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Abstract: Radar is widely employed in many applications, especially in autonomous driving.
At present, radars are only designed as simple data collectors, and they are unable to meet new
requirements for real-time and intelligent information processing as environmental complexity
increases. It is inevitable that smart radar systems will need to be developed to deal with these
challenges and digital twins in cyber-physical systems (CPS) have proven to be effective tools in
many aspects. However, human involvement is closely related to radar technology and plays an
important role in the operation and management of radars; thus, digital twins’ radars in CPS are
insufficient to realize smart radar systems due to the inadequate consideration of human factors.
ACP-based parallel intelligence in cyber-physical-social systems (CPSS) is used to construct a novel
framework for smart radars, called Parallel Radars. A Parallel Radar consists of three main parts:
a Descriptive Radar for constructing artificial radar systems in cyberspace, a Predictive Radar for
conducting computational experiments with artificial systems, and a Prescriptive Radar for providing
prescriptive control to both physical and artificial radars to complete parallel execution. To connect
silos of data and protect data privacy, federated radars are proposed. Additionally, taking mines
as an example, the application of Parallel Radars in autonomous driving is discussed in detail, and
various experiments have been conducted to demonstrate the effectiveness of Parallel Radars.

Keywords: parallel radars; ACP method; cyber-physical-social systems (CPSS); federated radars

1. Introduction

A radar is a kind of active sensor that plays an increasingly important role in many
fields, such as national defense [1,2], traditional industry [3–10], and autonomous driv-
ing [11,12]. Current radars collect data using electromagnetic waves to acquire three-
dimensional information about their surroundings. However, due to the increased com-
plexity of the environment, traditional radars are unable to satisfy the needs for new
functional requirements, and smart radar systems must be built to adapt to the changing
environment in real time. With the rapid development of artificial intelligence and com-
puter science, digital twins in cyber-physical systems (CPS) [13–15], which are regarded
as the key to the next industrial revolution, are being used to construct digital radars in
cyberspace to achieve intelligence. Radar models in CPS [16–25] have already been exten-
sively researched and demonstrated to be effective in solving many problems, including
generating virtual data for various downstream tasks [26–34] and closed-loop testing.
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In a real application, human involvement exerts a tremendous influence on the opera-
tion and maintenance of radar systems; thus, radar systems should be regarded as Morton
systems with self-actualization rather than Newton systems [35]. Due to an incomplete
consideration of human factors, digital twins radars in CPS are insufficient for the construc-
tion of smart radar systems. ACP-based parallel intelligence proposed by Prof. Wang has
demonstrated obvious advantages in realizing intelligence in cyber-physical-social systems
(CPSS) [36–38]. The ACP method comprises artificial societies, computational experiments,
and parallel execution, which has already been widely used in many applications, such as
control and management [39–41], driving [42–44], scenarios engineering [45,46], and light
fields [47–49]. Based on parallel theory, this paper proposes Parallel Radars—a new frame-
work that consists of Descriptive Radars, Predictive Radars, and Prescriptive Radars. This
is a paradigm of future smart radars that can not only overcome radar hardware limitations
through cloud computing but also make intelligent adjustments in real time. The main
contributions of this paper can be summarized as follows:

• To overcome the hardware limitations of radars, we propose the novel framework
Parallel Radars, a virtual-real interactive radar system in CPSS. It constructs a complete
closed loop between physical space and cyberspace to achieve digital intelligence.

• In order to utilize Parallel Radars’ data more efficiently, federated radars are put
forward to connect data silos and protect data privacy.

This paper is organized as follows. Section 2 introduces the principles and applications
of commonly used radars briefly. Section 3 presents the framework—Parallel Radars—in
detail and federated radars that focus on data security are discussed in Section 4. The exper-
iments about Parallel Radars’ application in mine autonomous driving are desrcibed and
analyzed in Section 5. Section 6 presents the conclusions and summarizes the prospects for
the future work of Parallel Radars.

2. Radar Systems

Radar is a broad concept; there are various types of radars for different applications,
such as millimeter wave (mm-wave) radars, LiDARs, and synthetic aperture radars (SAR).
In this section, we only focus on mm-wave radars and LiDARs, which are widely applied
in autonomous driving.

2.1. Principles

In this part, the working principles of mm-wave radars and LiDARs are clarified in
detail. Due to the differences in working principles, they have respective characteristics
and are deployed for different tasks.

