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Abstract: A submetric spatial resolution Raman optical time-domain reflectometry (ROTDR) temper-
ature sensor assisted by the Wiener deconvolution postprocessing algorithm has been proposed and
experimentally demonstrated. Without modifying the typical configuration of the ROTDR sensor
and the adopted pump pulse width, the Wiener demodulation algorithm is able to recover tempera-
ture perturbations of a smaller spatial scale by deconvoluting the acquired Stokes and anti-Stokes
signals. Numerical simulations have been conducted to analyze the spatial resolution achieved by the
algorithm. Assisted by the algorithm, a typical ROTDR sensor adopting pump pulses of 20 ns width
can realize the distributed temperature sensing with a spatial resolution of 0.5 m and temperature
accuracy of 1.99 ◦C over a 2.1-km sensing fiber.

Keywords: distributed temperature sensing; ROTDR; Wiener deconvolution; spatial resolution

1. Introduction

Distributed optical fiber sensing (DOFS) has received wide research attention and has
been applied in temperature sensing [1–3], strain sensing [4–6], and gas detection [7,8].
Based on the types of backscattered light, DOFS can be divided into Rayleigh optical
fiber sensing [9,10], Brillouin optical fiber sensing [11–13], and Raman optical fiber sens-
ing [14–16]. Compared to the other two techniques, Raman optical fiber sensing is only
sensitive to the ambient temperature of the sensing fiber and is able to avoid crosstalk from
fiber strains or vibrations. Moreover, Raman optical time-domain reflectometry (ROTDR)
offers a low-cost solution due to its simple system configuration. Thanks to these features,
the technique is attractive in many fields, such as pipeline leakage detection [17], heatsink
temperature monitoring [18], and early fire warning [19].

The finite signal-to-noise ratio (SNR) of the ROTDR scheme requires the adopted
pump pulses of over several tens of nanoseconds. This is one of the dominant factors
limiting its spatial resolution [15,17,19], making the technique less suitable for many appli-
cations. Researchers have contributed several innovative works in recent years to break
through the meter scale spatial resolution of the technique. A reconstruction compression
correlation demodulation scheme was proposed as a possible solution to realize a spatial
resolution of 7.5 mm [20]. Unfortunately, the limited bandwidth of today’s photodetectors
keeps this scheme from experimental demonstration. Alternatively, based on an efficient
polarization-independent superconducting nanowire single-photon detector, a ROTDR
scheme with a spatial resolution of 10 cm is experimentally demonstrated on a 500-m
fiber [21]. However, the method employs pump pulses of hundreds of picoseconds, which
means that the energy of each pump pulse is low, and the temperature accuracy is difficult
to ensure. A slope-assisted scheme is also proposed to realize a centimeter-level spatial
resolution [22]. However, slope detection involves second-order differentiation, which

Sensors 2022, 22, 9942. https://doi.org/10.3390/s22249942 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22249942
https://doi.org/10.3390/s22249942
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6573-3446
https://doi.org/10.3390/s22249942
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22249942?type=check_update&version=1


Sensors 2022, 22, 9942 2 of 11

significantly amplifies the inherently high noise level of the system and leads to a relatively
inferior temperature accuracy.

Deconvolution is a processing technique to estimate or recover the desired process
from the recorded degraded process. As one of the most classic deconvolution approaches,
Wiener deconvolution based on Wiener filtering has been widely employed for 1-D signal
recovery [23] and 2-D image deblurring from the recorded degraded signals or images
with noise [24]. In 1996, Nakamura et al. reported a spatial resolution of 0.5 m at 1 km in
the ROTDR system. [25] However, they didn’t disclose the details of their deconvolution
method or provide any numerical simulations. In 2009, Zhang et al. realized a spatial
resolution of 15 m with a 300-ns pulse width with Wiener deconvolution [26]. However,
the resulting 15-m spatial resolution is relatively inferior for today’s applications, and the
best spatial resolution achieved by the algorithm is not studied sufficiently. In 2016, Bazzo
et al. improved the spatial resolution of a commercial ROTDR sensor system (AP Sensing
N4385B) from 1 m to 15 cm based on total variation deconvolution algorithm [27], which
requires a much more complicated iteration operation. Recently, the Wiener deconvolution
technique has been introduced into the DOFS area to enhance the spatial resolution of
typical Brillouin optical time-domain reflectometry (BOTDR) [28]. In this work, the post-
processing algorithm based on the Wiener deconvolution technique is researched to further
enhance the spatial resolution of a typical ROTDR scheme from meter scale to submetric
scale. The influence of the deconvolution parameter of the Wiener deconvolution algorithm
and the bandwidth of the modulation and detection modules on the spatial resolution
after deconvolution are studied numerically. The Wiener deconvolution is experimentally
demonstrated to process the Raman scattering signals obtained from a typical ROTDR
sensing system by using 20-ns width pump pulses, and realizes the distributed temperature
sensing with a spatial resolution of 0.5 m and temperature accuracy of 1.99 ◦C over a 2.1-km
sensing fiber.

