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Abstract: Satellite tropospheric propagation studies strongly rely on beacon receiver measurements.
We were interested in performing a measurement campaign to characterize rain attenuation statistics.
In this article, we outline some of the characteristics and drawbacks one faces when trying to perform
a radio wave satellite beacon propagation experiment at the Ka-band with low-cost measurement
equipment. We used an affordable beacon receiver consisting of a commercial low-noise block
down-converter, an outdoor dual-reflector antenna, and a software-defined radio unit. To measure
rain attenuation events, we needed to work out where the reference signal level was at all times.
However, as we did not have a radiometer to remove the impact of gases and clouds, since it is a very
expensive device, we used a procedure that involved the subtraction of a stable and reliable reference
level (template) from the raw received beacon level. This template was extracted from observations
during non-rainy periods. The procedure implemented for extracting the template was based on the
same data processing methodology used by other authors in this field. Here, we describe through
specific examples the main characteristics of the templates extracted on non-rainy days, as well as the
impact of some meteorological parameters and unavoidable, but small antenna pointing errors.

Keywords: beacon receiver; Ka-band; measurement campaign; rain attenuation; satellite measurements;
template

1. Introduction

A measurement campaign recording the Ka-band beacon transmitted by the KaSAT
satellite is being carried out at the University of Vigo campus in Vigo (Spain). This location,
on the NW coast of Spain, corresponds to a temperate, oceanic climate. The beacon receiver
is a simple, affordable one with a commercial Low-Noise Block down-converter (LNB), an
outdoor dual reflector antenna fitted with a radome, and a Software-Defined Radio (SDR)
unit, performing further signal down-conversion and discretization to pass to a Personal
Computer (PC). Additionally, meteorological information is obtained from a co-located
weather station. Moreover, as the receiver is sited close to Vigo Airport, cloudiness data are
also available via METeorological Aerodrome Report (METAR) files.

This experiment complements another on-going one (running since 2015) at Ka- and
Q-band measuring the beacons transmitted by AlphaSAT, as part of an Italian Space
Agency/European Space Agency (ASI/ESA) experiment [1–3]. Due to the azimuth separa-
tion between KaSAT and AlphaSAT in Vigo, approximately 19◦, we are also gathering orbit
diversity information.

Note that carrying out measurements with a commercial satellite’s beacon (KaSAT),
we may be subjected to problems not present in the case of specialized, highly stable
payloads, as is the case of AlphaSAT [2]. In commercial satellites, we are not in control of
the actual transmitted power, which may change due to operational requirements. The only
thing that can be done is to try and detect these events and remove them by calculating
and extracting a template (see below). Similarly, the use of a commercial LNB can also
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introduce variations in the received signal power due to thermally induced changes in the
electronics. Our LNB (see Section 2.1.1 and [4]) is subjected to gain variations due to the
ambient temperature. Its maximum operational range is −40 ◦C to +60 ◦C, and the gain
changes can be of the order of 5 dB. At our location during summertime (worst case), the
maximum temperature range is of the order of 12 ◦C with an estimated gain variation of
under 2 dB (private communication with the manufacturer). This must be compensated for
by subtracting the template.

One further problem arises due to the fact that the satellite experiences very small
position oscillations of no more than ±0.1◦ (stationkeeping box) [5,6]. This, combined with
the presence of possible small pointing errors—in this experiment, we used fixed pointing—
can lead to unwanted signal variations. Again, these must be first minimized by a good
pointing and, then, any residual errors induced removed, using the template. However,
given as we used a fairly small receive antenna of 65 cm diameter, this is equivalent to
approximately a beamwidth of 1.6◦, much wider than the satellite’s stationkeeping box.
This means that pointing errors will be a second-order factor in comparison with the
temperature-induced LNB gain changes.

