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Abstract: A touch interface is an important technology used in many devices, including touch panels
in smartphones. Many touch panels only detect the contact position. If devices can detect shear force
in addition to the contact position, various touch interactions are possible. We propose a two-step
recognition method for recognizing the pressing position and shear force using active acoustic sensing,
which transmits acoustic signals to an object and recognizes the state of the object by analyzing its
response. Specifically, we attach a contact speaker transmitting an ultrasonic sweep signal and a
contact microphone receiving ultrasonic waves to a plate of gel. The propagation characteristics of
ultrasonic waves differ due to changes in the shape of the gel caused by the user’s actions on the gel.
This system recognizes the pressing position and shear force on the basis of the difference in acoustic
characteristics. An evaluation of our method involving a user-independent model confirmed that
four pressing positions were recognized with an F1 score of 85.4%, and four shear-force directions
were recognized with an F1 score of 69.4%.

Keywords: touch interface; pressing position recognition; shear-force recognition; active acoustic
sensing

1. Introduction

A touch interface is an important technology used in many devices, e.g., smartphones,
tablets, and smartwatches. There are several detection methods for touch panels [1];
however, many only detect the contact position. In addition to position detection, pressure,
and shear force, which pushes tangentially, sensing capabilities enable various touch
interactions. In terms of pressure sensing, Apple’s iPhone series released in 2015 added the
ability to detect vertical pressure with a pressure-sensitive sensor that enables shortcuts in
operation on the basis of the strength of the push [2]. However, this function is unavailable
on the current iPhone series, and few other touch panels have similar functions. One
possible reason for this is that different sensors are required for position detection and
pressure detection, leading to increased costs.

Most computer interfaces are composed of hard materials. However, interfaces using
soft materials have been proposed [3]. Nakai et al. proposed a method for estimating shear
force from the force applied to an elastic material between a sheet overlaid on the touch
panel and enclosure [4]. If the direction of the shear force is available, we can add a new
input method that is distinguishable from conventional swipes. However, the detection of
the pressing position is based on the touch panel, and the number of input patterns that
can be identified with a single sensor is limited relative to the deforming characteristics
of the material. It is generally necessary to embed a hard sensor into a soft material or to
use multiple detection mechanisms to detect multiple deformation patterns with a soft
sensor, which increases the cost and complexity of the system. Therefore, it is useful to
detect multiple operations with a soft sensor that consists of fewer detection mechanisms.

We propose a two-step recognition method for recognizing pressing position and
shear force using active acoustic sensing that transmits acoustic signals to an object and

Sensors 2022, 22, 9951. https://doi.org/10.3390/s22249951 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22249951
https://doi.org/10.3390/s22249951
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6854-4448
https://orcid.org/0000-0003-2260-3788
https://doi.org/10.3390/s22249951
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22249951?type=check_update&version=2


Sensors 2022, 22, 9951 2 of 13

recognizes the state of the object on the basis of the response. Specifically, we attached a
contact speaker transmitting an ultrasonic sweep signal and a contact microphone receiving
ultrasonic waves onto a plate of gel. The propagation characteristics of ultrasonic waves
differ due to changes in the shape of the gel caused by the user’s actions on the gel. This
system recognizes the pressing position and shear force on the basis of the difference in
acoustic characteristics. The advantage of the proposed method is that it can simultaneously
recognize the pressing position and shear force with a simple system configuration consist-
ing of a contact speaker and contact microphone. The two-step recognition function of our
method recognizes the direction of shear force after recognizing the pressing position.

We evaluated the proposed method on four pressing positions and for shear-force
directions. Evaluation results indicate that position recognition was 89.2% for a naive
method with one-step recognition and 89.4% for the proposed two-step recognition method
using a user-independent model. For the shear-force direction, the one-step recognition
method resulted in an F1 score of 65.5% and the proposed method resulted in an F1 score
of 69.4%, confirming the effectiveness of the proposed method.

2. Related Work
2.1. Touch-Sensing Technology

Capacitive touch sensors used in smartphones can achieve small form factors. How-
ever, it can only measure the area of contact, and cannot reliably discriminate between
different pressure levels because it is based on capacitance. Therefore, much research
has been conducted to enrich the variety of touch interactions on surfaces such as touch-
screens [5,6]. PreSenseII is a device that recognizes the position, touch, and pressure of a
user’s finger [7]. Resenberg et al. developed the multitouch touchpad UnMousePad [8]
by using a matrix of force-variable resistors to enable flexible and inexpensive pressure-
sensitive multitouch input. Quinn proposed a method for estimating the contact force on a
touch panel from the smartphone’s built-in barometric pressure sensor [9]. Although these
studies could detect pressure with touch panels, they could not detect shear force.