2. Principles and Simulations

Figure 1 shows the schematic configuration of a generic ROTDR temperature sensor
system. High-power optical pulses are launched into the sensing fiber via a wavelength
division multiplexer (WDM). Backscattered anti-Stokes and Stokes Raman lightwaves
are guided into the detection module and converted to electrical signals, which are col-
lected by a data acquisition (DAQ) module and then processed to extract the temperature
distribution.

Pulsed 
Optical 
Source

Pulse 
Generator

WDM

DAQ

Detector Module

Signal Processing

Sensing Fiber

Stokes Anti-Stokes

Figure 1. Schematic configuration of a generic ROTDR temperature sensor system. WDM, wavelength
division multiplexer; DAQ, data acquisition.

The temperature distribution along the sensing fiber is extracted from the ratio of the
Raman anti-Stokes signal over Raman Stokes responses as A(z) = IAS(2z/vg)/IS(2z/vg),
where IAS(t) and IS(t) are, respectively, the anti-Stokes and Stokes Raman signals, vg is
the group velocity of light, and z is location distance along the sensing fiber. The ratio is
dominated by [29]
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A(z) =
KASν4

AS

KSν4
S

exp(− h∆ν

kT(z)
)exp[(αS − αAS)z], (1)

where T(z) is the absolute temperature at location distance of z, KAS and KS are related to
the anti-Stokes and Stokes Raman backscattering section, νAS and νS are the frequency of
anti-Stokes and Stokes Raman backscattering photons, αAS, αS are the attenuation of anti-
Stokes Raman light and Stokes Raman light, h is the Planck’s constant, k is the Boltzmann’s
constant, ∆ν is the Raman frequency shift. If the temperature distribution changes from the
reference temperature T0(z) to T(z),

T(z) =
h∆νT0(z)

h∆ν− kT0(z)ln[A(z)/A0(z)]
, (2)

where A0(z) is the calibrated value of the Raman anti-Stokes/Stokes ratio at location z
under temperature of T0.

The output current signals of the detection module IAS(t) and IS(t) can be expressed
as [29]

I†(t) = R†(t) ∗ p(t) ∗ g†(t) + n†(t)

= ψ†(t) ∗ g†(t) + n†(t)
, (3)

where R†(t) is the impulse response function of the detection module, p(t) is the pump
pulse envelope profile, g†(t) is the original ideal Raman response signal, n†(t) is the
additive system noise, the operator ∗ represents convolution, and the subscript † is used to
represent AS or S donating anti-Stokes and Stokes Raman light components, respectively.
The convolution indicates that the original ideal Raman response signal g†(t) is degraded
by ψ†(t), which may submerge the high-frequency signal fluctuations of the recorded
Raman signals induced by the temperature change within a short fiber spatial segment.
As the temperature distribution is typically obtained by the ratio of the recorded Raman
anti-Stokes and Stokes signals, the convolutions lead to the rising/falling edge of the
received Raman signals and therefore the measurement ambiguity in the spatial scalar. The
ambiguity is basically presented as the transition area of the temperature distribution curve,
whose length is commonly characterized as the spatial resolution of the sensor system.
The expression of the degradation function ψ†(t) = R†(t) ∗ p(t) given in Equation (3)
means the function can be calibrated by using the identical detection module to detect the
pump pulse. It turns out that ψAS(t) and ψS(t) share almost the same normalized envelope
profile. Therefore, the acquired pump pulse signal after normalization can be regarded
as the degradation function for the recorded Raman anti-Stokes and Stokes signals. The
profile shape of the function is mainly determined by the bandwidth performance of the
modulation and detection modules in the system.