2.1.1. Mm-Wave Radars

Mm-wave radars use electromagnetic waves to measure the range, Doppler velocity,
and azimuth angle of the target. The two most frequently used frequencies in automotive
mm-wave radars are 24 GHz and 77 GHz, but there is generally a preference for 77 GHz
because of its advantages in higher-resolution and smaller antennas [50].

The mode of waveform modulation plays an important role in radar systems. Among
all the modulation modes, frequency modulated continuous waveform (FMCW) is the
most commonly used method. The transmitted and received FMCW signals, which are also
called chirps, can be formulated as (1) and (2); f stands for frequency and φ is the phase
of the signal.

xT = sin(2π fTt + φT) (1)

xR = sin(2π fRt + φR) (2)

As shown in Figure 1, the frequency of FMCW signals varies linearly in each period,
with important parameters including the carrier frequency fc, bandwidth B, and signal
cycle T. Through the frequency mixer, an intermediate frequency (IF) signal is generated
in (3) and beat frequency f IF can be calculated by the frequency of transmitted signal fT
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and received signal fR in (4). From Figure 1, we can obtain the correlation between f IF and
distance r, as shown in (5).

xIF = sin[2π( fT − fR)t + (φT − φR)] = sin[2π f IFt + φIF)] (3)

f IF = fT(t)− fR(t) = τ
B
T

=
2r
c

B
T

(4)

r =
cT f IF

2B
(5)

Figure 1. The chirps of FMCW mm-wave radars.

The information on Doppler velocity requires multiple adjacent IF signals and it
focuses on the phase information of signals. ∆φ denotes the phase shift between adjacent
IF signals, λ is the wavelength of chirps, and c is the speed of light. The Doppler velocity of
the specific target can be calculated using (6) and (7).

∆φ = φIF1 − φIF2 =
2πc(τ1 − τ2)

λ
=

4π(r1 − r2)

λ
=

4πvT
λ

(6)

v =
∆φλ

4πT
(7)

In addition, the azimuth angle of the target is calculated based on Multiple Input Mul-
tiple Output (MIMO) principles [51] in Figure 2. The distance between adjacent receivers
is d and IF signals’ phase shift of adjacent receivers ∆Φ. Based on the above information,
the azimuth angle of the target θ can be obtained by Equations (8)–(10).

∆r = d sin θ (8)

∆Φ = ΦIF1 − ΦIF2 =
2π∆r

λ
=

2πd sin θ

λ
(9)

θ = arcsin(
∆Φλ

2πd
) (10)



Sensors 2022, 22, 9930 4 of 16

Figure 2. Linear distributed transmitters and receivers in MIMO radars.

2.1.2. LiDARs

LiDARs, which are also called laser radars, play an important role in autonomous
driving. Instead of emitting electromagnetic waves such as mm-wave radars, LiDARs use
laser beams used fpr detection and ranging. The most frequently used wavelengths are
905 nm and 1550 nm in automotive LiDARs. Due to the great collimation of laser beams,
LiDARs possess the advantages of a high angular resolution and distance resolution, as well
as strong anti-interference ability compared with traditional radars. However, LiDAR’s
performance degrades seriously in adverse weather [52,53].

On the basis of the waveform modulation mode, the working principles of LiDARs
can be divided into two categories: FMCW and time of flight (ToF). FMCW LiDARs use
frequency modulated continuous waves to measure the distance and velocity like FMCW
mm-wave radars, while ToF LiDARs play a dominant role in autonomous driving and the
range d is calculated by the flight time of pulsed lasers ∆t directly in (11).

d =
c∆t
2

(11)

2.2. Applications

At present, radars are widely applied in various scenarios, especially in autonomous
driving. In this part, the applications of mm-wave radars and LiDARs will be introduced
in detail.

2.2.1. mm-Wave Radars

mm-wave radars are used for a variety of detection targets, including objects in
industry and human beings in biomedical applications [54]. mm-wave radars can not
only monitor and measure products in traditional industries, but they can also complete
the perception of obstacles in autonomous driving. In the context of biomedical appli-
cations, MIMO mm-wave radars enable real-time detection of vital signs including fall
detection [55], sleep monitoring [56], and hand gesture recognition [57]. In addition to
observing conventional vital signs, mm-wave radars can also be employed as an aid for
special populations. For example, Refs. [58,59] introduce a cane with mm-wave radars to
help blind people to perceive obstacles, which can facilitate their lives effectively.