We were interested in characterizing rain attenuation statistics. However, in addition
to rain, the received beacon signal power level can also be affected by other phenomena:
gases, clouds, scintillation [7], temperature fluctuations of the unit electronics, antenna
strut thermal expansion [8], the accuracy of the satellite tracking [5], etc.

The raw received beacon signal in dBm can be calculated as [5,9,10]:

Pr = EIRP − L f s + Gra + Grx − Ag − Ac − Ar − As, (1)

where EIRP is the satellite’s Equivalent Isotropically Radiated Power (dBm), L f s is the free
space loss (dB), Gra is the receiving antenna gain (dBi), and Grx is the receiver gain (dB).
The last four terms in (1) correspond to different propagation effects and are expressed
in dB: Ag includes water vapor and oxygen loss; Ac corresponds to cloud loss; Ar is the
rain-induced attenuation; As embodies the scintillation. (Sometimes, the scintillation is
represented as a gain, and thus, the sign in the above equation is changed to +.)

The total tropospheric attenuation A (dB) is the sum of these four terms [5,9,10]:

A = Ag + Ac + Ar + As. (2)

As said, we were interested in measuring rain attenuation, Ar. One first option to
remove the impact of gases and clouds is by measuring them directly using a radiometer,
as in [11–13]. This is a sophisticated piece of hardware, even more expensive than a beacon
receiver, and was not available to us.

Radiometer data could be replaced by alternative data sources. Thus, Global Nav-
igation Satellite System (GNSS)-derived measurements provide an excellent means of
predicting water vapor attenuation, hence helping define the reference level [13]. Another
option would be using numerical weather data (prediction/reanalysis) particularized for
the tropospheric volume around the Earth station [14]. The latter technique is quite effective
in determining water vapor attenuation [15,16], even in tropical areas [17]; however, the Ac
estimation is not so reliable, at least on an event-by-event basis.

In our case, faced with the impossibility of using a radiometer to remove cloud and
gas attenuation directly [12,13], we relied on the fact that the attenuation variations caused
by rain are much faster than those due to, on the one hand, the combined effect of a likely
small mispointing of the antenna together with the movement of the satellite and, on the
other, to gases, clouds, and the daily thermal cycle on the LNB electronics.

We can subject the acquired time series to a high-pass filtering process to remove these
effects, thus retaining the faster ones, namely Ar and As. The specific procedure involves
subtracting a stable, reliable set of reference levels (template) from the raw received beacon
levels. The template is mostly extracted from observations during non-rainy periods. Note
that this operation removes all slowly varying effects. The result of this procedure is the
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excess attenuation that contains Ar and As. The excess attenuation is the variation of the
raw received beacon signal with respect to the template.

Although it has not been installed in our system, it is interesting to note that thermal
effects on the unit electronics can be partially compensated for by using Peltier cells attached
to the LNB metal enclosure, as in [18]. A good approach to using this technique is to keep
the LNB at a constant temperature of, for example, 50 ◦C. In the referenced case, this was
easier because their receiver was totally located indoors looking at AlphaSAT through a
millimeter wave transparent window, while our Radio-Frequency (RF) unit was outdoors
(Section 2.1.1).

Moreover, looking into the work reported by others, in [8], the authors discussed that
the level fluctuations they observed were due to antenna strut thermal expansion. Their
setup (4.2 m dish, ≈56.5 dBi gain, ≈0.25◦ beamwidth) included a very large dish and a
temperature-stable receiver. However, our antenna (65 cm dish, ≈40.5 dBi gain, ≈1.6◦

beamwidth) was significantly smaller and the radiation pattern sufficiently wide so that
thermal, mechanical expansion was not an issue.

Finally, to separate Ar from As in the excess attenuation, low-pass filtering is often used
to remove the fast-varying attenuation due to scintillation, which has spectral components
up to about 3 Hz, while rain is much slower [19]. Typical cut-off frequencies to remove As
are on the order of 0.02–0.04 Hz [19,20]. This is normally done with a running mean filter
with a duration of between 1 min and 2 min [10,21]. Sometimes, more sophisticated filters,
e.g., a Butterworth of fifth order, as in [19], or a squared-cosine, as in [22–24], can be used.

