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Abstract: The conventional approach to optimising plasmonic sensors is typically based entirely
on ensuring phase matching between the excitation wave and the surface plasmon supported by
the metallic structure. However, this leads to suboptimal performance, even in the simplest sensor
configuration based on the Otto geometry. We present a simplified coupled mode theory approach for
evaluating and optimizing the sensing properties of plasmonic waveguide refractive index sensors. It
only requires the calculation of propagation constants, without the need for calculating mode overlap
integrals. We apply our method by evaluating the wavelength-, device length- and refractive index-
dependent transmission spectra for an example silicon-on-insulator-based sensor of finite length.
This reveals all salient spectral features which are consistent with full-field finite element calculations.
This work provides a rapid and convenient framework for designing dielectric-plasmonic sensor
prototypes—its applicability to the case of fibre plasmonic sensors is also discussed.

Keywords: plasmonics; sensors; fibre sensors; coupled mode theory; hybrid plasmonic waveguides;
directional coupling; photonic integrated circuits

1. Introduction

Waveguide sensors which use surface plasmon polariton (SPP) resonances [1] are
particularly attractive for bio-sensing at the nanoscale [2–7]. Such sensors harness the
deep subwavelength lateral confinement of SPPs to characterise small modifications to a
nanoscale environment via changes in the propagating field’s phase or loss. Originally
implemented using free-space bulk optics (e.g., in the Kretschmann [8] and Otto [9] configu-
rations), SPP sensors are ideal for integration with chip-scale [10–14] and fibre-based [15–18]
platforms, providing a monolothic and convenient way of detecting small changes near the
metal surface—see for example Refs. [19–21] as a selection of recent reviews.

When designing any refractive index sensor, one of the most important aspects to con-
sider is how resonant spectra—characterized by a transmission minimum at a wavelength
λR—change with the refractive index na of an analyte. A sensor’s overall performance
is often defined in terms of its detection limit (DL), i.e., the smallest detectable change
in refractive index δn, and which generally depends on a specific user’s experimental
configuration. It can be shown that [22,23]

δn ∝
δλ

S
, (1)

where δλ is a characteristic spectral width (typically taken as the Full Width at Half
Maximum (FWHM) [24,25]), and the sensitivity S = dλR/dna quantifies the shift in the
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resonance minimum with analyte index. The smallest detectable δn thus stems from a
combination of narrow spectral width and high sensitivity. The commonly used figure of
merit (FOM) [20], which should be maximized during sensor optimization, is given by the
inverse of the right hand side of Equation (1):

FOM =
S

δλ
. (2)

The transmission spectra used to maximize Equation (2) typically have minima at
the phase matching (PM) condition between dielectric and plasmonic modes [26]. The
shift of the PM condition as na varies, thus often provides a first estimate of the sensitivity.
However, we wish to emphasize that, in practice, the phase-matching condition in isolation
provides insufficient information to infer the spectral minima, and can even lead to incorrect
conclusions. In fact, the physics behind such resonant spectra is quite complex [25], due
to the subtle and often counter-intuitive interplay of phase matching, modal coupling,
interference, and losses. To highlight this subtlety, it is useful to revisit the textbook
example [27] of possibly the simplest plasmonic sensor implementation, based on the Otto
plasmonic coupler [9], shown schematically in Figure 1a. In this particular scheme, a plane
wave at wavelength λ = 800 nm is incident from the top of a semi-infinite silica prism
(refractive index: ns = 1.5) towards its bottom surface, at an angle θ with respect to the
normal. The spacer (green) is the analyte. In the absence of a metal, and for na < ns, total
internal reflection leads to an evanescent field at the silica/analyte interface. By introducing
a gold layer (refractive index: nAu = 0.23 + 4.5i), spaced a distance w from the edge of the
prism, the evanescent field can excite a bulk SPP if momentum is conserved, which occurs
at an angle θSPP. In the first instance, the SPP excitation angle can be calculated analytically
by recalling that the bulk SPP has a propagation constant of

βSPP =
2π

λ

√
εaεAu

εa + εAu
, (3)

and that the wavevector component parallel to the surface of the prism is given by

