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Abstract: Chemical agents are one of the major threats to soldiers in modern warfare, so it is so im-
portant to detect chemical agents rapidly and accurately on battlefields. Raman spectroscopy-based
detectors are widely used but have many limitations. The Raman spectrum changes unpredictably
due to various environmental factors, and it is hard for detectors to make appropriate judgments
about new chemical substances without prior information. Thus, the existing detectors with inflexible
techniques based on determined rules cannot deal with such problems flexibly and reactively. Artifi-
cial intelligence (AI)-based detection techniques can be good alternatives to the existing techniques
for chemical agent detection. To build AI-based detection systems, sufficient amounts of data for
training are required, but it is not easy to produce and handle fatal chemical agents, which causes
difficulty in securing data in advance. To overcome the limitations, in this paper, we propose the dis-
tributed Raman spectrum data augmentation system that leverages federated learning (FL) with deep
generative models, such as generative adversarial network (GAN) and autoencoder. Furthermore, the
proposed system utilizes various additional techniques in combination to generate a large number
of Raman spectrum data with reality along with diversity. We implemented the proposed system
and conducted diverse experiments to evaluate the system. The evaluation results validated that
the proposed system can train the models more quickly through cooperation among decentralized
troops without exchanging raw data and generate realistic Raman spectrum data well. Moreover, we
confirmed that the classification model on the proposed system performed learning much faster and
outperformed the existing systems.

Keywords: Raman spectrum; data augmentation; distributed system; federated learning; deep
generative model

1. Introduction

In today’s battlefields, chemical agents are very dangerous weapons that threaten
soldiers. Chemical agents have been developed in the past and continue to emerge as
new substances. Thus, it is important to detect chemical agents rapidly and accurately on
battlefields. Raman spectroscopy is a widely used method for detection. Raman spectrum is
obtained from Raman scattering, which is a kind of inelastic scattering phenomenon [1]. It is
possible to obtain information on a chemical by analyzing the scattered light emitted when a
single color light is projected on the chemical sample. In Raman spectroscopy, the degree of
shift compared to Rayleigh scattering is expressed as Raman shift, and the Raman spectrum
has peaks in various forms depending on the amounts of scattered photons. Such peaks’
distinguishing forms can be used to identify the structural components of the chemical
sample [2]. In addition, Raman spectrum data can be measured non-destructively and
easily, regardless of the condition of the sample.

For the reasons mentioned above, Raman spectroscopy-based detectors are widely
used these days. However, such chemical agent detection has the following limitations.
Raman spectrum sensitively reacts to various environmental factors, such as temperature
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and moisture. For example, noise can be added to the spectrum depending on the roughness
of the material’s surface [3]. Further, there can be variations in the spectrum if the distance
between the material and the light source changes. Thus, a false alarm may occur in
unpredictable field environments [4]. Moreover, chemical agents are fatal, so it is not easy
to produce and handle them, which causes difficulty in securing data about chemical agents
in advance. It is hard for the existing detectors to make appropriate judgments without
prior information. Due to the aforementioned challenges, the existing detectors with
determined rule-based techniques cannot deal with such problems flexibly and reactively.

Artificial intelligence (AI)-based detection techniques can be good alternatives to the
existing rule-based techniques for chemical agent detection. In order to train learning
models for detection well, it is required to gather large amounts of Raman spectrum data
that are realistic while having some differences, not the same data. However, it is not
easy to obtain a large number of different Raman spectrum data of fatal chemical agents.
To overcome such limitations, in this paper, we devise the distributed Raman spectrum
data augmentation system, which leverages federated learning (FL) with deep generative
models, such as generative adversarial network (GAN) [5] and autoencoder. The proposed
system utilizes various techniques in combination to generate a large number of Raman
spectrum data with reality along with diversity. First, a one-dimensional (1-D) Signal GAN
is the cardinal technique in the system. The GAN is used to generate Raman spectrum
data in large quantities from a small number of real data. However, there is the limitation
that the generated data are very similar to each other due to the lack of real data used to
train the GAN. Thus, the system utilizes random transformation-based data augmentation
(DA) [6] to improve the diversity of GAN. In addition to this, to improve the reality of the
data, the system uses a denoising autoencoder (DAE) [7] to remove the exaggerated noise.
Moreover, the zero padding (ZP) technique is used to eliminate the artifacts due to the
discontinuity feature of the Raman spectrum. Furthermore, we leverage FL to enable the
above operations to be performed in a distributed manner, which improves the proposed
system’s practical feasibility on real battlefields. We implemented the proposed system
and conducted various experiments to validate our system. The evaluation results proved
that the proposed system can train the models more quickly through cooperation among
decentralized troops without exchanging raw data and generate realistic Raman spectrum
data well. Moreover, we confirmed that the classification model of the proposed system
outperformed the existing models, which validated the effectiveness of the proposed
system. As far as we know, this research is the first to exploit FL with GAN and DAE using
the Raman spectrum of chemical agents.

This paper is organized as follows. In Section 2, we introduce the studies related to
our research. In Section 3, we describe the application concept and the overall operations
of the proposed system and then give detailed explanations about the system design and
components. After that, in Section 4, we explain the implementation of the techniques used
in the system. In Section 5, we describe the experiments and evaluation results. Finally,
Section 6 concludes this paper by explaining remarks and future directions.

