 6 shows that even the vehicle is partially occluded, MACH is
still able to detect the object using PCE and COPI values of 68.5701 and 0.0014, respectively.
The object of interest in this case was 30% occluded, and MACH still detects it successfully.



Sensors 2022, 22, 1098 7 of 15

Figure 5. (a) A sample image of a Running Dog (Data Set-2) and (b) MACH results.

Figure 6. (a) An occluded grayscale vehicle (Data Set-4) and (b) MACH results.

Once the object of interest is detected using MACH, a bounding box is used to encap-
sulate the object of interest, as mentioned in Figure 7. The coordinates of the bounding box
are then fed to the gradient descent-based object tracking routine, which will update the
bounding box with respect to the apparent motion of the object.

Figure 7. Detected objects for sample images: (a) Blurred Vehicle; (b) Running Dog; (c) Vehicle at
Night; (d) Car moving in a lane.

2.3. Object Tracking

The goal of object tracking is to track the recognized object of interest in successive
frames. The main object tracking algorithm employs the gradient descent-based particle
filters. The gradient descent technique allows the particle filters to track the object of
interest in less time as compared to the conventional particle filters.
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Gradient Descent-Based Particle Filtering

Gradient descent technique is one of the most famous methods used for optimizing
algorithms. They have the natural tendency to converge when used together with other
deep learning-based algorithms. In this paper, the gradient descent technique is used in
conjunction with particle filters in order to improve the efficiency of the particle filters. The
gradient descent technique optimizes the algorithms by working on their loss functions.
The loss function can be described as the apparent difference between the function output
and the samples. For this purpose, a hypothesis function can be assigned to a linear
regression mathematical model, such as hθ(x) = θ0 + θ1x, where θ0 and θ1 defines the
equation factors. The samples can be defined as vector (xi, yi) = (1, 2, . . . , n), such that
every input xi corresponds to an output yi. The loss function generally can be defined
using Equation (13).

J(θ0, θ1) =
m

∑
i=1

(hθ(xi)− yi)
2 (13)

The optimization of the loss function and the mathematical model is the main goal of
the gradient descent technique. This means that the gradient descent technique can be used
to amend or modify the mathematical model of a particle filter by reducing the eventual
loss function.

In the case of particle filters, the hypothesis function can be very complex. Therefore, there
is a need to define a more complicated hypothesis function. Adding more factors to the hy-
pothesis function makes it more complex such that hθ(x1, x2, . . . xn) = θ1 + θ1x1 + · · ·+ θnxn.
The loss function defined in Equation (13) can be made more complex using Equation (14).

J(θ0, θ1, I I, θn) =
1

2m

m

∑
i=0

(hθ(x0, I . . . , xn)− yi)
2 (14)

To minimize the cumulative loss function based on the ensemble of particle filters and
the gradient descent technique, partial derivatives can be applied. Gradients are generically
applied for measuring the trend of the aim function. Therefore, it is possible to associate the
θi result with the loss function. Equation (15) shows how a loss function can be represented
using a gradient.

∂

∂θi
J(θ0, θ1, . . . , θn) (15)

The precision of the function, i.e., the difference between the samples and the mathe-
matical model, is represented by ε, which is known as the terminal function. The estimation
process of particle filters will stop when the estimated difference becomes less or equal to
ε. The particle filters are based on the prediction, estimation and upgrade regimes. The
percentage of gradient used to upgrade the state of particle filters is determined by the
controlling parameter α, which is the step size. The amended update expression for particle
filters becomes:

θiold − α
∂

∂θi
J(θ1, . . . , θn) (16)

Since the function pertaining to the particle filters is convex in nature, it can be
optimized using gradient descent. Another important aspect is the selection of the step
size. Selecting a smaller step size may result in identifying the most optimal solution, but
the downside is a very slow convergence speed. On the contrary, a larger step size may
result in an elevated speed but does not ensure an optimal solution.