To detect shear force, interfaces using soft materials were studied [3,10]. WrinkleSur-
face is a system that enables the user to use actions such as pressing a finger hard against the
input surface, shifting a finger, or twisting a finger for input by reading the wrinkle shape
of the gel sheet attached to the touch panel with an infrared camera [11]. However, since a
camera is used, it requires thickness to gain optical distance, hindering implementation in
a small device. Nakai et al. proposed a method of detecting shear-force input by installing
a sheet on a touch panel screen, and elastic material between the sheet and frame of the
enclosure [4]. Shear force is estimated using Hooke’s law from the spring constant of the
elastic material, and shear-force input is possible in addition to the conventional swipe
input. Huang et al. proposed a speed-control method by overlaying a transparent thin
sheet on the touchscreen of a smartphone and fixing its four corners to the corners of the
smartphone with rubber bands [12]. Wei et al. proposed an all-optical tactile sensing
platform that could respond to tiny shear forces, such as fingertip slipping with a low
power [13]. Zhang et al. proposed a self-powered multidirectional force sensor based on
triboelectric nanogenerators with a three-dimensional structure that could sense normal
and shear forces in real time [14]. Zhou et al. developed a multiaxial tactile sensor based on
a soft anisotropic waveguide that could distinguish between normal and shear forces [15].
However, these studies used a different detection mechanism to identify the shear force
from the detection of the pressing position on the touch panel or needed specialized mate-
rials to identify the shear force. Our study is different in terms of recognizing pressing
position and shear force using only a gel plate, and a contact microphone and contact
speaker.

2.2. Active Acoustic Sensing

Active acoustic sensing is a widely used sensing technique that transmits sound waves
to an object and captures the reflected sound from the object. By analyzing the captured
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sound, a system can recognize the state of the object [16–18]. Active acoustic sensing is also
used for touch-sensing methods [19,20]. Ono et al. proposed a method of recognizing touch
input and adding interactivity to objects by attaching a contact microphone and contact
speaker to the object [21]. Iwase et al. proposed a method of identifying the type and
position of objects placed on an acrylic plate by attaching microphones and a speaker to
the plate [22]. Acoustruments is a system that extends interaction by using active acoustic
sensing with a tubelike attachment that runs from the speaker to the microphone of a
smartphone [23]. Ono et al. proposed a method of recognizing the presence or absence of
contact with an object in addition to pressing pressure by attaching a contact microphone
and contact speaker to the object [24].

In these studies, active acoustic sensing was used as a method of extending touch
interaction by recognizing how to touch an object and the strength of the touching force.
The idea of our study is similar in terms of using active acoustic sensing on an object to
recognize user actions. However, the proposed method recognizes pressing positions as
well as the direction of shear force using a gel plate, the acoustic properties of which change
with user inputs.

3. Proposed Method

We assumed a system in which a contact speaker and contact microphone were
attached to a gel plate, and an ultrasonic sweep signal was repeatedly transmitted from
the contact speaker, as shown in Figure 1. Since the active acoustic sensing using audible
sound can cause not only uncomfortable noise to the user and the surrounding people, but
also misrecognition due to environmental noise, we selected an ultrasonic sweep signal
(above 20 kHz). The contact microphone captures ultrasonic waves propagating through
the gel, and the system calculates the fast Fourier transform (FFT). The sampling frequency
used in this study was 96 kHz to capture signals up to around 40 kHz, and the number of
FFT samples was 8192. As shown in Figure 2, the obtained frequency response differs with
the change in the shape of the gel due to the pressing position and direction of shear force.
The system can recognize the user inputs by using this difference. Since the sound emitted
from the speaker is ultrasound, humans cannot hear the emitted sound.

Sound
Source

Sweep Signal
Contact
Speaker

Gel

Contact
Microphone

Analysis

Figure 1. System configuration.
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Pressing upper right Pressing bottom left

Left shear force Right shear force

Figure 2. Change in frequency response.

3.1. Sweep Signal

We used the ultrasonic sweep signal as an acoustic signal from the contact speaker. A
sweep signal has a frequency that increases/decreases with time. Since it includes various
frequencies, we could acquire more features than only a fixed frequency.