β|| =
2π

λ
ns sin θSPP, (4)

so that momentum conservation (i.e., <e(βSPP) = β||) leads to

θSPP ≈ sin−1

(
1
ns

√
εaε′Au

εa + ε′Au

)
, (5)

where ε′Au = <e(εAu). In the case of air, na = 1 leads to θSPP ≈ 43.1◦; for water, na = 1.33
and θSPP ≈ 68.2◦. Note that these results do not depend on the spacer thickness w. However,
the efficiency of energy transfer from the incident light to the SPP, and from the SPP back
into the radiation field of the prism, also depends on the coupling strength between the
two evanescent modes via separation w, and therefore phase matching only provides a
partial description of sensor performance. To highlight this, we calculate the reflectivity R
using the Fresnel equations [27] for different values of w, and show the results in Figure 1b
for na = 1. The narrowest reflectance spectrum, corresponding to the largest FOM for
this na, and associated with the highest SPP coupling efficiency, occurs only for a specific
w = 1000 nm, at θSPP = 43.0◦—which itself differs from the Equation (5) prediction. This
example serves to illustrate and highlight the importance of considering propagation
through a specific device configuration when designing refractive index sensors. Figure 1b
also shows that, at other values of the spacing w, the dip in transmission is shallow, leading
to inferior sensor performance. A full calculation of the reflectance as a function of w and
θ for na = 1 and na = 1.33 is shown in Figure 1c and Figure 1d respectively: the phase
matching condition, shown as black dashed lines, leads to incorrect predictions of the
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spectral minima for some configurations, with the full spectrum being highly dependent on
the choice of w. Thus, even in this simple, bulk geometry, knowledge of the phase matching
angle θSPP provides insufficient information for the design of a sensor with high sensitivity.
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Figure 1. Concept schematic of the challenge of calculating resonances in plasmonic sensors. (a) The
simple Otto configuration relies on monitoring the reflectivity R of plane waves propagating in
semi-infinite media as a function of angle θ. At the angle θSPP a SPP is excited. (b) θ-dependent
reflectance spectrum for na = 1, λ = 800 nm, and w as labelled. Also shown is the full colourmap of
the reflectance as a function of θ and w for (c) na = 1 and (d) na = 1.33. Note that the spectral maps
are subtly dependent on both na and w.

We now turn to plasmonic waveguide sensors, which are the focus of this work. In
this case, sensor performance is based on directional coupling [28,29], which also relies
on resonant energy transfer between waveguides, and is used for sensing applications
in several different contexts [22,24,30,31]. Compared to the Otto configuration, hybrid
plasmonic waveguide couplers provide a pathway for photonic circuit integration, as well
as more localized confinement and higher spatial resolution. Figure 2 shows a schematic
of an example of a chip-scale hybrid plasmonic waveguide coupler, which we will use
as the example platform to illustrate our method. We consider a one-dimensional slab
device supporting two-dimensional propagation, grounding our theoretical discussion
to a realistic device which we can also use to compare with full numerical calculations.
Such a waveguide coupler is described by many parameters, i.e., refractive indices, width,
spacing, and wavelength. Here, the dielectric waveguide (purple) is taken to be a silicon
slab (width: d = 220 nm, refractive index: 3.5); the metal waveguide (yellow) is taken to
be gold (thickness: t = 7.5 nm; with the permittivity following from the Drude model [32];
edge-to-edge separation: s = 400 nm). The background is silica [33] and the region above
the gold is covered by an analyte (refractive index range: na = 1.3− 1.5). Light is injected
into the dielectric core, which in turn couples to the two modes in the sensor region, yielding
an overall transmission spectrum that depends on including the wavelength λ, length L,
and refractive index na.
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Figure 2. Schematic of the HPWG sensor and the coupled mode theory picture. The modes in the
dielectric and plasmonic regions, ψ1 and ψ2 respectively, couple linearly as described by Equation (6).
The power in the dielectric at output is given by T = |ψ1|2. The periodic exchange of power between
waveguides can lead to a resonant spectrum that in general depends on both the length of the device
L and the analyte index na [25].