Considering the pros and cons of both approaches, in this paper, the gradient descent
technique is used for updating the probabilities and assigned weights to the particles using
the steps mentioned in Algorithm 1. The conventional particle filtering process involves
the states p(Xn|Y1:n). We employ particle filters in combination with the gradient descent
technique because the particle filters can work on both the linear and nonlinear systems,
while gradient descent allows the particles of the particle filters to converge quickly. The
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quick convergence allows a much quicker tracking process as compared to the conventional
particle filtering routines. Gradient descents’ ensemble with the particle filters starts by
assigning a weight to the samples.

Algorithm 1: Gradient Descent Algorithm

1. Initializing the aim function parameters: θ0, θ1, . . . θn;
2. Initialize step size α and terminal distance of recursion parameter ε;
3. Gradient calculation of the function using the loss functions’ partial derivative using

Equation (15);
4. Apply the gradient descent algorithm on particle filters;
5. If the gradient descents, i.e., J(θ0, θ1, . . . θn) ≤ ε, stop the converging process;
6. Otherwise, continue the process;
7. Employ the gradient descent process by multiplying the step size α with the gradient;
8. Renew all the values of θ using Equation (17).

Using the steps (5) and (6) of the gradient descent algorithm, new weights are assigned
to the particles using Equation (17).

Wi
n = Wi

n−1
p
(
Yn
∣∣Xi

n
)

p(Xi
n
∣∣Xi

n−1)

Π
(
Xn
∣∣Xi

n−1, Yn
) ,

N

∑
i=1

Wi
n = 1 (17)

Equation (17) shows the working particle filters after the implementation of gradi-
ent descent. The particle filters are based on two steps, i.e., prediction and then update.
Equation (17) basically merges the two steps. The part of the equation involving the
p
(
Yn
∣∣Xi

n
)

is used for the implementation of the probabilistic model. Once the proba-
bilities are calculated, the weights of particle filters are set according to the expression{

Xi
n−1, Wi

n−1
}

. However, in contrast to the conventional particle filters concept, in this pa-
per, the gradient descent technique is used to update the weights according to Algorithm 1.

3. Results and Discussion

Five different data sets have been used for testing the results of the gradient-based
tracking routine. Since the gradient descent technique is known as the optimization
algorithm, the results of the proposed algorithm will be compared with other state-of-the-
art algorithms.

3.1. Data Sets

The first employed data set is the Blur Car, which shows a white vehicle moving on
a road [42]. The data set is challenging in the sense that it possess challenges related to
camera axis orientations as well as blurriness of the object of interest. Figure 8 shows the
results of applying the gradient descent-based tracking routine. The tracker successfully
tracks the vehicle in successive frames.

Figure 8. Tracking of Vehicle (Data Set: Blur Car).
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The second data set is Running Dog, which shows a dog running on a floor [43]. The
data set is challenging in the sense that the object is changing shape. In addition, the data
set also shows blurriness of the object of interest. Figure 9 shows the results of applying
the gradient descent-based tracking routine. The tracker successfully tracks the vehicle in
successive frames.

Figure 9. Tracking of a running dog (Data Set: Running Dog).

The third data set is Vehicle at Night, which shows a vehicle travelling at night [44].
The data set is challenging in the sense that the object is traveling at night under poor
illumination conditions. In addition, the data set also shows blurriness of the object of
interest. Figure 10 shows the results of applying the gradient descent-based tracking
routine. The tracker successfully tracks the vehicle in successive frames.

Figure 10. Tracking of Vehicle (Data Set: Vehicle at Night).

The fourth data set is a grayscale vehicle traveling on the road [43]. The data set is
challenging in the sense that the object becomes occluded under a bridge. In addition,
the data set also shows blurriness of the object of interest. Figure 11 shows the results of
applying the gradient descent-based tracking routine. The tracker successfully tracks the
vehicle in successive frames.

Figure 11. Tracking of a grayscale occluded vehicle (Data Set: Grayscale Vehicle).
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The fifth data set utilized is called “Singer” [13], and it contains aphotographs of
a singer performing in a concert. The dataset is deemed significant since the pictures
are continually zoomed in and out, posing a challenge to the object tracking system, as
illustrated in Figure 12.