The frequency of the sweep signal is expressed by the following equation:

f (t) =
f1 − f0

T
t + f0, (1)

where t is time, f (t) is the frequency at t, f0 is the start frequency, f1 is the stop frequency,
and T is the duration of the sweep signal. Therefore, the sweep signal is calculated
as follows:

sin
{

2πt
(

f1 − f0

2T
t + f0

)}
. (2)

On the basis of the literature [16,21], f0, f1, and T were set to 20 kHz, 40 kHz, and
0.02 s, respectively.

3.2. Recognition Method

When conducting recognition using sensor data, the obtained values are not used as
they are, but feature extraction is carried out to efficiently understand the behavior. We
used the linear-frequency cepstral coefficient (LFCC) as the feature value [25,26], which is
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a linear version of the mel-frequency cepstral coefficient (MFCC). In contrast to MFCCs,
which are used for audio and speech recognition, LFCCs use a linear filter bank to reduce
dimensions. We used LFCCs to equally extract features from the frequency spectrum. We
used 20 filter banks and removed the first LFCC, which is the direct current component.
Thus, we acquired 19 features.

Although we did not limit the classifier algorithm, we used a support vector machine
as the classifier in this study.

3.3. Two-Step Recognition

The proposed method recognizes both pressing position and shear force. Hence, there
are multiple shear-force directions at each pressing position that may result in a large
number of classification classes with a single classifier. If there are n pressing positions and
m shear-force directions, the classifier recognizes n × m classes, and the recognition perfor-
mance is expected to deteriorate. Previous research confirmed that position recognition on
acrylic plates using active acoustic sensing was achieved with high accuracy [22]; thus, we
prevented the decrease in recognition rate by recognizing the pressing position first. As
shown in Figure 3, in the first step, n classes are classified as the position recognition, and in
the second step, m classes of shear forces corresponding to each position are classified. By
first carrying out position recognition, which is expected to have high recognition accuracy,
two-step recognition can improve recognition performance.

As described above, touch position recognition using active acoustic sensing was stud-
ied in a previous study [22]. The contribution of this study is that we propose simultaneous
recognition of touch position and sear-force direction using active acoustic sensing and
two-step recognition.

......Position 1

Input

1st Step Position 2 Position n

Shear-force
Direction 1

Shear-force
Direction 2

...... Shear-force
Direction m

......

2nd Step

Figure 3. Overview of two-step recognition.

4. Implementation
4.1. Hardware

Figure 4 shows the implemented device. The gel material was a styrene-based elas-
tomer with a thickness of 5 mm. As a physical property, it has viscoelasticity and can be
fixed to a surface of an object without adhesive. Viscoelasticity can also be used for push
and shear force input. Deformation caused by the push/shear force input returns to the
original state when the finger is released thanks to the property of the gel. As a chemical
property, the used gel is stable and does not change at room temperature or change its
properties when sound waves are applied. The contact speaker and contact microphone
were fixed by sandwiching them diagonally between two 10 cm square gels. This prevents
changes in frequency response caused by the misalignment of the speaker and microphone.
The ultrasonic sweep signal transmitted from the PC is amplified by an amplifier and
then transmitted to the gel through a contact speaker. A Fostex PC200USB-HR amplifier
and a Thrive OMR20F10-BP310 contact speaker (Figure 5a) were used. The contact mi-
crophone captured the ultrasonic sweep signals propagating through the gel, and the PC
recorded the signals through the audio interface. The contact microphone was a Murata
7BB-20-6L0 (Figure 5b), and the audio interface was Native Instruments Komplete Audio 6.
The sampling frequency for transmitting/recording signal was 96 kHz, and the number
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of quantization bits was 16. The PC used for transmitting the ultrasonic sweep signal,
recording, and analyzing the acquired data was an Apple MacBook Pro (CPU: Intel Core i7
2.7 GHz, RAM: 16 GB).

Audio Interface Amplifier

Contact
Speaker

Gel

Contact
Microphone

PC

Figure 4. Implemented device.

a b

Figure 5. (a) Contact speaker and (b) contact microphone.

4.2. Software

We used Audacity to generate the ultrasonic sweep signals and Ocenaudio to record
the sound from the microphones. The software for data analysis was implemented using
Python. The number of samples for the FFT was 8192. On the basis of the sampling theorem,
the first half of 4096 data points were obtained. The LFCC was extracted by taking the
points corresponding from 20 k to 40 kHz.