Simulations are conducted to illustrate the relationship between the degradation
function profile and the resulting spatial resolution. Figure 2a gives the profiles of three
numerically generated degradation functions with the same full-width at half-maximum
(FWHM) of 20 ns but three different rising/falling edges controlled by a roll-off factor.
According to Equation (3), the Raman signal at the detection end can be simulated through
convolutions between the degradation function and a Heaviside function representing the
ideal Raman response signal. The rising edge of each convolution result after normalization
as shown in Figure 2b is employed to characterize the resulting spatial resolution, which is
barely affected by the roll-off factor of the degradation function. The results indicate that
the spatial resolution of conventional ROTDR sensor systems is mainly determined by the
FWHM of the degradation function dominated by the pump pulse width.
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Figure 2. (a) Numerical generated degradation functions with the same FWHM of 20 ns but dif-
ferent rising/falling edges of 7.6, 4.8, and 2.4 ns, (b) Rising edges of the corresponding simulated
Raman signals.

Deconvolution based on Wiener filtering is one of the most classic deconvolution
methods to estimate the desired process from the recorded degraded processes with noise.
By applying Wiener filtering to the recorded Raman anti-Stokes and Stokes signals as
expressed as Equation (3), we can obtain the estimated original Raman signals ĝAS(t) and
ĝS(t) expressed as [30]

ĝ†(t) = F−1[
Ψ∗†( f )

|Ψ†( f )|2 + K
Ĩ†( f )], (4)

where F−1 represents the inverse Fourier transform, Ψ†( f ) is the Fourier transform of
ψ†(t), Ĩ†( f ) is the Fourier transform of recorded Raman signal, and the superscript ∗
donates complex conjugation. K is a filtering parameter employed to adjust the filtering
bandwidth to achieve a specific spatial resolution. Furthermore, the ratio between the
estimated anti-Stokes and Stokes Raman signal given as A(z) = ĝAS(2z/vg)/ĝS(2z/vg)
can be employed to extract the spatial resolution-enhanced temperature distribution via
Equation (2).

By substituting the Fourier transform of Equation (3) into Equation (4) and neglecting
the noise term, we obtain

ĝ†(t) = F−1[
|Ψ†( f )|2
|Ψ†( f )|2 + K

] ∗ g†(t), , (5)

where the equivalent degradation function is defined as

ψ̂†(t) = F−1[
|Ψ†( f )|2
|Ψ†( f )|2 + K

]. (6)

This means that the resulting signal after Wiener deconvolution is a convolution of the
original ideal Raman response and the equivalent degradation function, which is exactly
the Wiener deconvolution result of the original degradation function. According to Equa-
tion (6), the profile of the equivalent degradation function and therefore the resulting
spatial resolution are determined by the original degradation function and the selection of
parameter K.

Here, simulations have been conducted to investigate the impact of the degrada-
tion function profile shape and the Wiener filtering parameter value K on the achieved
spatial resolution. The three numerically generated degradation functions with different
rising/falling edges as shown in Figure 2a are respectively deconvoluted by the Wiener
filtering with a selected parameter K to obtain their corresponding equivalent degradation
functions. The corresponding deconvoluted Raman signal can be simulated through the
convolution between the obtained equivalent degradation function and the ideal Raman
response signal. The resulting rising edge time is then calculated to examine the achieved
spatial resolution. By tuning the value of parameter K, we can obtain the evolution of the
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10/90% rising edge time of the simulated deconvoluted Raman signals over parameter
K for ψ†(t) FWHM of 20 ns and different rising/falling edges as shown in Figure 3. The
inset figure (a) of Figure 3 also gives the rising edges of the simulated Raman signals for
different K values and ψ†(t) with the FWHM of 20 ns and the rising/falling edge of 7.6 ns.
With the decreasing values of K, it can be seen that the 10/90% rising edge time decreases
to several nanoseconds, indicating the achievement of submetric spatial resolution. In
addition, the inset figure (b) of Figure 3 shows the rising edges of the simulated Raman
signals for K = 2× 10−4 and ψ†(t) with the FWHM of 20 ns but different rising/falling
edges. Under the same value of parameter K, a shorter rising/falling edge of the original
degradation function leads to a shorter rising edge for the deconvoluted Raman signal
and a better spatial resolution for the temperature sensing. It indicates that the bandwidth
performance of the modulation and detection modules of the system make great difference
on the spatial resolution enhancement of the Wiener deconvolution algorithm.
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Figure 3. Evolution of the 10/90% rising edge time of simulated deconvoluted Raman signals over
parameter K for ψ†(t) with FWHM of 20 ns and rising/falling edges of 7.6, 4.8, and 2.4 ns. Inset:
(a) Rising edges of the simulated Raman signals for different K values and ψ†(t) with FWHM of 20 ns
and rising/falling edge of 7.6 ns. (b) Rising edges of the simulated Raman signals for the same
hlK = 2× 10−4 and ψ†(t) with FWHM of 20 ns and rising/falling edges of 7.6, 4.8, and 2.4 ns.

