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Abstract: The detection of road facilities or roadside structures is essential for high-definition (HD)
maps and intelligent transportation systems (ITSs). With the rapid development of deep-learning
algorithms in recent years, deep-learning-based object detection techniques have provided more
accurate and efficient performance, and have become an essential tool for HD map reconstruction and
advanced driver-assistance systems (ADASs). Therefore, the performance evaluation and comparison
of the latest deep-learning algorithms in this field is indispensable. However, most existing works in
this area limit their focus to the detection of individual targets, such as vehicles or pedestrians and
traffic signs, from driving view images. In this study, we present a systematic comparison of three
recent algorithms for large-scale multi-class road facility detection, namely Mask R-CNN, YOLOx,
and YOLOv7, on the Mapillary dataset. The experimental results are evaluated according to the
recall, precision, mean F1-score and computational consumption. YOLOv7 outperforms the other
two networks in road facility detection, with a precision and recall of 87.57% and 72.60%, respectively.
Furthermore, we test the model performance on our custom dataset obtained from the Japanese road
environment. The results demonstrate that models trained on the Mapillary dataset exhibit sufficient
generalization ability. The comparison presented in this study aids in understanding the strengths
and limitations of the latest networks in multiclass object detection on large-scale street-level datasets.

Keywords: object detection; YOLOv7; YOLOx; Mask R-CNN; ITS; HD map

1. Introduction

Object detection is considered the first stage in the high-definition (HD) map con-
struction framework. It also plays an essential role in the field of autonomous driving.
Moreover, the detection and monitoring of road facilities and infrastructures are essential
for HD map construction in the autonomous driving field, and for intelligent transportation
systems (ITSs). Traditional techniques for HD map construction and ADAS development
require costly devices [1] such as IMUs, LiDAR sensors, and ranging sensors, which are
time consuming for HD map processing. Furthermore, these shortcomings make it difficult
to achieve the real-time updation of HD maps and low processing cost. Hence, vision-based
deep-learning methods for HD map construction in ADASs have become feasible, and
have been the subject of active investigation.

The on-board camera is a common sensor used extensively in autonomous driving.
In recent years, the convolutional neural network (CNN), which is an innovative computer
vision technique, has been successfully applied and combined with images captured by on-
board cameras to realize HD map reconstruction. Many studies have focused on low-cost
HD mapping using lightweight camera sensors. Such vision-based deep-learning methods
rely on cameras that are mounted on vehicles to record continuous images, and they extract
the mapping information from the images to the cloud for map processing.

Road facilities and roadside infrastructures (e.g., traffic signs, traffic lights, road
lights, guard rails, electric poles) are fundamental elements in HD map construction.
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The complete and successful detection of these road elements from images can provide
rich road information and ensure safety in autonomous driving. Some researchers have
performed traffic sign detection [2] and traffic light detection [3], improving YOLOv4 for
driverless cars. However, their methods and targets are limited to a single-class road
object without paying attention to the detection performance of the model for multi-class
road objects. However, as real-world road conditions and environment are complex and
change constantly, autonomous driving and road HD maps require accuracy detection and
real-time updates of road objects. Therefore, various vision-based deep-learning algorithms
have been proposed for real-time image processing in updating HD maps. Some recent
research pay great attention on developing the optimization algorithms in related fields
as well [4,5]. The validation of the performance and feasibility of new state-of-the-art
deep-learning methods is essential pre-exploration work.

In this study, we aimed to verify the performances of the most recent deep-learning
algorithms in large-scale road facility detection using a benchmark street-level dataset. Our
key contributions are summarized as follows:

• Training experiments were carried out on three state-of-the-art object detection algo-
rithms for multi-class road facility and infrastructure detection, namely Mask R-CNN,
YOLOx, and YOLOv7, using the transferred Mapillary street-level dataset, which
contains complex weather conditions as well as different environments.

• The comparative evaluation results of the algorithms were compared and summarized
to demonstrate the performance of each model according to several metrics, including
the recall, precision, memory usage, and number of FLOPS.

• A finely annotated semantic segmentation road facility dataset was developed, which
was used to verify the generalization capability of the road facility detection perfor-
mance of the developed models. Figure 1 presents several examples of our anno-
tated images.

• The experimental results have the potential to enhance the understanding of re-
searchers and practitioners, and provide a preview of the performance of the latest
detection models in complex road environments.