Analogously to the Otto configuration, modal calculations alone (e.g., which monitors
the numerically calculated phase-matching wavelength, or loss-matching wavelength) are
insufficient for predicting how a sensor will perform [25,34,35]. All approaches used so far
to achieve this rely on knowledge of the electric and magnetic fields, and calculating mode
overlap integrals [25,29,36–39], which can be cumbersome when designing multi-material
two-dimensional waveguides with fine feature sizes, as is often the case in plasmonic
sensors. Full field propagation methods, such as Finite Difference Time Domain and
Finite Element methods, are much more computationally demanding, particularly in three
dimensions, where length scales associated with cross sections and propagation distances
can differ by many orders of magnitude.

Spatial coupled mode theory (CMT) approaches [40], in contrast, are far simpler: they
require knowledge of just a small set of reduced parameters which account for propagation
and coupling between the waveguide modes. While CMT can lack quantitative accu-
racy [41], it provides rapid and immediate intuition of coupled waveguide performance,
with typically excellent agreement with full simulations [40]. Here, we present a simplified
CMT approach for lossy directional couplers, via an easy-to-implement perturbation of
the lossless case, which can be used to predict the performance of a full hybrid plasmonic
waveguide sensor. We calculate the resonant spectra for our example silicon-on-insulator
hybrid plasmonic waveguide sensor, considering both changes to the sensor length and
analyte index, using only propagation constant (mode) calculations. The results are ver-
ified by full-field finite element propagation calculations. This approach will be helpful
in designing any analogous dielectric-plasmonic sensor, providing a first design step to
identify the useful parameter range in the earliest design stage, before using detailed full
propagation calculations.

2. Materials and Methods

Our aim is to provide a theoretical treatment for evaluating the wavelength-dependent
transmission T(λ) for the prototypical configuration of Figure 2 for a given combination
of na and L based on coupled mode theory. The only parameters needed are those of the
propagation constants of the participating modes of the coupled and uncoupled systems,
which can be readily calculated with any reduced-dimension mode solver, accelerating
computation times. In the first instance, we take all waveguides to be lossless (i.e., the
permittivity of gold is taken to be the real part of its actual value [32]).
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The field in an isolated dielectric waveguide—i.e., in the input section of our device
(z < 0 in Figure 2)—is written as the product of a mode field, which depends on the trans-
verse coordinates and a z-dependent factor ψ(z) ∝ exp(iβz), where β is the propagation
constant of the mode, ψ(z) is its amplitude, and |ψ|2 is its power. The propagation in an
isolated waveguide is thus described by dψ/dz = iβψ.

If two waveguides 1 and 2 are brought together (0 < z < L in Figure 2) and allowed
to interact linearly, then their two individual modes ψ1 and ψ2 couple via

d
dz

(
ψ1
ψ2

)
= i
(

β1 κ
κ β2

)(
ψ1
ψ2,

)
. (6)

where κ is a coupling parameter, typically calculated using cumbersome overlap integrals.
In general, κ is complex and the two off-diagonal elements are complex conjugates; for
longitudinally invariant waveguides and in the absence of loss, the phase can be adjusted to
make them both real. We note that, strictly speaking, bringing the waveguides together per-
turbs β1 and β2, and that the off-diagonal elements may differ. However, such corrections
also require overlap integrals [42,43] which, as we will show, are not necessary to capture
the salient modal interactions. Equation (6) can also be used to approximate dissimilar
waveguides [40,44–46], provided that the waveguides are not too strongly coupled [42,44].
One of the goals of this work is to present the value of this simple model in the context
of plasmonic waveguides, verifying its validity by direct quantitative comparisons with
full calculations.

The eigenmodes of this system, also referred to as supermodes or hybrid eigenmodes,
are obtained by looking for solutions of the form ψ̃j exp(iβ̃ jz), where ψ̃j are the eigenvectors
of the matrix and β̃ j are its eigenvalues (i.e., the propagation constant of each supermode).
These propagation constants are given by

β̃ j = β±
√

κ2 + ∆2, (7)

where β = (β1 + β2)/2 and ∆ = (β1 − β2)/2. For identical waveguides, the mode fields of
the supermodes associated with ψ̃j are even- and odd- superpositions of the mode fields
associated with ψ1 and ψ2 [40].