In this paper, we concentrated on the preprocessing phase indicating “conditioning”
of the row data. Further, actual identification of rain events and extraction of monthly,
seasonal, or yearly statistics of first order (CDFs, cumulative distributions) or second
order (time dependent) such as event durations, slopes, etc., need to be carried out, but
are outside of the scope of this paper. For a detailed description of these tasks, refer,
for example, to [2,3].

This paper is organized as follows. Section 2.1 presents the experimental setup,
including the beacon receiver and the available local meteorological data. The template
extraction methodology is described in Section 2.2. Section 3 shows several templates
extracted on non-rainy days. We give several correlation analyses between templates and
meteorological parameters. We tried to find explanations for the relevant characteristics
noticed on the studied time series. Finally, Section 4 draws some conclusions.

2. Materials and Methods
2.1. Experimental Setup

At the University of Vigo campus in Vigo, Spain, with coordinates 42.170◦ N, 8.688◦ W
and 447 m a.m.s.l., a Ka-band beacon receiver pointing toward KaSAT, 9◦ E, was set up.
This experiment has been running from the beginning of 2018.

The receiver was tuned to the 19.68 GHz beacon. The geometry of the link is as follows:
azimuth 154.6◦, elevation approximately 38.1◦, and linear polarization with an angle with
respect to the local horizontal axes, τ, of 18.5◦. The receive antenna is a dual-reflector
parabolic dish. The measurement bandwidth is approximately 50 Hz with a data rate of
over 10 Hz. The measurement dynamic range exceeds 20 dB.

Our setup also includes a meteorological station co-located with the beacon receiver
that measures the following variables: rain rate derived from two optical disdrometers [25]
and three standard tipping-bucket rain gauges [26], wind direction and speed, relative
humidity, ambient temperature, and atmospheric pressure from their corresponding sensors
(all with a 1 min time resolution). Furthermore, from the METAR files provided by the
OGIMET service [27], it is possible to access the meteorological data gathered at Vigo
Airport, less than 10 km from the beacon receiver, with a half-hour time resolution: mainly
the cloud cover (in oktas) and cloud heights (in hundreds of feet).

The beacon receiver was built using off-the-shelf elements, which were grouped into
two main parts, as follows.
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2.1.1. The RF Outdoor Unit

The outdoor unit comprises a 65 cm dual-reflector parabolic dish manufactured by
ALCOMA (Model UNI2-18) [28]. Although this antenna is designed for terrestrial point-
to-point links, small modifications allowed us to use it for any satellite link with linear
polarization with any orientation, not only vertical or horizontal, as in the terrestrial case.
The second element is an LNB from Norsat (Model BDC-9000XBN) [4] that has its own,
fairly stable local oscillator. The LNB output connector (N-type 50 Ω) is hooked up to
the indoor unit by means of a 3 m low-loss coaxial cable (0.5 dB/m). The Intermediate-
Frequency (IF) cable provides 15 V DC power to the LNB.

The antenna provides a gain of 39 dBi at mid-band (11.70–19.70 GHz), and its input
port is a rectangular waveguide (WR42). The LNB covers the frequency range 19.20–
20.20 GHz, providing low-noise amplification and block conversion to the standard 0.950–
1.950 GHz satellite receiver IF. This unit has an overall gain of 55 dB and a noise figure of
1.3 dB. We believe that this piece of equipment, being a commercial, “mass”-market one, is
the main source of diurnal variation observed in the template and is due to its exposure to
changes in ambient temperature (Section 3).

2.1.2. The Indoor Unit

This takes care of a second frequency conversion, signal processing, and data logging.
It is composed of an SDR unit (bladeRF x40) [29] connected to a PC. The PC runs under
Windows 10 and carries out both signal processing and data logging tasks.