Figure 12. Tracking of a human person in a complex environment (Data Set: Singer).

3.2. Discussion and Comparison

To prove the efficiency of the algorithm with other state-of-the-art similar algorithms,
the gradient-based tracking technique has been compared with four other recently pro-
posed techniques. The algorithm has been compared with a target tracking algorithm
based on Convolution Neural Network (TTACNN) [44], ADT: object tracking algorithm.
Based on adaptive detection [45], vehicle tracking algorithm combining detector and
tracker (VTACDT) [46], multi-object tracking for urban and multilane traffic (MTUMT) [47],
adaptive weighted strategy and occlusion detection mechanism (AWSODM) [48] and ap-
proximate proximal gradient-based correlation filter (APGCF) [13]. Table 1 shows the
execution times of these algorithms, while Table 2 represents the average tracking errors.

Table 1. Comparison of state-of-the-art algorithms in terms of execution time (sec.).

Comparison of Execution Time (in Seconds) of Algorithms (Min. 300 Frames)

Data Set TTACNN ADT VTACDT APGCF AWSODM MTUMT Proposed
Algorithm

Blur Car 2.14 2.51 2.10 2.44 2.91 2.29 2.01

Running Dog 2.92 4.12 2.77 4.11 2.99 2.84 2.89

Vehicle at Night 3.04 3.09 2.91 3.19 2.71 2.69 2.72

Grayscale
vehicle 2.46 3.01 2.62 2.90 2.19 2.90 2.21

Singer 2.99 3.71 2.81 2.81 2.89 3.11 2.85

The comparison between different state-of-the-art recent algorithms was performed
in terms of execution time (in seconds), average tracking errors, precision, mean average
precision (MAP) and the precision recall for a minimum of 300 frames of five different
image processing datasets. The results depicted in Table 1 clearly show that the proposed
algorithm performs better in terms of execution time compared to its counterparts. The
gradient descent approach manages the convergence of the particles in a fast time compared
to the other tracking algorithms, thus providing a better execution time. In Table 2, the
proposed algorithm encompasses much fewer average tracking errors compared to its
counterparts. The average tracking error is measured by measuring the average deviation
of the bounding box from its mean position. Table 3 shows the comparison of algorithms
based on precision. Table 4 shows the comparison of the algorithms based on MAP, while
Table 5 shows the comparison of the algorithms based on precision recall. All three metrices
are precision-based and are measured using the position of the bounding box over the
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object of interest. Precision is the ratio of the area of overlap to the area of union, and its
normalized average value is measured between 0 and 1. MAP is the mean of the average
precisions (APs) over a complete dataset. Recall is the metric that specifies the ability of the
object detector to successfully detect the object of interest, i.e., the ratio of true positives
to the total number of cases. Tables 3–5 are the based-on precision parameters and clearly
depict the performance of the proposed algorithm was better than its counterparts in terms
of precision, MAP and recall. The algorithms are tested on a Corei7 machine in a MATLAB
2019 environment to maintain uniformity.

Table 2. Comparison of different techniques based on Average Tracking Errors.

Average Tracking Errors (Min. 300 Frames)

Data Set TTACNN ADT MTUMT VTACDT APGCF AWSODM Proposed
Algorithm

Blur Car 0.46 0.42 0.21 0.17 0.055 0.21 0.041

Running Dog 0.059 0.057 0.48 0.056 0.051 0.061 0.048

Vehicle at Night 0.09 0.088 0.099 0.094 0.071 0.041 0.012

Grayscale
vehicle 0.10 0.101 0.118 0.089 0.09 0.088 0.079

Singer 0.14 0.14 0.211 0.1328 0.129 0.144 0.127

Table 3. Performance evaluation based on Precision.