3. Experimental Results

To validate the enhancement performance of the Wiener deconvolution, experimental
demonstrations have been conducted with the experiment setup, as shown in Figure 4. The
output of the laser source (1550.12 nm, 2 kHz linewidth) is modulated by an acoustic–optic
modulator (AOM, 80 MHz bandwidth) to transform the electrical pulse signal with pulse
width of 20 ns to the pulsed pump light. Then, the peak power of the pulses is boosted by
an erbium-doped fiber amplifier (EDFA) to about 4 W, which avoids exciting stimulated
Raman scattering after guiding it into a multimode fiber (MMF) by a wavelength division
multiplexer (WDM). The WDM also acts to guide the spontaneous Stokes and anti-Stokes
components backscattered from the COM port to 1660 nm and 1450 nm ports, respectively.
The isolation between the ports is over 60 dB, enough to filter out Rayleigh scattering
light. The two Raman components are simultaneously detected by a dual-port avalanche
photodetector (APD, 500 MHz bandwidth). The output signals are acquired by the two
channels via a data acquisition card (DAQ) at a sample rate of 2.5 GSa/s. Finally, the Raman
signal is processed with a personal computer (PC). We adopted an averaging of 300,000 for
the detected Raman signal traces. The total measurement time is around 36 s, including
data collection time around 33 s and signal processing time about 3 s. At around 2 km
distance of a 2.1-km MMF under test, two fiber coils of length 50 cm and 9 m spaced by
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30 m fiber are heated to 60 ◦C by a water-bath tank, and the rest of the fiber is stored at 40
◦C in a thermostat.

LASER EDFA WDM

APD

DAQ

PC

AOM
2019m 50cm 30m 9m

heated

MMF
50m

com1550

1450 1660

heated

Pulse Generator

Figure 4. Experimental setup of ROTDR system. AOM, acoustic-optic modulator; EDFA, erbium-
doped fiber amplifier; WDM, wavelength division multiplexer; MMF, multimode optical fiber; APD,
avalanche photodiode; DAQ, data acquisition card; PC, personal computer.

According to the analysis in the previous section, the detected pulse profile after nor-
malization (blue curve) as shown in Figure 5 can be employed as the original degradation
function of 20 ns for our ROTDR system. We can see the degradation function is not an
ideal rectangular profile but a profile with noticeable rising and falling edges, where the
FWHM changes to about 18 ns rather than 20 ns. These are mainly due to the limited
modulation bandwidth of the AOM in our system.
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Experiment

Simulation

Figure 5. The measured degradation function of a 20-ns pulse for our experimental ROTDR setup
(blue curve) and the numerically generated degradation function of 18 ns for simulations (red curve).

Algorithms without using and using the proposed Wiener deconvolution are applied
to postprocess the received anti-Stokes and Stokes Raman signals, where the convolutions
with different K values can be efficiently conducted in the frequency domain via fast Fourier
transform (FFT). Figure 6 illustrates the rising edges of the measured Stokes signal and the
estimated Stokes signals by using the Wiener deconvolution with K as 8× 10−3, 3× 10−3,
and 2× 10−4, respectively. The 10/90% rising edges of the curves are about 17, 10, 8, and
5 ns, respectively, which means the corresponding spatial resolution is 1.7, 1.0, 0.8, and
0.5 m. In each figure, the rising edge of the corresponding simulated Raman signal based
on the numerically generated degradation function given in Figure 5 is also provided in red
curve. Figure 7 also gives the evolution of the rising edges of the estimated Raman signals
based on both experimental and simulated data over parameter K. The results above are
normalized for better comparison. We can see that the results based on the experimentally
measured data agree well with the simulated ones.
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Figure 6. Rising edge of (a) the original Stokes Raman signal without using the Wiener deconvolution
and the estimated Stokes Raman signals using the Wiener deconvolution with (b) K = 8× 10−3;
(c) K = 3× 10−3; (d) K = 2× 10−4. The blue curves are results based on experimental data, and the
red curves are simulated results.
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Figure 7. Evolution of the rising edges of the estimated Raman signals based on both experimental
and simulated data over parameter K.