The bladeRF SDR is fit with an RF transceiver, which performs a second down-
conversion and quadrature sampling (up to 40 Msps outputting 12 bit IQ samples). In spite
of the availability of this large bandwidth, we set the SDR unit to its minimum tunable
bandwidth, i.e., 1.5 MHz, to be centered approximately about the beacon frequency, and to
a sampling rate of 2 Msps.

To avoid unexpected problems, the received beacon signal was moved away from the
DC frequency and located somewhere midway between 0 and one-half of fs (sampling
rate). It is common in affordable SDR hardware to observe a significant DC component at a
complex baseband, thus the decision of tuning the beacon away from 0 Hz for measuring
its power. Since no further filtering is performed at this point, the baseband presents
flat spectral characteristics except for samples very close to the selected spectrum edges.
Furthermore, the beacon (19,680 MHz) is situated in a quiet part of the transponder’s band-
width, some 20 MHz away from the limit of the modulated signal spectrum (19,700 MHz).
Note also that our measurement bandwidth, as said above, is only 1.5 MHz, which al-
lows achieving the wanted spectral flatness. The closest spot beam center frequency is
19,818.75 MHz [30]. The obtained I and Q components are passed to the PC via a USB 3.0
port. Finally, these signals are processed and stored along with the resulting measurements
in the PC. Signal processing involving the identification and measurement of the beacon at
the baseband is performed.

The signal processing is very simple: it involves computing a long Fast Fourier
Transform (FFT) of consecutive, non-overlapping signal blocks, identification of the beacon
signal at the baseband, and power summing three spectral FFT bins around the beacon
signal [31]. A single spectral sample is not enough unless the sample is exactly at the center
of the frequency bin. Given the presence of drift, it is simpler to power sum the peak and
side frequency bins. We chose an FFT of size 218 points, which together with a sampling
rate of 2 MHz yielded a spectral bin size of 7.6294 Hz and also an output data rate by the
same amount. Note that this final sampling rate fulfills the Nyquist criterion for the fastest
of the various phenomena involved, i.e., scintillation with negligible spectral components
beyond 3 Hz. We chose to measure the power in three adjacent bins, one at each side of that
with the spectral maximum. This is equivalent to a measurement bandwidth of ≈23 Hz.
Non-overlapping FFTs were employed in order not to excessively burden the controlling
computer so that real-time measurements could be obtained.
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The resulting information represents the variations in the power level of the received
beacon signal, S, plus noise, N. Note that the noise originates both at the receiver (noise
factor) and the antenna (antenna noise temperature). Thus, we are actually measuring S+ N
instead of only S. With computer simulations assuming Gaussian I and Q noise components
plus a steady direct signal, we verified that as long as we had over about 10 dB Signal-
power-to-Noise-power Ratio (v), we could obtain fairly uncorrupted signal samples.

Many setups, e.g., [18,32], including ours, also perform an additional calculation of the
overall power at the baseband (from − fs/2 to fs/2). The purpose of this is to help identify
rain events. This is similar to what radiometers do, albeit with much more stable, constant
gain receivers. In our case, we cannot tell an increase in water vapor or the presence of
clouds through this calculation, but still, we can obtain a clear indication of the presence of
rain events: a decrease in the beacon power is accompanied by an increase in the noise.

As an example, Figure 1 shows the measured power level of the KaSAT beacon and
background noise for a day with three rain events. It is clear how the noise power increase
marks the time limits of the rain events. Note that the signal levels in the ordinates do
not correspond to actual power values in dBm; they are the numerical result of applying
an FFT to the I and Q samples out of the analog-to-digital converter. In the series, the
relative values between time samples have a physical meaning, but their absolute values
are meaningless.

In Figure 2, we illustrate the measured power level of the KaSAT beacon for the whole
month of August 2018. Note in Figure 2 how the raw beacon level undergoes a daily cycle
on days with a mostly clear sky.