Figure 1. Sample annotation of Japanese road-view dataset.
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The remainder of this paper is organized as follows: Section 2 reviews the related
works. Section 3 introduces the concepts of the deep-learning methods used in this work.
The experiments on our custom dataset and the Mapillary Vistas dataset for model training
are explained in Section 4. The results and a discussion are presented in Section 5. Finally,
Section 6 concludes the paper.

2. Related Work

In this section, studies on road object detection algorithms are introduced and their
relationship with HD mapping is discussed.

2.1. Road Object Detection

Object detection in road spaces is a challenging core task in many vision-based applica-
tions. In particular, many vision-based deep-learning detection methods have been applied
in the autonomous driving field to advance driving and mapping technologies. The main
tasks include landmark detection, pedestrian detection, vehicle detection, traffic sign and
traffic light recognition, roadside infrastructure detection, and traffic object counting.

The work in [6] used the KITTI database and provided a subject analysis on several
mainstream deep-learning algorithms for vehicle and pedestrian detection. However,
this work did not consider algorithm training in different weather and environmental
conditions, and failed to investigate the most recent algorithms, as deep-learning meth-
ods are updated quite rapidly. Algorithms that are trained on richly diverse datasets tend
to exhibit superior performance and practical value in real-world applications. There are
some proposals [7,8] which accurately reconstructed landmarks on road surfaces based
on plane assumption with deep learning methods. Authors in another study focused on
pedestrian detection only, and developed a two-stage object detector [9]. The detection
and recognition of traffic signs, which are one of the most important components in
traffic systems, is an active research topic. The authors of [10,11] conducted intensive
work on traffic sign detection and classification based on deep-learning methods. More-
over, they developed large-scale traffic sign datasets in Europe and China, respectively.
Ashutosh et al. [12] used YOLOv4 [13] for vehicle detection and traffic flow estimation.
In [14], an analysis survey on the vehicle detection of several state-of-the-art algorithms
was conducted. However, previous works did not pay great attention to multi-category
road objects. Hence, the continual evaluation and comparison of new algorithms on
different tasks is important.

2.2. Road Object Detection for HD Mapping

HD maps play a key role in the development of autonomous driving. An HD map
provides high-precision road space object information regarding the real-world driving
environment. Traditional methods for constructing high-accuracy maps use expensive and
laborious LiDAR equipment to extract point clouds of the environment [15]. The whole
map reconstruction pipeline requires a large number of professional mapping vehicles to
generate timely mapping information. Furthermore, manual or semi-manual automated
work is required to construct HD maps, which necessitates a huge amount of manpower
and software efforts [16,17].

In recent years, increasing attention has been paid to low-cost and light-weight map-
ping techniques. An increasing number of vision-based methods using deep learning
have been developed with improved accuracy compared to previous radar-based methods.
Deep-learning techniques have emerged as an effective tool for HD map construction.
In particular, increasing efforts have been made in mobile motor industries (such as Tesla
and Waymo) to develop vision-based HD map construction for vehicles using low-cost
camera sensors. Object detection algorithms are regarded as the optimal solution for object
perception in HD map reconstruction. Yao et al. proposed MVSNet to extend the cost
volume for depth estimation from multiple images [18]. Several previous works focused
on lane lines and marks on the road surface, and they used plane assumption to locate
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the position [8]. Another recent study [19] presented a new method for traffic sign and
roadside pole reconstruction in HD maps. The roadside object detection was performed
by deep-learning-based object detectors. Road space facilities and road objects in HD
map reconstruction have been studied extensively based on deep-learning object detectors
and techniques.

In [20], a new system to detect road changes for HD map updation was proposed.
Deep-learning-based systems for HD maps have been researched and developed exten-
sively in recent years. However, road object detection remains a challenging core task
in many vision-based applications, especially in the advancement of driving and map-
ping technologies.

3. Methodology

In recent years, object detection algorithms in deep learning have been updated and
iterated with relatively high frequency. Thus, the state-of-the-art algorithms are more
informative for conducting experiments. Object detection methods can be categorized into
two classes: one-stage detectors and two-stage detectors. In this work, we adopted Mask
R-CNN [21] from among the two-stage detectors. YOLOx and YOLOv7 were selected from
among the one-stage detectors.They are all state-of-the-art algorithms in each category. We
present the details of these mainstream networks for road facility detection in this section.