5. Evaluation
5.1. Experimental Setup

We evaluated the performance of the proposed method involving participants (seven
males in their 20s). This evaluation was approved by the human ethics committee of the
Graduate School of Engineering, Kobe University (Permission Number: 03-26). As shown
in Figure 6, the pressing positions were P1 to P4 on the gel plate, marked with black dots.
These points were 1.77 cm from the center of the gel plate in the direction of each of the four
corners of the plate. There were four shear-force directions indicated by a–d in Figure 6. The
data on the strength of multiple shear forces were obtained by varying the vertical pressing
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force and horizontal shear-force strengths. The combinations of vertical pressing force and
shear force are shown in Table 1, where the shear force of 300 g was set assuming a weak
input, and 600 g assuming a strong input. A six-axis force sensor (Leptrino SFS100YA500U6)
was used to measure the shear force, and the participants acquired data by referring to
the value of the force sensor. All participants used their index fingers for pushing the
gel. The gel was pressed for approximately five seconds per operation, and 50 LFCCs
were extracted. This series of actions at all pressing positions, shear-force directions, and
shear-force strengths were considered to be one set, and all participants conducted two sets.
Participant A was left-handed, and the rest were right-handed. As a result, we collected
44,800 data (50 LFCCs × 4 positions × 4 directions × 4 force combinations × 2 sets × 7
participants).

With the assumed system, it is desirable to use the proposed method without learning
for personalization. Therefore, we used leave-one-participant-out cross-validation as an
evaluation method; that is, the machine learning model was trained on data other than
those of the test participants. We used the F1 score as the evaluation index, which is the
harmonic mean of precision and recall. The F1 score is calculated as follows:

F1 score =
2 × precision × recall

precision + recall
. (3)

As the baseline, we also present the results of a one-step recognition method.

ab

c d
P1

P2

P3

P4

Figure 6. Pressing positions (P1–P4) and directions of shear-force directions (a–d).

Table 1. Combinations of pressing pressure and shear force.

Pressure (g) Shear Force (g)

300 g 300 g
300 g 600 g
600 g 300 g
600 g 600 g

5.2. Results

Figure 7 shows the results of the one-step recognition method. The numbers in the
figure were normalized in each row, and the same was applied to the following confusion
matrices. The mean F1 score was 65.5%.
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1 6 0 2 0 0 0 0 0 0 0 1 60 9 7 15
0 0 0 3 4 4 0 2 2 1 0 4 5 63 7 3
0 3 0 2 0 0 0 3 0 0 0 0 7 14 59 12
2 6 0 0 0 0 0 0 0 0 0 0 7 9 14 63

Figure 7. Confusion matrix of one-step recognition method [%].

Figures 8 and 9 show the confusion matrices of the first and second steps of the
proposed method, respectively. As shown in Figure 8, position recognition accuracy was
around 90% for each position. The mean F1 score was 89.4%. For the shear-force recognition,
the recognition accuracy was around 70% for each direction, as shown in Figure 9. The
mean F1 score was 69.4%.

P1 P2 P3 P4
Predicted Label

P1

P2

P3

P4

Tr
ue

 L
ab

el

94.5 1.6 2.2 1.8

3.1 88.0 7.1 1.8

2.1 8.4 87.3 2.2

6.1 3.8 2.1 88.0

Figure 8. Confusion matrix of first step (%).

a b c d
Predicted Label

a

b

c

d

Tr
ue

 L
ab

el

68.1 9.9 10.1 11.9

13.8 69.4 6.9 9.9

13.6 9.4 68.9 8.1

13.5 10.0 5.4 71.1

Figure 9. Confusion matrix of second step (%).
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Figure 10 shows the comparison of the one-step recognition and proposed methods.
In position recognition, the F1 score was 89.2% for the one-step recognition method, while
it was 89.4% for the proposed method, showing no significant improvement. In calculating
the position recognition of the one-step recognition method, even if the recognition of
the shear-force direction was different, it was correct if the position was correct (e.g., if
the input was P1-a and classification result was P1-b, it was considered to be correct
recognition). In the recognition of shear-force direction, the F1 score was 65.5% for the
one-step recognition method, while it was 69.4% for the proposed method, showing an
improvement of 3.9 points. This may have been because the number of classes in each
classifier could be reduced by two-step recognition, leading to improved recognition
performance.

Position Shear Direction50

60

70

80

90

F1
-s

co
re

 [%
]

1step
2step

Figure 10. F1 score of one-step recognition and proposed methods (%).