2.2. Extraction of the Daily Template

As mentioned in Section 1, given the characteristics of our measurement system, to
estimate the excess attenuation, we subjected the time series of the acquired beacon level to
a filtering process consisting of subtracting a template from the time series. The procedure
implemented for extracting the template was based on the data processing methodology
described in [33], which is similar to those found in [20,22,34].

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440

Minute of the day

10

15

20

25

30

35

40

B
ea

co
n 

le
ve

l (
dB

)

–5

–4

–3

–2

–1

0

1
N

oi
se

 le
ve

l (
dB

)

Beacon level
Noise level
Events

Figure 1. Example of KaSAT beacon power level and received noise level for a day with three
rain events: 24 April 2021. The identified rain events are also illustrated. Note the increase in noise
temperature when it rains together with a drop in the received beacon power.
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Figure 2. Example of the raw beacon level for the whole of August 2018. A mainly dry month is
depicted except for a few rain events. Note the daily signal oscillations, mostly caused by changes in
the outdoor unit’s gain (thermal effects) and, to a lesser degree, to satellite orbit variations.

Roughly, the procedure to compute a daily template consisted of the following steps:

1. Three days of data selection: time synchronized beacon and meteorological data of
the previous, current, and next days;

2. Outlier detection based on the standard deviation of the mean value of the raw data:
These mean values were computed using a 2 min moving average filter. When the
difference between the beacon level and its moving average is larger than the standard
deviation multiplied by a coverage factor, then the sample is recognized as an outlier
and flagged as invalid data. In this work, a coverage factor of 5 was used;

3. Detection of abnormal amplitude changes (exceeding a defined threshold) from one
sample to another: In this study, the samples exceeding a threshold of 1 were consid-
ered as spikes and flagged as invalid data;

4. Identification of rainy periods: Data corresponding to rain events are flagged as
invalid data;

5. A repair operation: Missing and invalid data are replaced by linear interpolation from
the valid data;

6. After having inspected and repaired the selected data, template extraction itself is
performed. To identify the template, we performed a low-pass filter processing that
should be able to follow the fairly slow changes in water vapor in the atmosphere,
with time constants of hours, and the presence of clouds, with time constants faster,
but still slower than rain. In addition, we had to follow both the combined effect
of receive antenna mispointing plus satellite orbit perturbation and the LNB gain
oscillations due to the thermal variations, which clearly have a full one-day duration.
The template was computed with an FFT by considering only those components
whose period was longer than 8 min. Several tests were carried out, and this seemed
to be the optimum value in our case.

To take an example, Figure 3 shows the raw received beacon level (our row data)
during a rainy day (28 August 2018). In Figure 3, the daily pattern is visible in the second
half of the plot. The difficulty arises during the rain episode in the early hours. During the
rainy period, the extraction of the template from raw data was not possible, and rainy data
were replaced (Steps 4 and 5 of the template extraction procedure).

As in Figures 1 and 2, the signal levels in Figure 3 do not correspond to actual power
values in dBm. It is only after the template has been identified and subtracted from the
raw data that the obtained levels have any meaning: they are now relative levels with
respect to the set reference level. The resulting time series is the excess attenuation. Finally,
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to separate Ar from As in the excess attenuation, we applied a squared-cosine window
low-pass filter with a duration of 28.76 s. Figure 4 shows the excess attenuation and Ar for
28 August 2018.
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Figure 3. Example of raw beacon level and extracted template for a rainy day: 28 August 2018.

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440

Minute of the day

–1

0

2

4

6

8

10

12

13

A
tte

nu
at

io
n 

(d
B

)

Excess attenuation
Rain attenuation

Figure 4. Example of excess and rain attenuation for a rainy day: 28 August 2018.