Equation (7) immediately provides a pathway for obtaining κ accurately without
overlap integrals: knowledge of the “exact” isolated- and hybrid- modes’ propagation
constants, β1,2 and β̃1,2 respectively, in combination with Equation (7), yields an estimate
of the coupling coefficient,

κ =
√

∆̃2 − ∆2, (8)

where ∆̃ = (β̃1 − β̃2)/2. Knowing all the parameters, and with the initial conditions ψ1(0)
and ψ2(0), Equation (6) can then straightforwardly be solved to yield the transmitted
power |ψi(z)|2, which is a function of wavelength and device length due to mode coupling.
Most importantly, this approach requires no overlap integrals at all, only knowledge of
the various propagation constants—which any mode solver in reduced dimensions can
provide—and access to a numerical solver of ordinary differential equations.

2.1. Lossless HPWG Sensor

To illustrate how the above parameters manifest in a realistic sensor, we begin by
computing all eigenmodes for the device shown in Figure 2 in the absence of loss. The
isolated (uncoupled) eigenmodes are calculated from equivalent dielectric waveguides
without a gold film or by the gold film in the absence of silicon, as summarized at the top of
Figure 3. The solid/dashed curves in Figure 3a–c show the effective index neff,i = βi/k0 of
isolated/hybrid modes for analyte refractive index na = 1.3, 1.4 and 1.5, respectively. The
propagation constants are obtained by numerically solving Maxwell’s equations with suit-
able continuity boundary conditions for the fields at the interfaces between the layers [47].
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The material dispersion for silica [33] and gold (Drude model [32]) are included, but for
now we set the imaginary part of the permittivity to be zero everywhere.

wavelength [nm] wavelength [nm] wavelength [nm]

κ 
[μ

m
−

1 ]
n e

ff 
=

 β
/k

0

β2

β1

β2

β1
~
~

(a) (b) (c)

(d) (e) (f)
wavelength [nm] wavelength [nm] wavelength [nm]

β1 β2 β2β1
~ ~

isolated modes hybrid− /super− modes

Figure 3. Effective index neff = β/k0 as a function of wavelength for the geometry shown in
Figure 2 when (a) na = 1.3, (b) na = 1.4, (c) na = 1.5 in the lossless case. The dashed line shows
the isolated plasmonic- and dielectric- modes, respectively. The solid lines show the hybrid eigen-
modes. (d–f) show the associated calculated coupling coefficients, following the simple expression in
Equation (8) (black line). Top row shows a schematic of the magnetic field for the plotted isolated- or
hybrid-/super-modes.

We notice that the effect of increasing the analyte index na is to shift the propagation
constant β2 to higher values. This, in turn, changes the point at which β1 and β2 cross:
at such a point, the β̃1 and β̃2 anti-cross. The associated splitting of β̃1,2 with respect
to β1,2 is quantified by κ via Equation (8), which in turn is plotted in Figure 3d–f. The
wavelength-dependent coupling dictates the transmission spectrum, which for the lossless
case has been considered extensively [22,24].

2.2. Lossy HPWG Sensor

We now introduce loss by numerically “switching on” the imaginary part of the gold
permittivity. We now show that the loss can be accounted for by simply changing the
propagation constant of β2, with all other parameters remaining the same. This results
in changes to the propagation constants such that β2 = βR

2 + iβI
2, which we take to be

the dominant perturbation, with all other parameters unchanged from the lossless case.
Equation (6) then takes the form

d
dz

(
ψ1
ψ2

)
= i
(

β1 κ

κ βR
2 + iβI

2

)(
ψ1
ψ2

)
, (9)

where κ has the same value as in the lossless case, previously obtained via Equation (8). The
eigenvalues of the lossy system are still given by Equation (7), replacing β2 → βR

2 + iβI
2.

Figure 4a–c show the real part of the effective index of each mode for the lossy system,
for na = 1.3, 1.4 and 1.5, respectively. Figure 4d–f show the corresponding imaginary parts.
The isolated (uncoupled) eigenmodes are again shown as dashed curves: with respect to
Figure 3, we find that <e(β2) is slightly shifted due to the perturbation introduced by loss,
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and =m(β2) is non-zero, as expected. The light solid curves in Figure 4 plot β̃ j, obtained
from Equation (7) using the lossy uncoupled modes βi (dashed lines in Figure 4), and the κ
shown in Figure 3. The propagation constants of the two “exact” supermodes, calculated
by solving the transcendental equation describing the full system, are overlayed as dark
solid curves. We find that the eigenmodes obtained via this approach are in remarkably
good agreement with those of the full system. Most notably, and in stark contrast to the
lossless case, we observe a transition from regions where the real parts of the eigenmodes
anti-cross and the imaginary parts cross (na = 1.3 and na = 1.4) to regions where the
real parts cross and the imaginary parts anti-cross (na = 1.5)—a feature often found in
plasmonic sensors [48]. One important result in the present context is that the sensors’
eigenmode properties [25], as the analyte changes, are well predicted by the simple model
presented here. In the following, we show that Equation (9) describes the properties of
the full waveguide sensor and can straightforwardly be solved to rapidly estimate sensor
performance over a wide range of L, na, and λ, using κ from the lossless case, and βi from
the lossy case.