Due to the good penetration in rain and snow, automotive mm-wave radars are able
to work in all weather conditions. According to the different detection ranges, the current
automotive mm-wave radars can be divided into three categories—long-range radars
(LRR), middle-range radars (MRR), and short-range radars (SRR)—as shown in Table 1.
In real applications, LRR are mainly applied for adaptive cruise control and forward
collision warning, MRR for blind spot detection and lane change assistance, and SRR for
parking assistance [50]. With the rapid development of radar technologies, the emerging
4D mm-wave radars can potentially replace automotive LiDARs in the future.
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Table 1. Comparison of different automotive mm-wave radars [50].

LRR MRR SRR

Detection Range (m) 10–250 1–100 0.15–30
Azimuth Field of View (◦) 20 80 160
Elevation Field of View (◦) 10 10 20

Range Resolution (m) 0.1–0.5 0.1–0.5 0.02–0.1
Velocity Resolution (m/s) 0.6 0.6 0.6

2.2.2. LiDARs

LiDARs are able to provide dense point clouds of surroundings. Due to the obvious
advantages in accuracy, LiDARs are suitable for various high-precision tasks and can be
classified into three categories according to different platforms in Table 2. Spaceborne
LiDARs are mainly used for space rendezvous, docking, and aircraft navigation [60].
Airborne LiDARs are designed for the tasks such as terrain mapping and underwater
detection [61], while vehicle-borne LiDARs play an important role in autonomous driving.

Table 2. Comparison of LiDARs on different platforms.

Spaceborne LiDARs Airborne LiDARs Vehicle-Borne LiDARs

Wavelength (nm) 532/1064 532/1064 905/1550
Detection Range (km) 400 3–6 0.2–0.3
Range Accuracy (cm) 10–50 10–25 1–2

Azimuth Field of View (◦) 120 360 360
Elevation Field of View (◦) 120 75 40

Horizontal/Vertical Resolution Low Middle High

2.3. Future of the Radar Industry: From CPS to CPSS

With the development of computer science, digital twins’ radar systems in CPS have
received extensive attention and shown great advantages in cost. However, they not
only ignore the interaction between the physical and virtual world but also oversimplify
various important factors in physical scenarios. Additionally, the current digital twin radar
systems also neglect human factors in social space, which are closely related to each part
of radar systems. Human dynamics introduce predictive uncertainty into radar systems,
which is a great challenge to the framework of digital twins’ radars. In order to solve the
above problems and achieve digital intelligence, Parallel Radars in CPSS that are tightly
coupled with physical space, cyber space, and social space are proposed as a novel method
framework. A comparison of digital twins’ radars and Parallel Radars is shown in Table 3.
Parallel Radars construct complete artificial systems in cyber space, provide a mechanism to
realize knowledge automation through computational experiments, and conduct intelligent
interactions between physical and digital radars.

Table 3. Comparison between digital twins’ radars and Parallel Radars.

Digital Twins’ Radars Parallel Radars

Sensor Models X X
Physical Scenarios X X

Social Scenarios × X
Virtual-Reality Interaction × X

3. Parallel Radars

On the basis of parallel intelligence and ACP method [36], Parallel Radars, a new
technical framework leading the future development of radar systems in Figure 3, is
proposed. Parallel Radars integrate traditional radar knowledge with artificial intelligence
and advanced cloud computing, as well as 5G communication technologies. It is able to
provide efficient, convergent solutions to achieve smart radar systems in CPSS through
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data-driven Descriptive Radars, experiment-driven Predictive Radars, and Prescriptive
Radars for interaction between the physical and virtual radars.

Figure 3. The framework of Parallel Radars.

Descriptive Radars construct artificial systems for describing radars in cyber space
and can be used to collect large amounts of virtual data. Predictive Radars conduct various
computational experiments with artificial systems and generate deep knowledge, while
Prescriptive Radars take feedback control of both physical and artificial systems and
complete parallel execution. In the following subsections, we take autonomous driving as
an example to introduce the framework of Parallel Radars in detail.

3.1. Descriptive Radars

Traditional radar sensors only complete the data collection without the ability to
adjust operating modes in real time. Useless redundant data will be collected and only
can be processed with local computing devices that drop radars’ performance seriously.
Descriptive Radars that correspond to artificial radar systems in ACP method are proposed
for better operation and management of radar systems, as shown in Figure 4. Each de-
scriptive radar can be viewed as the mirror image of a physical radar in artificial systems.
Apart from high-fidelity radar models, Descriptive Radars are closely related to scenario
engineering and it’s the pioneering work to take the social environment into consideration.
The physical environment in artificial scenarios includes common buildings, driving cars,
and different weather conditions, while the social environment focuses on human behaviors
and knowledge. Due to the involvement of social space, Descriptive Radars are able to
generate massive more realistic synthetic data compared with the current digital twins’
radars in CPS [16–25].