3. Results

In this section, we go on to describe, through specific examples, the main character-
istics of the templates extracted on non-rainy days, as well as the impact of some local
meteorological parameters. Note that our ensuing analyses were based on locally measured
meteorological information at the receiver location. However, it is worth mentioning that it
is the whole path’s parameters that condition the measured received levels. In Figure 5, we
analyze a clear-sky day (19 August 2018) recording together with associated concurrent
local meteorological information. We show the extracted template, the ambient tempera-
ture, and the dew point along the day. Note again that the absolute signal levels shown
here were not calibrated to dBm and were the result of the processing of the in-phase and
quadrature digitized input signal.

Since the overall raw data are also affected by some level of unavoidable mispointing,
our correlation analyses should be regarded with care given that we only studied here the
impact of the ambient temperature and other meteorological variables. Even though we
are aware of the fact that the correlation levels observed for meteorological parameters
can be disturbed by the correlation between the raw data and the pointing errors, these
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results continue to be relevant for deriving that particular day’s template. The fact that
both the thermal cycles and the satellite positioning errors show the same period does not
completely imply that the correlation coefficients due to one phenomenon and the other
have the same strength.

We saw a clear negative correlation with the ambient temperature. Furthermore, this
temperature was always far from the dew point. This kind of behavior has been observed
in most of our non-rainy recordings, with high levels of anti-correlation always below −0.9.

Additionally, we also include in Figure 6 a plot showing the template and the relative
humidity, where high correlation values are also apparent, indicating another possible
relevant influencing factor in the evolution of the template.

Clear sky is a very common condition during the year. The negative correlation
between template and temperature is significant. For the month of August 2018, full-day
(no morning fog) clear-sky conditions were met during Days 2–5, 10–11, 15, 18–20, 23, 26,
and 31. Their corresponding correlation values with the ambient temperature are listed in
Figure 7. They never went above −0.91.
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Figure 5. Template, ambient temperature, and dew point for a clear-sky day: 19 August 2018.
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Figure 7. Correlations between template and ambient temperature for the days in August 2018 with
all full-day clear sky. Days: 2–5, 10–11, 15, 18–20, 23, 26, and 31.

However, we did not find a deterministic behavior in the observed signal levels, as
illustrated in Figure 8, which shows that the templates extracted in clear-sky days were not
necessarily identical from day to day. As complementary information, we also provide the
corresponding day-to-day ambient temperature plots in Figure 9.

Coming back to the templates in Figure 8, the changes in their daily average levels,
not in their peak-to-peak dynamic ranges, could be fundamentally attributed to a longer
term upward or downward drift in the orbit cycle, which is only reset when stationkeeping
maneuvers are carried out on a periodic basis.

These effects completely mask out the water vapor and cloud effects, which are of
lower magnitude. Under these constraints, the use of an all-time, single template is not
feasible, and thus, it is necessary to employ the current day’s template (or, at most, one
involving the previous and following days.)

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440

Minute of the day

39.3

39.7

40.1

40.5

40.9

41.3

41.7

Le
ve

l (
dB

)

day 2
day 3
day 4
day 5
day 10
day 11
day 15
day 18
day 19
day 20
day 23
day 26
day 31

Figure 8. Templates for the days in August 2018 with all full-day clear sky. Days: 2–5, 10–11, 15,
18–20, 23, 26, and 31.
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Figure 9. Ambient temperature for the days in August 2018 with all full-day clear sky. Days: 2–5,
10–11, 15, 18–20, 23, 26, and 31.

Now, we go on to present a case, also often observed, with possible condensation on
the antenna’s radome taking place. Figure 10 shows the same plot as in Figure 5, now for
17 August 2018. Here, we observe a strange artifact in the extracted template with a drop
of a few tens of one dB during the early hours of the day, before and during sunrise. This
drop then disappears, and the normal daily cycle is resumed. In this case, the correlation
with the ambient temperature was −0.41. We can see that this strange episode took place
during a period of time when the ambient temperature was close to the dew point. We
assumed that this effect was probably caused by condensation on the antenna’s radome.