R
e(

n e
ff)

 =
 R

e(
β

/k
0)

wavelength [nm] wavelength [nm] wavelength [nm]

(a) (b) (c)

(d) (e) (f)
wavelength [nm] wavelength [nm] wavelength [nm]

β2

β1

β2

β1
~
~

Im
(n

ef
f) 

=
 Im

(β
/k

0)

CMT

CMT

"exact"

"exact"

Figure 4. Real part of the effective index <e(neff) = <e(β/k0) as a function of wavelength for the
geometry shown in Figure 2 when (a) na = 1.3, (b) na = 1.4, (c) na = 1.5, using the lossy Drude
model for the gold permittivity. The dashed line shows the isolated plasmonic- and dielectric- modes,
respectively. The solid lines show the hybrid eigenmodes according to the “exact” solution (dark) and
obtained from CMT via the eigenvalues of Equation (9) (light). (d–f) show the associated =m(neff).

3. Results

We solve the coupled mode Equation (9) for the sensor shown in Figure 2 using the
complex propagation constants βi of Figure 4 considering loss, in combination with the
κ obtained from the lossless case shown in Figure 3. We take the input to be ψ1(0) = 1
and ψ2(0) = 0, corresponding to all the power being in the dielectric waveguide at input.
Figure 5a shows the transmitted power T = |ψ1(L)|2, on a dB scale, as a function of λ and
na for L = 10µm. In this configuration, we find a single sharp transmission resonance
near λ = 1.6µm and na = 1.42, resulting from directional coupling to the plasmonic mode.
To verify the validity of this model, we perform a full field finite element method (FEM)
calculation (COMSOL). We use a port boundary condition at the input and output to excite
and detect the fundamental TM mode of the waveguide [49]. Perfectly matched layers
at every external boundary suppress any reflections in the simulation volume. We find
good agreement between our FEM method and the CMT calculation, observing only a
small offset in the values of λ and na where the resonance is sharpest, most likely due to
slight changes in the propagation constants β1,2 due to the neighbouring waveguide [42].
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Figure 5c,d and Figure 5e,f shows the results of the same calculation, for, respectively,
L = 15µm and L = 20µm: with increasing L, a larger number of wavelength- and analyte-
dependent resonances appear. These features are due to resonant interference resulting
from directional coupling, which in the absence of loss occur at integer multiples m of
the half-beat length Lb = mπ/κ—longer device lengths thus allow for a wider range of m
which satisfy this requirement. The full spectra clearly depend on the length of the device.
We wish to emphasise that, because of the wavelength-dependent coupling and loss, the
total transmission spectra must be calculated numerically, as we do here.
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Figure 5. Transmitted power by the plasmonic sensor as a function of λ and na for L = 10µm
using (a) CMT, and (b) FEM. (c,d): same as (a,b) for L = 15µm. (e,f): same as (a,b) for L = 20µm.
(g,h): same as (a,b) for L = 50µm. EP: exceptional point.