Comparison Based on Precision (Min. 300 Frames)

Data Set TTACNN ADT MTUMT VTACDT APGCF AWSODM Proposed
Algorithm

Blur Car 0.88 0.88 0.93 0.94 0.94 0.92 0.96

Running Dog 0.90 0.92 0.89 0.93 0.94 0.87 0.94

Vehicle at Night 0.91 0.95 0.88 0.92 0.97 0.86 0.98

Gray scale
vehicle 0.96 0.96 0.91 0.97 0.99 0.97 1.00

Singer 0.94 0.92 0.95 0.98 0.97 0.98 1.00

Table 4. Performance evaluation based on MAP.

Comparison Based on MAP (Min. 300 Frames)

Data Set TTACNN ADT MTUMT VTACDT APGCF AWSODM Proposed
Algorithm

Blur Car 69.6 64.8 69.9 73.9 70.1 73.8 74.6

Running Dog 74.0 66.9 71.0 73.1 71.9 71.7 72.9

Vehicle at Night 77.2 68.2 71.1 76.9 74.6 75.1 77.8

Gray scale
vehicle 76.1 69.2 72.5 74.9 77.1 77.9 78.2

Singer 74.9 66.0 72.8 75.5 70.9 72,8 75.6
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Table 5. Performance evaluation based on Recall.

Comparison Based on Recall (Min. 300 Frames)

Data Set TTACNN ADT MTUMT VTACDT APGCF AWSODM Proposed
Algorithm

Blur Car 0.55 0.52 0.59 0.53 0.59 0.55 0.52

Running Dog 0.52 0.54 0.54 0.45 0.54 0.49 0.45

Vehicle at Night 0.46 0.44 0.39 0.46 0.49 0.44 0.41

Gray scale
vehicle 0.49 0.46 0.46 0.42 0.51 0.44 0.40

Singer 0.41 0.38 0.44 0.44 0.39 0.39 0.35

4. Conclusions

The paper presents a tracking routine that tracks the object of interest (such as an
object or a subject) using the gradient descent approach. The algorithm detects an object
using the MACH filter, which recognizes the object of interest using ASM and generates a
correlation peak depicting the presence of an object. A bounding box is constructed around
the object once MACH recognizes it. The coordinates of the bounding box are then fed to
the gradient descent-based object tracking routine, which tracks the object of interest in
successive frames using a step size and the terminal function. The presence of the terminal
function enables a much faster convergence of particles in the gradient-based algorithm
compared to the conventional state-of-the-art algorithms. The proposed algorithm has
a significant scope to improve in the future, as the gradient descent algorithm can be
further improved and its ensemble with particle swarm optimization can yield even better
convergence results for object and human recognition [49–51]. Moreover, the deep learning
based shall be more useful for the recognition task [52–59].
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Using Kullback-Leibler Divergence of Gaussian Distributions of Image Points. Symmetry 2020, 12, 434. [CrossRef]

8. Wang, X. Deep Learning in Object Recognition, Detection, and Segmentation. Found. Trends® Signal Process. 2014, 8, 217–382.
[CrossRef]

9. Meyer, F.; Williams, J. Scalable Detection and Tracking of Geometric Extended Objects. IEEE Trans. Signal Process. 2021, 69,
6283–6298. [CrossRef]

10. Mondal, A. Occluded object tracking using object-background prototypes and particle filter. Appl. Intell. 2021, 51, 5259–5279.
[CrossRef]

11. Liu, T.; Liu, Y. Moving Camera-Based Object Tracking Using Adaptive Ground Plane Estimation and Constrained Multiple
Kernels. J. Adv. Transp. 2021, 2021, 8153474. [CrossRef]

12. Demiroz, B.E.; Ari, I.; Eroglu, O.; Salah, A.A.; Akarun, L. Feature-based tracking on a multi-omnidirectional camera dataset.
In Proceedings of the 2012 5th International Symposium on Communications, Control and Signal Processing, Rome, Italy,
2–4 May 2012.

13. Masood, H.; Rehman, S.; Khan, A.; Riaz, F.; Hassan, A.; Abbas, M. Approximate Proximal Gradient-Based Correlation Filter for
Target Tracking in Videos: A Unified Approach. Arab. J. Sci. Eng. 2019, 44, 9363–9380. [CrossRef]
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