3.1. Two-Stage Object Detection Networks

Two-stage networks are classified as region-based methods [22], which exhibit higher
accuracy for object detection but are slower than one-stage detectors.

Mask R-CNN: He et al. proposed the mask region-based CNN (Mask R-CNN)
algorithm. Mask R-CNN is an extension of Faster R-CNN [23] for segmentation, both
of which comprise two modules. The first stage is the region proposal network (RPN),
which is a deep convolutional network. The RPN takes the input image and creates a
region proposal of the possible positions of objects using the objectness score. The second
stage is known as the region-based CNN, in which Fast R-CNN classifies the objects
according to the features extracted from the proposed region and performs a regres-
sion of the bounding box. Mask R-CNN improves the performance of the system for
small object detection in Faster R-CNN by combining the backbone network with a
feature pyramid network [10,24]. The backbone network architecture of Faster R-CNN is
VGG16 [25], which is substituted with a residual network (ResNet) [26] in Mask R-CNN.
By adopting an end-to-end learning method, Mask R-CNN can be trained for two tasks:
object detection, which generates a bounding box, and pixel-level segmentation for the
detected objects.

Although target detection is not the main task of Mask R-CNN, it still exhibits the
best detection performance among the two-stage detection algorithms. In this study, we
replaced ResNet-101 with the Swin Transformer [27] as the backbone in Mask R-CNN
on the Mapillary Vistas dataset [28]. The Swin Transformer is a state-of-the-art feature
extractor with a self-attention mechanism. The Swin Transformer is highly efficient, and
exhibits higher accuracy than ResNet-101. It is used as the backbone in many vision-
based algorithm architectures for feature extractors owing to its desirable performance
and properties. Figure 2 depicts the Swin Transformer architecture and overall network
structure of Mask R-CNN.
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Figure 2. Architecture of Mask R-CNN with Swin Transformer.

3.2. One-Stage Object Detection Networks

The most significant difference between the one-stage and two-stage object detection
networks is that there is no region proposal step and the detected bounding boxes are
directly determined from the input image in a one-stage network. Among representative
one-stage detectors, the You Only Look Once (YOLO) algorithms have balanced high speed
and accuracy for object detection tasks. The first three generations achieved varying results,
with unsatisfactory performance on small objects [29], low recall [30], and limitations on
bounding box predictions [30]. In 2020, Bochkovskiy et al. proposed YOLOv4 [13], which
exhibited significant improvements over the previous versions. A new feature extractor
known as CSPDarknet-53 enhances the learning capacity of the network and reduces
the memory cost in YOLOv4. Owing to various innovative enhancements, YOLOv4 can
achieve excellent performance in real-time processing.

Although YOLOv5 was released in 2020, it is difficult for this network to detect small
objects, such as traffic signs and traffic lights in complex road conditions [31]. However,
the YOLO series are updated quite frequently. In this research, we tested the two latest
algorithms in the YOLO series.

YOLOx: Ge et al. released this state-of-the-art object detection model in August
2021 [32], which is an anchor-free version of the conventional YOLO. They introduced
the decoupled head and leading label assignment strategy, SimOTA, to achieve superior
performance over YOLOv5. YOLOx has achieved the same accuracy as YOLOv4 with half
of the inference time, according to measurements on COCO [33].

YOLOv7: As the newest version in the YOLO series, YOLOv7 [34] has achieved the
best mAP on the COCO benchmark dataset. Furthermore, it exhibits a significantly more
rapid inference time compared to its predecessors, owing to several new trainable bag-of-
freebies methods. It has exceeded all existing object detection algorithms in terms of both
speed and accuracy in the range of 5–160 FPS, and has achieved a 56.8% average precision,
which is the best score among all known real-time object detectors.
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4. Experiments
4.1. Dataset Preparation
4.1.1. Custom Dataset

We developed a novel finely annotated Japanese driving segmentation dataset for the
model testing of road facility detection. Our testing dataset was obtained from two sources.
We selected and extracted 700 frames from the vehicle orientation dataset [12] developed by
Ashutosh et al. in 2021 and 500 high-quality driving images from our driving experiments,
which were conducted in a Japanese rural area using a ZED camera.

The selected images were all obtained from a forward-looking driving view in urban
and rural areas of Japan. All images had a wide-angle view, and they covered all types of
road facilities and roadside infrastructures of Japan. We provided dense and fine-grained
semantic annotations using polygons for all individual road facilities in all images.