In the demonstration of distributed temperature sensing, it is acceptable to approx-
imate A0(z) as a constant by calculating the average value of A for the last 50-m fiber
under the reference temperature T0 = 40 ◦C. The temperature distribution can be calculated
based on Equation (2). The spatial resolution enhancement can be verified by the resolved
temperature of the heated 0.5-m fiber coil. As we can see from Figure 8, the temperature
of the heated 0.5-m coil is correctly resolved as 60.67 ◦C until K equals 2× 10−4. Figure 9
gives the resolved temperature distributions of the fiber from 2045 m to 2060 m without
using deconvolution and those using Wiener deconvolution with K as 8× 10−3, 3× 10−3,
and 2× 10−4. The lengths of the temperature transition area are respectively marked as
1.76, 0.92, 0.72, and 0.44 m, which agrees well with the theoretical spatial resolution, as
shown in Figure 6. This also approves the spatial-resolution enhancement capability of
the algorithm.
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Figure 8. The resolved temperature distributions around the heated 0.5 m fiber coil under different
values of parameter K.
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Figure 9. The resolved temperature distributions around the heated 9-m fiber coil (a) without
deconvolution, (b) deconvoluted with parameter K = 8× 10−3, (c) deconvoluted with parameter
K = 3× 10−3, (d) deconvoluted with parameter K = 2× 10−4.

4. Discussion

We have noticed that the introduction of Wiener deconvolution unfortunately also
brings in one major impairment for the sensing performance. The noise level of the
deconvoluted Raman signal is increasing as parameter K decreases, which leads to the
sensing accuracy decreasing. However, the absolute error of the detected temperature of
the 9-m heated fiber coil is given in Figure 10, which keeps it lower than 1 ◦C with the
decreasing of parameter K. This means that the application of Wiener deconvolution will
not affect the temperature sensitivity in ROTDR. As shown in Figures 9a–d and 10, the
standard deviations of the resolved temperature of the 9-m heated fiber coil are calculated
as 0.20, 0.71, 0.75, and 1.99 ◦C, respectively, indicating the distortion in restored temperature
is also increasing. In practice, to maintain the measurement accuracy, the highest spatial
resolution assisted by Wiener convolution is therefore also limited by the original SNR of
the acquired signals. For further discussion, we revisit the expression for estimated original
Raman signals ĝAS(t) and ĝS(t):
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Figure 10. Evolution of the standard deviation and absolute error of the resolved temperature
distribution around the heated 9-m fiber coil over parameter K.

ĝ†(t) =F−1[
Ψ∗†( f )

|Ψ†( f )|2 + K
Ĩ†( f )]= F−1{

Ψ∗†( f )
|Ψ†( f )|2 + K

[ψ†( f )g†( f ) + N†( f )]}

= ψ̂†(t) ∗ g†(t) +F−1[
Ψ∗†( f )

|Ψ†( f )|2 + K
N†( f )]

(7)

where the second term in the equation above contains the noise term N†( f ). This means
the noise in the detected Raman signal is also deconvoluted and added in the estimated
original Raman signals, leading to the distortion of restored temperature. Therefore, if the
SNR is improved with cyclic simplex coding technique [31] or detection components with
lower noise level, the temperature distortion will be suppressed. Further analysis of the
best spatial resolution assisted by the Wiener deconvolution algorithm will be conducted
in our future research work.

Compared to the total variation deconvolution technique for ROTDR sensors as pro-
posed in 2016 [27], the Wiener deconvolution technique has its own advantages. The total
variation deconvolution based on the interactive weighted least squares approach was
used, where one single iteration requires 9N3 + N2 times of real number multiplication.
Although the computational complexity of matrix multiplication and division can be opti-
mized, with the increase in the number of iterations, the higher computational complexity
is difficult to meet the timeliness requirements of ROTDR. By comparison, the Wiener de-
convolution only requires 4N + 4Nlog2N times of real number multiplication, which offers
obvious advantages. In addition, the temperature calibration process of our scheme is less
complex. For our configuration and for conventional ROTDR configuration, temperature
demodulation only requires one pair of Raman anti-Stokes/Stokes ratio and temperature
at one certain location. By comparison, the total variation deconvolution scheme calculates
the impulse response based on the detected temperature profile and the real temperature
profile along the entire fiber, and the initial solution needs to be determined to reduce
iterations, which makes it less suitable for applications.

5. Conclusions

The proposed Wiener deconvolution technique can enhance the spatial resolution
of the ROTDR distributed temperature sensor system via a post-processing algorithm.
The proposed technique can be applied in existing ROTDR systems without modifying
any hardware structure, making it superior in cost and complexity. We have successfully
applied the Wiener deconvolution technique in a typical ROTDR system and enhanced the
spatial resolution from 2 m to as high as 0.5 m, with a temperature accuracy of 1.99 ◦C over a
2.1-km MMF. The spatial resolution of the ROTDR system can be further improved with our
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technique together with other hardware modification or optimization approaches, which
makes it promising for precise temperature detection over long distances in the future.
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