It is interesting to consider what happens for even longer L. Figure 5g,h show the
transmittance on a dB scale, as a function of wavelength and analyte index for L = 50µm
using the CMT and FEM method, respectively. Note that for such a long length, even
2D finite element full-field calculations are extremely time consuming (a few minutes per
individual combination of na and λ on a high performance computer), due to the nanometer-
scale mesh required in the gold film. Furthermore, the transmittance is <−100 dB at
resonance, which is below the numerical noise of the FEM solver, and well below the signal-
to-noise ratio of most spectrometers. Nevertheless, we find that the CMT and FEM methods
broadly agree: many sharp resonances emerge due to a larger number of half-beat lengths
supported, in the vicinity of where <e(βi) or =m(β̃i) intersect. In this case, we attribute
the discrepancies between CMT and FEM methods to numerical noise. The most intriguing
feature, however, is that sharp resonances completely cease to exist for analyte indices na
above ∼1.46. In this region, the <e(ñeff) of the supermodes cross near the phase matching
point—as can be seen in Figure 4c—so that the beat length is infinite, and resonances are
broad and due to mode absorption only [25], associated with the blue curve in Figure 4f.
Sharp resonances can only occur where mode beating is supported—i.e., where the <e(β̃i)
anti-cross [25,48]—as can be seen in Figure 4a,b.

The boundary between regions where <e(β̃i) cross and anti-cross—and which thus
separates regions where the detection limit of plasmonic sensors can be improved by
narrow-band resonant spectra—is given by the exceptional point (EP), where the complex
supermode propagation constants are degenerate, which by definition corresponds to
the condition

β̃1 − β̃2 = 0. (10)



Sensors 2022, 22, 9994 9 of 15

According to coupled mode theory, this condition corresponds to κ2 + ∆2 = 0 [48,50],
wherein the following conditions simultaneously need to be met:{

β1 − βR
2 = 0,

κ − βI
2/2 = 0.

(11)

The exceptional point is thus an important parameter for plasmonic directional cou-
plers in general, and plasmonic sensor designs in particular, because it defines the point
beyond which resonant coupling is not supported. Our formalism immediately provides a
rapid way of identifying it, in terms of intuitive coupling- and loss-parameters. To illustrate
this, Figure 6a shows a plot of |β1 − βR

2 |/k0 + |κ − βI
2/2|/k0 in the phase space considered,

and which has a zero at the exceptional point as per Equation (11). A comparison with the
exact supermodes is shown in Figure 6b, which plots |β̃1 − β̃2/|k0 as a function of na and
λ. An EP is found at the point where this function is zero as per Equation (10), consistently
with coupled mode theory.

|β1 − β2|/k0 + |κ − β2/2|/k0
R

1.3

1.5
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]
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Figure 6. Calculated colour maps of (a) |β1 − βR
2 |/k0 + |κ − βI

2/2|/k0 using CMT and (b) |β̃1 −
β̃2|/k0 using the exact supermodes. The global minima in the phase space show the location of the
exceptional point using our CMT model and the exact solution, as per Equations (10) and (11).

The above analysis shows that refractive index sensors are very sensitive to all param-
eters involved. At the early design stage, it is therefore essential to have rapid estimates of
how transmission spectra are affected by changes in na, L, and λ. We now provide peda-
gogical guidelines for maximizing the performance of plasmonic sensors using simplified
coupled mode theory.

4. Discussion

A full analysis of the above sensor—which quantifies both S and δλ as a function of na
and λ to maximize the FOM of Equation (2)—is quite laborious [29] and beyond the scope
of this work. However, we can use the above formalism to provide a simple and accessible
design procedure.

4.1. Operate at the Phase Matching Wavelength

In order to achieve resonant energy transfer between the dielectric waveguide and the
gold surface, one should operate near the phase matching (PM) wavelength λPM where
β1(λPM) = βR

2 (λPM), identified, for example, as the wavelength where the dashed lines
in Figure 4a–c intersect for na = 1.3, 1.4, 1.5, respectively. Figure 7a (right axis, green
circles) shows a detailed plot of the calculated λPM as a function of analyte index na in the
present configuration, which provides the first estimate of where resonances are expected
for different choices of na.



Sensors 2022, 22, 9994 10 of 15

analyte index

[μ
m

]
L b

"exact"

[μ
m

]
L a

half beat length absorption length

λ P
M

[n
m

]

analyte index

(a) (b)

S~−2340nm\RIU
"exact"

Figure 7. (a) Green (right axis): phase matching wavelength λPM where β1 = βR
2 , and associated half

beat length Lb according to the supermodes obtained with CMT (orange) and “exact” calculations
(blue). (b) Associated absorption length La. Solid lines indicate the average La = (L1

a + L2
a)/2; shaded

regions encompass the L1
a and L2

a boundaries.