Figure 11 shows the F1 score of shear-force direction at each position. The F1 scores
at P1 (62.7%) and P4 (68.8%) were lower than those at P2 (72.9%) and P3 (73.9%). This
may have been due to the placement of the microphone and speaker, i.e., P2 and P3 were
located on a straight line connecting the microphones/speakers, while P1 and P4 were off
the straight line, as shown in Figure 6. The signal intensity of the acoustic signal was higher
on the microphone/speaker straight line, suggesting that a greater change in acoustic
characteristics was obtained when the participant was operating on that line.

a b c d
Shear Force

P1

P2

P3

P4

P
os

iti
on

57.2 62.8 57.5 73.4

64.2 73.4 78.8 75.1

70.9 73.4 82.4 68.8

70.1 70.3 69.2 65.4

Figure 11. F1 score of shear force at each position (%).

The recognition accuracy for shear-force direction ’a’ (65.6%) was lower than that
for shear-force directions ‘b’ (70.0%), ‘c’ (72.0%), and ‘d’ (71.0%). One possible reason
for this is the participants’ dominant hands. Since six out of the seven participants were
right-handed, we consider that the results represent right-handed characteristics. The
movement of direction ‘a’ was more unstable than that in other directions, as the hand was
rotated outward from the body. We summarize the F1 scores of shear-force direction by
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the dominant hand in Table 2. Although there was only one left-handed participant, we
confirmed that the F1 score of direction ‘b’, which is the direction in which the hand was
rotated outward from the body for the left-handed participant, was also the worst in the
four directions.

Table 2. F1 scores of shear-force direction by dominant hand (%).

Shear-Force Direction a b c d

Left-handed 77.7 76.0 78.1 82.5
Right-handed 62.9 68.9 70.3 68.8

Figure 12 shows the F1 score of each participant, confirming individual differences
in recognition performance. The F1 scores of Participants A and D were higher than the
average. This is because they had experienced the proposed method multiple times; thus,
the input actions were stable. The F1 scores of Participants B, E, and G were lower than
the average. This is because the input actions were unstable due to their first experience
with the proposed method. We expect the recognition performance to improve as the user
becomes familiar with the proposed method.

A B C D E F G
Participant

0

20

40

60

80

F1
-s

co
re

 [%
]

Figure 12. F1 score of each participant (%).

6. Discussion
6.1. Recognition Performance

As shown in Figure 10, with the one-step recognition method, the F1 scores of position
and shear-force direction were 89.2 and 65.5%, respectively, while those of the proposed
method were 89.4 and 69.4%, respectively. Therefore, the proposed method is effective
in recognizing both the pressing position and shear-force direction. However, even with
this method, the F1 score of the shear-force direction was not high enough for practical
use. To improve this performance, we need to collect more data from more participants.
As shown in Figure 12, the F1 scores of Participants B, E, and G were lower than those of
the other participants. This is because the machine learning model was not sufficiently
trained to apply to all participants. Since each participant had a differently shaped finger
and different ways of input, some participants did not fit this model. It is necessary to
collect various data from a larger number of participants in the future.

6.2. Assumed Applications

Although the recognition accuracy needs to be improved for practical use, the pro-
posed method can be applied to interfaces that enable multiple inputs from the same
position and to curved-surface touch panels by taking advantage of the viscoelasticity of
the gel. For example, a smartphone with multiple inputs from the same position by placing
gel on the display and an interface that can be used while holding the steering wheel of
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a car by wrapping the gel around the steering wheel are possible. We plan to implement
such an input interface, and investigate its operability and usability.

6.3. Gel Properties

Although we used one type of gel, gels have multiple factors to consider, e.g., material,
hardness, shape, and thickness. In our preliminary investigation, we compared the 3 and 5
mm thick gels, and found that the sound pressure level obtained from the 5 mm thick gel
was greater than that from the 3 mm thick gel; thus, we selected the 5 mm thick gel in this
paper. A detailed investigation of the thickness and recognition performance is an issue to
be addressed in the future.

Other factors need to be investigated such as its deterioration and deformation with
each use. As the gel characteristics change due to the deterioration of gel, the obtained
frequency characteristics are expected to change, and the recognition accuracy would
be adversely affected. In such a case, it is necessary to periodically update the machine
learning model. A long-term investigation on gel degradation is for a future study.

7. Conclusions

We proposed a two-step recognition method for recognizing both pressing position
and shear force on gel plates using active acoustic sensing. The evaluation using a user-
independent model confirmed that four pressing positions were recognized with an F1
score of 89.4%, and four shear-force directions were recognized with an F1 score of 69.4%
using the proposed method. For future work, we plan to improve its recognition accuracy,
implement an assumed input interface, and investigate the operability and usability of
the method.
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