Descriptive Radars should build complete artificial systems in the cloud at first. In
terms of sensor modeling, advanced ray tracing technology [62,63] is able to imitate the
process of data collection and AutoCAD [64] for modeling radars’ physical structures
precisely. The working conditions of Descriptive Radars should be consistent with physical
radars to ensure the fidelity of virtual data. The developed game engines such as Unreal
Engine [65] and the industrial engines Omniverse [66] can be applied to build artificial
scenarios, while the novel 3D reconstruction technique, Nerf [67], is also a suitable method
for environment modeling. Synthetic data can be collected by moving the sensor models in
artificial traffic scenes. Compared with end-to-end generation models, such as GANs [68]
and diffusion models [69], Descriptive Radars have better interpretability and are able to
obtain labels directly. In a real application, Descriptive Radars are responsible for modifying
the incremental information that can reduce the process of redundant data and break the
physical limits of hardware through cloud computing. They also can generate big virtual
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data at a low cost and provide security for radar systems when physical radars fail. To
be specific, virtual data are mainly used for augmenting real training sets to enhance the
model performance. We use a large amount of virtual data for models pre-training and
conduct fine tuning with small real data. The generated virtual data have alredy been
proven effective for object detection [26,27], segmentation [28–31], and mapping [32–34].
Additionally, Descriptive Radars can also be used to extract the hidden features of different
traffic scenes to make the model achieve better generalization.

Figure 4. Descriptive Radars: the framework and process.

3.2. Predictive Radars

Although Descriptive Radars have already constructed artificial systems in cyber space,
there is an obvious problem that automotive radars are facing in a dynamic environment in
practice. Due to human involvement, the static scenes established by Descriptive Radars
are impossible to cover all possible scenes of the physical world. It is challenging to achieve
the optimal scheme and provide help for physical radars. Predictive Radars, as shown in
Figure 5, are proposed for experiments and evaluation with artificial systems to solve this
problem. They are similar to the process of imagining the consequences in mind before
making a decision. Predictive Radars conduct various computational experiments with
artificial systems, which is also the transition process from small data to big data to deep
knowledge. Data, including real data and virtual data, are used to achieve deep knowledge
that can be understood by humans clearly.

Predictive Radars take small data of the current scenes as input and perform general
perception tasks such as PointPillars [70] for object detection and PointNet++ [71] for
segmentation at first. The emerging cooperative perception [72–75] can greatly increase
the perception range of each vehicle and deserves more attention in the future. Based
on the results of general perception tasks, Predictive Radars will predict different future
scenes which is the transition from small data to big data. It is essential to apply trajec-
tory planning technology [76–80] to conduct predictions while the network structures of
Transformer [81,82] and N-Bests [83] have shown great advantages and show promise for
wide application. After acquiring data for future scenarios, we should aggregate features
in the time axis, evaluate different situations, and find out the optimal strategy to develop
deep knowledge from big data. Predictive Radars are able to be applied to many specific
problems, including working conditions prediction, obstacle prediction, and key area es-
timation. It can increase the utilization efficiency of hardware resources and avoid the
process of redundant data.
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Figure 5. Predictive Radars: the framework and process.

3.3. Prescriptive Radars

At present, radars are only used to collect data in the fixed operating mode and there
is no interaction between the physical radars’ hardware and generated deep knowledge
through computational experiments. However, automotive radars are facing a dynamic and
complex environment in CPSS with human involvement during application. It is essential to
build smart radar systems to meet new requirements for intelligent information processing
in real time. With the assistance of Descriptive and Predictive Radars, deep knowledge
has already been achieved through various computational experiments while Prescriptive
Radars in Figure 6 are proposed to take prescriptive control of physical radars and complete
parallel execution. Prescriptive Radars use software to redefine radar systems as interactive
systems tightly coupled between physical and virtual radars instead of regarding them as
two isolated systems.

Figure 6. Prescriptive Radars: the framework and process.

On the basis of obtained deep knowledge in cyber space, Prescriptive Radars provide
feedback to physical radars and adjust operating modes in real time with the assistance of
digital technologies [84]. Novel modulation methods such as OFDM [85] and PMCW [86]
can generate waveforms digitally with timely adjustment and they have shown great
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flexibility and intelligence in radar systems. Prescriptive Radars can change the waveforms’
type and sparsity of beams to focus on key areas that help radar systems adapt to different
weather conditions and emergencies. In the real application, Prescriptive Radars keep
virtual radars consistent with physical radars all the time to conduct parallel execution and
constituted a complete closed loop.