4.2. Calculate the Nominal Sensitivity

The phase matching wavelengths also provide a first estimate of the sensitivity,
SPM = dλPM/dna. This can be evaluated early on, before proceeding with full calculations
of the resonant transmission spectra to obtain δλ and the FOM. In the present configuration,
SPM = −2340 nm/RIU, obtained from a linear fit to the data in Figure 7a. Note, however,
that for short device lengths this value can differ significantly, as we show below.

4.3. Operate above the Exceptional Point

Equation (11) indicates that a sensor should also satisfy κ− βI
2/2 > 0 at λPM. This yields

the condition for the real parts of the supermodes to split at the phase matching point, so that
the device can harness the sharp resonances induced by modal beating, rather than the broad
resonances induced by metallic losses. In the present configuration, this occurs for na < 1.46.

4.4. Identify the Nominal Device Length

Calculations of the eigenmodes using mode solvers can be used to provide a first
estimate of the shortest device length over which resonant energy transfer occurs due to
modal beating, which corresponds to the half beat length,

Lb =
π

<e(β̃1 − β̃2)
, (12)

also calculated at the phase matching wavelength λPM. Furthermore, because the modes
are lossy, device length should be kept short to avoid the resonances to fall below the
instrument noise—ideally not much longer than each supermodes’ absorption lengths,

Li
a =

1
2=m(β̃i)

, (13)

which provide an estimate of the length scale over which the power in each mode decays
by a factor of 1/e. Figure 7a (left axis) shows the calculated Lb as a function of analyte index
na, which is in the range of 2–10µm. The associated average La of the two supermodes is
shown in Figure 7b. Note that the beat length is here comparable to (or longer than) the
absorption length, making short devices necessary for practical applications.

4.5. Calculate the FOM

Following the above calculations, we proceed with calculating the FOM of the full device.
For the present example, we consider L = 10µm. For this device length, we inspect the
onset of a narrow linewidth δλ in the transmission spectrum as a result of resonant coupling,
leading to the highest accessible FOM. We highlight Lb = 10µm as a black dashed line in
Figure 7a: the resonance will occur near a wavelength 1600 nm and analyte index na = 1.44.
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4.5.1. “Conventional” Mode Approach

Before proceeding with the FOM obtained from CMT, it is worth discussing the results
obtained using common mode-based approaches in regions where avoided crossings (in
terms of <e(β̃i)) occur. This “conventional” mode approach is used, e.g., in Refs. [51–55],
and appears frequently throughout the plasmonic sensing literature: it attributes the
absorption spectrum to the supermode with the lowest loss at a given wavelength. In
practical terms, the transmitted power (in dB) is taken to be

T = 10 log10 exp
{
−2L×min

[
=m(β̃1),=m(β̃2)

]}
, (14)

i.e., the loss is computed from the minimum of the two hybrid mode loss curves of
Figure 4d–f, and both λR and δλ follow immediately from =m(β̃i). The resulting transmis-
sion spectra for the plasmonic sensor presented here, using Equation (14), are shown in
Figure 8a for different analyte indices as labelled. The resonant wave length λR is readily
identified and plotted as a function of analyte index in Figure 8b (green points, left axis).
The corresponding sensitivity (orange line, right axis) is obtained from the derivative of a
second-order polynomial fit (green line). In addition, the associated characteristic width δλ,
taken as the FWHM with respect to the minimum transmission (i.e., the spectral width at
twice the minimum transmission, 3 dB above the transmission minimum), is shown as an
orange line in Figure 8c (right axis). This yields the FOM via Equation (2), shown as a green
line in Figure 8c. Note in particular that δλ decreases linearly with na, as the exceptional
point is approached. These results are all independent of L, in contrast with our earlier
analysis (cfr. Figure 5).
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Figure 8. (a) Transmission spectrum using the “conventional” approach of Equation (14), as a function
of wavelength, for the three analyte indices as labelled, using L = 10µm. Also shown are the resonant
wavelength λR, corresponding to the spectral minimum and the δλ, corresponding to the FWHM.
(b) Associated λR vs. na (green circles, left axis), second order polynomial fit (green line), and
resulting sensitivity S (orange line, right axis.) Also shown in (c) are the δλ vs. na (orange curve, left
axis) and the total FOM = S/δλ. (d–f): same as (a–c), obtained from the CMT approach, using a subset
of the data shown in Figure 5a as labelled. (g–i): same as (d–f), obtained from FEM calculations,
using a subset of the data shown in Figure 5b as labelled.
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4.5.2. Coupled Mode Theory Approach