4.1.2. Mapillary Vistas Dataset

This dataset is a novel large-scale street-view benchmark image dataset that contains
25,000 high-resolution images annotated into 66/123 object classes, of which 37/70 classes
are instance segmentation annotations (v.1.2 and v.2.0, respectively). As the images in
this dataset were captured globally in various conditions relating to weather, season, and
daytime, models that are trained with this dataset exhibit good generalization performance
on similar road-view datasets. In this work, we used v.2.0 for the experiments.

There exist other publicly available standard datasets, such as KITTI [35] and
BDD100K [36], which were captured from street views. However, the images in the KITTI
dataset mainly originate from the European region and were captured on sunny days or
during the daytime. The BDD100K dataset contains more complex weather conditions,
but the data were all collected from the United States. Thus, deep-learning models that
are trained with these datasets lack generalization abilities for other testing datasets.

The entire Mapillary dataset was divided into training, validation, and test sets.
The training and validation datasets contained 18,000 and 2000 images with annotation,
respectively. Labels were withheld for 5000 images in the test set. Therefore, we used the
validation set to evaluate the model performance, as the validation images would not be
used for the model learning during the training process.

4.2. Implementation Details

We performed training on the Mapillary Vistas dataset for Mask R-CNN, YOLOx,
and YOLOv7. The model evaluation was conducted on the test set of the Mapillary Vistas
dataset. Subsequently, we performed an extensive evaluation on our custom dataset.

The popular object detection toolbox and benchmark MMDetection [37] provides an
open-source platform for implementing the most recent deep-learning algorithms based on
PyTorch. The decomposed detection framework can be easily constructed using a different
customized object detection framework.

We first removed 52 classes that did not belong to our detection target from the
original labeled JSON file in the dataset to develop a detection model that only detected
road facilities and roadside infrastructures. Following this step, 71 classes remained; to
ensure that the trained model was close to our custom dataset that we used for testing,
we merged these 71 categories into 17 classes. We first removed the categories “Lane line”
and “Lane mark”, which are not road appendages, from the merged dataset. Given our
previous experimental results, we also removed the categories “Road” and “Pavement”
from the merged dataset, because the detection frames generated in the images were large
in proportion to the images, and contained many noise points. Finally, 13 classes of road
facilities remained in the entire dataset. Figure 3 depicts the removed classes, and the
detailed information of the merging is illustrated in Figure 4.
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Figure 3. Illustration of removed classes.

Figure 4. Number of labeled instances per class and class merging.
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We maintained the same volume as the original Mapillary dataset for the training
phase. Therefore, the training and validation datasets consisted of 18,000 and 2000 images
with 13 road facility classes, respectively. The hyperparameters setting in the training of
each model is based on the setting in the respective original paper. Batch size is optimally
set with the memory of GPUs. The maximum learning rate after warming up is set with
the batch size by following the linear growth rule. The hyperparameter settings for the
training of each model are shown in detail as follows:

1. Mask R-CNN: We trained Mask R-CNN using the MMdetection platform on four
NVIDIA A100 Tensor Core GPUs (NVIDIA, CA, USA) for 20 epochs and batch = 24,
with the model pretrained using the ImageNet [38] dataset. The initial learning rate
was set to 0.001 and warmed up at 1000 iterations. The optimizer was AdamW [39].

2. YOLOx: This model was also trained on four NVIDIA A100 Tensor Core GPUs. We
increased the training epochs up to 300 with batch = 64. The model was pretrained
on the COCO [33] dataset. The initial learning rate was set to 0.01 and warmed up at
5 epochs. The optimizer for the training was SGD.

3. YOLOv7: As YOLOv7 was only released recently, we trained the model using the
Mapillary dataset from the official GitHub on the same machine. The initial learning
rate was 0.01 and warmed up at 3 epochs; training was performed for 300 epochs,
and batch = 64. The model was pretrained on the COCO dataset and the optimizer
was SGD.

5. Results

In this section, we demonstrate the performance of the road facility detection models
that were trained on the transferred Mapillary dataset, as described above. All models
were evaluated according to the precision, recall, and F1-score in terms of bounding box.
Furthermore, we evaluated the object detection models using additional metrics, such as
the parameter size and GFLOPS. We tested all models on NVIDIA A100 Tensor Core GPUs
with 40 GB of GPU memory.