4. Federated Radars

Parallel Radars can realize data fusion through the network of multiple radars, which
has not only constructive benefits for perception tasks but also lower requirements for
communication bandwidth with cost savings.

The improvement of algorithms has accelerated the development of big data and
hardware computing power. However, the existing centralized training mode makes
the deployment of Parallel Radars face many difficulties and challenges. It is mainly
reflected in the high privacy of data collected by each radar system. These sensitive data
are forbidden to be uploaded without authorization so that the data of each client can’t be
shared. However, the effect of deep learning models depends on the quantity and quality
of data. Limited by the data fragmentation, the models are only fed with local data for
single-point modeling, which affects the model performance seriously. In addition, due to
the differences in device performance, data synchronization is inconsistent among various
data sources and the current scene cannot be responded to in real time. Non-uniformity in
data distribution, quality, and size also affects model performance seriously.

Data privacy threats including data theft and data leakage after leaving the local area
need to be solved urgently [87], especially for military use. As a method to connect the silos
of data, federated learning [88] enables participants to build models without sharing data
to achieve swarm intelligence [89]. Under this framework, federated radars in Figure 7
use common data to train a model for multiple radars [90], while the federation of radars
can realize model interactive and cooperative learning between different radars [91]. In
federation of radars, data are aggregated in each client for local training. The models
will be deployed locally and uploaded to the cloud servers after local training. When
the performance of global models in the cloud exceeds the original local models, they
can be deployed to other clients with permission. They can work across different data
structures and different institutions. It has advantages in lossless model quality and data
security without the limitation of algorithms [92]. Each radar system based on federated
learning can collect and process data independently, and is entitled to initiate federated
learning that speeds up the deployment of new models for radars. During the process of
model uploading, the transmission volume of model parameters is much smaller than the
transmission of data, which can save network bandwidth effectively [93].

Figure 7. Federated Radars: The Framework and Process.
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5. Applications of Parallel Radars

Parallel Radars in CPSS realize digital intelligence with virtual–real interactions and
can be widely applied in many fields. In this section, we focus on three main application
cases of Parallel Radars, including burgeoning autonomous driving, traditional industry,
and military use. In autonomous driving, we take mines as an example to introduce the
technical implementation of Parallel Radars and conduct various experiments.

5.1. Autonomous Driving

Parallel Radars play an important role in autonomous driving. The high cost of
collecting data and long-tail problem are serious issues. With the complete artificial systems
in cyber space, Parallel Radars can generate sufficient virtual data to train new models
for different downstream tasks such as object detection [26,27], segmentation [28–31],
and cooperative perception [72–75], which can solve these problems effectively. Specific
tasks such as the validation of new radars [94], super-resolution [95–97], and the analysis
of radar placement [98,99], can also be settled. Additionally, due to the limitation of
local computing resources, it is impossible to conduct various predictive experiments
locally. Parallel Radars can help solve prediction problems in the time domain effectively
such as trajectory planning, working condition prediction, and critical area estimation
through computational experiments in the cloud. They are able to provide instructions
for the next movement of radars and avoid redundant data processing. Parallel Radars
use software to redefine radar systems and are able to take indicative control of radar’s
hardware based on the obtained deep knowledge in real time. Parallel execution can be
conducted with the growing digital technologies such as digital beam forming and digital
waveform generation [85,86]. In addition to the application process, Parallel Radars can
also take prescriptive control of each step of the radar industry, including research and
manufacturing, as well as marketing.

Due to the complex environment, it is difficult to realize autonomous driving in urban
areas in a short time, while specific scenes such as mines and ports are promising to make
autopilot apply in the first place. On the basis of parallel intelligence, we apply Parallel
Radars to mines and carry out dozens of experiments.

First, as shown in Figure 8, we build artificial radar systems including sensor models
and scenarios of mining areas based on Unreal Engine 4 to generate virtual data in cyber
space [100]. In our artificial systems, virtual radars are consistent with real radars in
appearance and internal physical parameters. It can not only collect a lot of data through
artificial mines, which are costly in physical space, but also maintain safe operation when
physical radars fail.