We now compute the FOM from the CMT method for L = 10µm, quantitatively
analyzing the spectra which produce the colour map in Figure 5a. Figure 8a plots the
spectra at the analyte index as labelled. Note the important differences with respect to
the conventional case in Figure 8. First, a plot of λR vs. na, shown as green circles in
Figure 8e (left axis), indicates a sensitivity which is several times smaller (orange line,
right axis). Second, the minimum δλ does not increase towards the exceptional point,
but has a local minimum near na = 1.42, due to resonant coupling, as shown in the
orange curve of Figure 8f (right axis). As a result of this narrow linewidth, however, the
FOM reaches values of up to ∼100, as illustrated in the green curve of Figure 8f (left
axis). This is broadly consistent with the same analysis using finite element calculations,
shown in Figure 8g–i—the only difference being a small shift in the analyte index where
the high FOM occurs. Therefore, we expect our CMT approach to be a valuable first
step in device design, providing an estimate of the plasmonic sensor performance using
low computational resources and simple modal parameters, which should ideally be
followed by a full detailed calculations in the parameter subspace of interest, e.g., via finite
element [49], or eigenmode [25,29] calculations.

4.6. Towards Optical Fibre Plasmonic Sensors

The CMT formalism is agnostic to the waveguide geometry used, and can in principle
be applied to fibre plasmonic sensors [20]. In fibre-based structures, the dielectric mode is
typically found within a micrometer-scale silica core [16,18], and the plasmonic mode is
typically guided by a metallic film in its vicinity [16]. Compared to the structure presented
here, therefore, we believe that fibre-based structures would present three important
additional features which should be accounted for in future investigations.

1. The present dielectric waveguide is formed by a high-index, sub-wavelength silicon
core and a silica cladding: its higher propagation constant provides access to the
short-range SPP, which is supported at all wavelengths shown and does not cut off. In
contrast, fibre plasmonic sensors typically use a wavelength-scale lower-index silica
(SiO2) core, wherein the effective index of the dielectric mode is close to the refractive
index of silica (neff ≈ nSiO2 = 1.45). This mode typically phase-matches to the weakly
confined long-range surface plasmon (LR-SPP) [56] for an analyte refractive index
close to na = 1.45, and typically cuts off close to regions where the supermodes anti-
cross [48]. High-order plasmonic modes in metallic nanowires also cut off across the
visible and infrared spectrum [57,58]. The present formalism can only only be applied
in regions of the parameter space where the uncoupled bound states are supported,
i.e., below modal cutoff.

2. The present plasmonic sensor is a two-mode system, because each uncoupled wave-
guide is single mode. Fibre plasmonic sensors, on the other hand, typically have core
sizes of several wavelengths in diameter, and can be highly multi-mode. In multi-
mode dielectric fibres, the dimensions of the matrix in Equation (6) must therefore be
increased to account for the additional modes and coupling coefficients [59].

3. Finally, we wish to point out that, in order to achieve sharp resonances and high
FOMs in multi-mode sensors, a single-mode waveguide/fibre at input- and output-
is required, which filters out higher-order modes, because these have the effect of
washing out sharp resonant dips and lowering the FOM [25,48].

5. Conclusions

In conclusion, we have developed a simplified lossy coupled mode theory which
obtains coupling coefficients from lossless waveguides, and subsequently introduces loss
as a perturbation. This formalism predicts where the real parts of the coupled eigenmodes
cross and anti-cross, and how this quantitatively impacts plasmonic sensors’ transmission
spectra, as validated by full-field calculations. Our approach lends itself to a wide class
of sensor structures [16,38,60–73] and we expect it to be used as a valuable first step in
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rapidly estimating the energy transfer properties of many hybrid plasmonic waveguide
systems, using limited computational resources and easily obtainable modal parameters.
Note that the present CMT approach is only valid in regions where the coupling between
waveguides is not too strong. Preliminary investigations suggest that deviations from the
full field calculations start to become significant when κ/|∆̃| & 0.1. A detailed analysis of
the limits of this method will be the subject of future work.
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