5.1. Evaluation Metrics and Results

Recall, precision, and F1-score are evaluation metrics that can be used for the detection
phase. The F1-score combines the precision and recall into a single metric, and is calculated
using (3).

Recall =
TP

TP + FN
=

TP
all detected object

, (1)

Precision =
TP

TP + FP
=

TP
all ground truth

, (2)

F1 = 2 × precision × recall
precision + recall

, (3)

where true positive (TP) indicates that the detected bounding box has an IoU > 45% and
the predicted class is the same as the ground truth. False positive (FP) and false negative
(FN) indicate the numbers of detections in the results and in the ground truth, respectively.

A confusion matrix provides an easy means of visualizing and summarizing the model
classification performance. We used normalized confusion matrices to present the detailed
comparison and detection results of each class. Figure 5 depicts the confusion matrices of
the detection models, which provide more information on the FN and FP than a visual
observation of the test results.
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(a) Mask R-CNN (b) YOLOx

(c) YOLOv7

Figure 5. Normalized confusion matrices of detection results.

Table 1 displays the evaluation metrics of the road facility detection models on the
Mapillary dataset with IoU = 0.45.

Table 1. Detection results (IoU threshold = 45%).

Network Recall Precision F1-Score

Mask R-CNN 59.77% 82.96% 67.13%
YOLOx 54.25% 84.33% 63.25%

YOLOv7 72.60% 87.57% 78.70%

Table 2 lists the memory size and computation of each model. The GFLOPS provide
a platform-independent metric for measuring the computational efficiency of a model.
The size of the model was calculated as the total number of parameters with intermediate
activation maps [31].
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Table 2. Summary of memory and computation of models.

Network Parameters (m) GFLOPS

Mask R-CNN 107 838
YOLOx 25 74

YOLOv7 82 102

We also validated the trained models on our custom dataset to validate their gen-
eralization ability. Figure 6 presents the qualitative comparison results of the outputs of
the three models. The two left columns represent our custom dataset and the two right
columns represent the Mapillary Vistas validation dataset.

(a) Mask R-CNN

(b) YOLOx

(c) YOLOv7

Figure 6. Qualitative comparsion of output from different models on custom dataset and Mapil-
lary dataset.

5.2. Discussion

The YOLOv7 detection model achieved higher precision and recall for road facility
and roadside infrastructure detection than Mask R-CNN and YOLOx, even when it was
trained with a different dataset. Thus, it can provide robust detection performance on other
road-view images that are collected using different devices and in varying regions.

Owing to its balanced model size and computation, YOLOv7 exhibited excellent
performance. Although the number of model parameters of YOLOv7 was approximately
three times that of YOLOx, it achieved higher accuracy in road facility detection, and it
was only 1.3 times more computationally intensive than YOLOx. YOLOv7 exhibited better
detection performance when the number of parameters was close to that of Mask R-CNN,
and the computation of Mask R-CNN was eight times that of YOLOv7. It is known that two-
stage detection networks achieve better detection performance than one-stage detection
networks, but YOLOv7, which is the latest version in the YOLO series, achieved superior
performance in roadside infrastructure detection with a balanced speed and model size.
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The qualitatively evaluated results on our custom dataset demonstrated that the
models that were trained on the Mapillary Vistas dataset exhibited a good generalization
capacity on random street-view images in terms of road facility detection. Furthermore,
as the training images in the Mapillary dataset have strong diversity, models that are
trained on this dataset will have a sufficient generalization ability on other similar datasets.

6. Conclusions

The detection of road facilities and roadside infrastructure is an indispensable task
in ITSs and HD mapping. In this study, we conducted systematic and experimental
comparisons among Mask R-CNN, YOLOx, and YOLOv7, which are three recent objection
detection algorithms, on the large-scale street-level Mapillary Vistas dataset in terms of
road facility detection. YOLOv7 achieved the best detection performance. Furthermore,
we tested the model performance on our custom finely annotated Japanese driving-view
road facility dataset. The results demonstrate that object detectors trained on the Mapillary
Vistas dataset offer a strong generalization ability.

Although object detection algorithms have diverse applications, based on our exper-
imental results, our work can be improved to provide a better illustration of the latest
deep-learning algorithms for road facility detection to contribute to HD map construction
and ITS. With the rapid developments in the field of deep-learning-based ITS applications,
state-of-the-art deep-learning algorithms for road space object detection require further
intensive study in the future.
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