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440

Minute of the day

40  

40.3

40.6

40.9

41.2

41.5

Le
ve

l (
dB

)

13

16

19

22

25

28

T
em

pe
ra

tu
re

 (
°C

)

Template
Amb. Tem.
Dew point

Figure 10. Template, ambient temperature, and dew point for a clear-sky day with possible conden-
sation on the radome: 17 August 2018.

Furthermore, we have a look at the dependency between template and relative humid-
ity (RH) in Figure 11. We can see that the level dip corresponds to a period with significant
RH, close to 100%, consistent with the condensation hypothesis. In clear-sky days, as in
Figure 6, the RH is usually much smaller.
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Figure 11. Template and relative humidity for a clear-sky day with possible condensation on the
radome: 17 August 2018.

Finally, we looked at the recordings from 3 November 2018. This was a very cloudy
day with no rain. Again, Figures 12 and 13 illustrate the template and the concurrent local
meteorological parameters. From the METAR files, it was obtained that the eight oktas of
the sky were covered throughout the day (8/8 of sky completely overcast, no breaks or
openings).
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Figure 12. Template, ambient temperature, and dew point for a cloudy-sky day: 3 November 2018.
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Figure 13. Template and relative humidity for a cloudy-sky day: 3 November 2018.
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On this cloudy day, the template excursion was around 0.65 dB peak-to-peak, sig-
nificantly smaller than on a sunny, warmer day in August (about 1.2 dB peak-to-peak;
Figure 8.) The corresponding daily ambient temperature ranges were 1 ◦C and at least 8 ◦C,
respectively. These differences can be attributed mostly to thermal effects on the LNB.

Now, coming back to the cloudy-day case, the relative humidity was also significant,
and the ambient temperature was close to the dew point. In any event, it seemed that the
average beacon level was slightly lower than in clear-sky days, which should mean that
there is a constant additional attenuation due to water vapor and the clouds.

A final word is about the fact that we were always carrying out relative measurements
of rain attenuation with respect to a daily template. This made our post-processed mea-
surements insensitive to possible drops in the signal level for a few hours or days due to
operational reasons. Provided that both ends of the rain event were affected by the same
signal level, we relied on the fact that daily templates are capable of removing not only
gas, cloud, thermal,and daily antenna mispointing effects, but also a drop in the satellite’s
transmit power.

4. Conclusions

In this paper, we illustrated, with the aid of received signal and concurrent meteoro-
logical recordings, some of the difficulties one faces when trying to perform a millimeter
wave satellite beacon propagation experiment lasting over periods of years when affordable
measurement equipment is utilized.

The main challenge was determining a sequence of reference levels representing the
0 dB excess attenuation level (template). There is an underlying daily cycle in the received
satellite signal, caused mainly by thermal effects on the outdoor unit electronics. Antenna
mispointing can also play a significant role, but not in our case, since we used a large
beamwidth antenna. The observed cycles are more remarkable when the temperature
dynamic range is larger. It was shown that during cloudy days, the signal excursion is
smaller and the daily average levels may be lower due to the presence of water vapor and
cloud attenuation. We also observed how it is possible to detect water condensation on the
radome, giving rise to deformations of the expected template.
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Abbreviations
The following abbreviations are used in this manuscript:

a.m.s.l. above mean sea level
ASI Agenzia Spaziale Italiana (Italian Space Agency)
CDF Cumulative Distribution Function
EIRP Equivalent Isotropically Radiated Power
ESA European Space Agency
FFT Fast Fourier Transform
GNSS Global Navigation Satellite System
IF Intermediate Frequency
LNB Low-Noise Block
METAR METeorological Aerodrome Report
N Noise
PC Personal Computer
RF Radio Frequency
RH Relative Humidity
S Received Beacon Signal
SDR Software-Defined Radio
SNR Signal-power-to-Noise-power Ratio
USB Universal Serial Bus
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