Figure 8. Application of Parallel Radars in mines.
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Second, we conduct computational experiments on object detection to verify the
effectiveness of collected virtual data. We only utilize real mining data to train a PointPillars
model as the baseline and mixed data including real and synthetic data is applied to train
a new model. Both models are tested in real testing set for qualitative analysis. We find that
the additional virtual training data can improve models’ performance effectively as shown
in Figure 9. Vehicles in the distance with only a few points are missed by the baseline model
while they can be successfully identified and localized by the new model.

Figure 9. Comparative experiments between the baseline model and new model in object detection.
The left column is the baseline model trained only on real data and the right column is the new model
trained on both real data and virtual data.

Finally, we conducted experiments to realize the prescriptive control of Parallel Radars.
The left picture in Figure 10 is a frame of point cloud data collected in the normal operating
mode and the middle one highlights the detected bounding boxes. We found that a vehicle
with only a few points is changing lines in the distance while it is important for subsequent
decisions and requires more attention. On the basis of perception results, we put more
hardware resources on the estimated critical areas in order to obtain locally dense point
clouds as shown in the right picture of Figure 10. More detailed information on key areas
can be achieved through Parallel Radars. It realizes the feedback from obtained deep
knowledge through computational experiments in cyber space to physical radars and
builds a complete closed loop.

Figure 10. Critical area prediction and scene rescan based on Parallel Radars.

Taking mines as an example, we introduce the working process of Parallel Radars in
autonomous driving and provide concrete methods at the technical level. In the future, we
will apply Parallel Radars to predict the occurrence of landslides which is a common but
dangerous phenomenon in mines.

5.2. Traditional Industry

Parallel Radars can also be widely applied in traditional industries, such as architec-
tural design [3], observation [4–7], industrial robots [8], and heating, ventilation, and air
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condition (HVAC) control [9,10]. In the field of architectural design, Parallel Radars are
helpful in the 3D modeling and analysis of architectures with the consideration of human
factors. It can predict the evolution of a building from its establishment realistically at
short notice. For observation tasks, Parallel Radars can be employed in the observation
of burden surface inside blast furnaces [4], the concentration of air pollutants [5], and the
structural failure of wind turbines [6,7]. They can predict potential problems in advance
and lead physical radars to pay more attention to critical areas. It ensures the security of
equipment while utilizing resources efficiently. Parallel Radars also play an important role
in industrial robots that enable the precise positioning of industrial robots at a low cost.
Additionally, Parallel Radars can realize intelligent control in HVAC systems, which can
reduce energy consumption effectively. With a complete consideration of human factors,
parallel radars allow for accurate monitoring and prediction of human behaviors.

5.3. Military Use

Parallel Radars also play an important role in military use which is the initial appli-
cation scenario of radars [84,101]. There are several radar systems used in the military
such as early warning radars for target sensing in the distance and tracing radars for
target tracking. Parallel Radars can provide predictive information through computational
experiments with artificial systems. It can not only help radar systems discover potential
targets earlier but also be used for robustness testing of tracking algorithms. Additionally,
due to the requirement of a large survey region, military radar systems take a huge energy
consumption. Parallel Radars are able to take intelligent adjustments of operating modes
according to the environment to reduce energy consumption.

6. Conclusions

Traditional radars must evolve into smart radar systems to adapt to the dynamic
and complex environment. Due to the neglect of human involvement and virtual–real
interactions, digital twin radars in CPS are insufficient to achieve true intelligence. However,
parallel intelligence in CPSS can be applied to construct a novel methodology framework
of radars. Based on parallel theory and ACP method, we propose Parallel Radars, a new
paradigm of future radars for digital intelligence. Parallel Radars follow the principle
of “from small data to big data to deep intelligence” and achieve knowledge automation.
Taking the case of autonomous driving in mines, the application process of Parallel Radars
is clarified and various experiments are conducted for validation. They have boosted
the performance of physical radars efficiently and shown great potential in solving more
problems. In order to connect data silos and protect data privacy, the concept of federated
radars and federation of radars are discussed. The proposed Parallel Radars offer an
effective solution for accomplishing smart radar systems and they are convinced to be
widely applied in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

CPSS Cyber-Physical-Social Systems
CPS Cyber-Physical Systems
mm-wave radar millimeter wave radar
LiDAR Light Detection and Ranging
SAR Synthetic Aperture Radars
FMCW Frequency Modulated Continuous Waveform
IF Intermediate Frequency
MIMO Multiple Input Multiple Output
ToF Time of Flight
LRR Long-Range Radars
MRR Middle-Range Radars
SRR Short-Range Radars
HVAC Heating, Ventilation, and Air Condition
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