2. Related Work

This section describes various studies related to our proposed system. We first in-
troduce the studies that have utilized Raman spectroscopy to analyze chemical agents.
Then, we explain some studies focusing on applying deep learning (DL) methods to Ra-
man spectrum data. After that, we give descriptions of FL used for distributed systems
and military applications. Finally, we explain the models and techniques utilized in the
proposed system, and then describe our research’s novelties and advantages in comparison
with the relevant studies.

Raman spectroscopy has been applied to the detection of hazardous chemicals for
military operations [8], and there were some studies related to this. Yu et al. proposed a
baseline correction algorithm that removes the baseline for chemical agent detection while
minimizing the distortion of the Raman scattering spectrum [9]. Choi et al. measured the
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Raman spectra of 18 chemical warfare agents by using 248-nm UV Raman spectroscopy
and analyzed the spectral characteristics of each agent [10]. Hu et al. analyzed the spatial
heterodyne Raman spectrometer and showed that the equipment has the ability to detect
simulants of chemical warfare agents [11].

Supported by advances in DL techniques, various studies leveraged DL methods to
improve Raman spectroscopy and analyze Raman spectra. Fan et al. proposed a DL-based
approach to identify components in mixtures using Raman spectra, and their scheme
showed better sensitivity compared to other machine learning (ML)-based techniques [12].
Weng et al. proposed a DL-based method to recognize drugs in human urine, and the
results showed that their neural network model performed better than the common ML
methods [13]. Horgan et al. presented a comprehensive framework for higher-throughput
molecular imaging via DL-enabled Raman spectroscopy trained on a large dataset of over
1.5 million Raman spectra [14]. Frischia et al. proposed a pipeline for augmenting data
using GAN reinforcement [15], and Ma et al. demonstrated a spectral recovery conditional
GAN to reduce the data acquisition time [16]. The above studies used DL for applications
using Raman spectrum data of non-hazardous substances, not of fatal chemical agents.
In [17], an approach utilizing ML was proposed for chemical agent detection, but this
approach did not use Raman spectrum data. In addition, the above studies trained their
models using a very large number of Raman spectrum data. Specifically, the network model
proposed in [15] aimed for data augmentation of the Raman spectrum, but training using
thousands of Raman spectra should be required to perform data augmentation. However,
in the military field, many tasks frequently require the recognition of rare or never before
seen samples [18].

Using FL, devices participating in learning do not need to send raw data to the server,
which improves security and privacy and reduces communication resource usage. Thus,
FL is a suitable learning method for distributed systems, and many researchers have
tried to leverage FL to perform DL in distributed systems. Chen et al. presented an FL-
based intrusion detection algorithm to ensure the security of wireless edge networks [19].
Wang et al. proposed an FL-based pedestrian detection scheme that gathers data from
multiple vehicles to achieve secure multi-party computation in vehicular scenarios [20].
Sharma et al. proposed a distributed computing defense framework using FL to resolve the
challenges of limited training data and avoid a reason-specific model [21]. On battlefields,
devices are usually distributed, and communication resources are not abundant. In addition,
security is very important, so strong encryption is essential for every data transmission.
Therefore, several studies have utilized FL for military uses [18], but there are not many
studies yet.

To generate Raman spectrum data properly, the proposed system utilizes various
neural network models and techniques. First, the DA is used to secure sufficient amounts
of initial data to train the GAN. DA is a universal model-independent data side solution
that can help networks overcome small datasets [22,23]. After that, the system utilizes
the GAN to generate many, and more diverse data. GANs aim to generate fake data by
training a pair of competing networks, the generator and the discriminator. GANs are
used in a variety of fields, such as image synthesis, semantic image editing, style transfer,
image super-resolution, and classification [24,25]. In addition, the system utilizes the DAE
to alleviate the excessive noise included in the data generated by the GAN. DAE is a
technique widely used to reduce noise, and it is trained to reconstruct clean results from
corrupted inputs by modifying the autoencoder [26,27]. Moreover, our system utilizes ZP,
which is a technique that fills the edge of the data with zero values. ZP has been mainly
used to make input and output sizes the same by preventing the size of output data from
decreasing [28,29]. However, our system utilizes the ZP in a way that is different from the
ordinary ways other researchers used ZP. By utilizing the ZP, the proposed system makes
the artifacts occur on the padded region, and then the system removes the region, which
eliminates the artifacts without decreasing the size of the resulting data.
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This paper has novelty and advantages compared to the related studies. Some related
studies applied DL to Raman spectrum data, but there are few studies using DL for the data
of chemical agents. In addition, many of the existing studies used large amounts of data
to perform learning, and one of them used over 1.5 million Raman spectrum images [14].
However, it is not easy to generate Raman spectrum data of chemical agents, and it also
takes a considerable amount of time. Therefore, it is challenging to generate sufficient
amounts of data for training. Furthermore, we leverage FL to enable the proposed system
to operate in distributed environments, which improves the system’s practical feasibility
on real battlefields.

3. System Design

In this section, we first describe the concept of the distributed Raman spectrum data
augmentation system and then we explain the overall design and the operations of the
proposed system. After that, we give detailed explanations about the techniques used for
the system.

3.1. System Concept

Chemical attacks are a significant threat in modern warfare. Specifically, it is important
to respond quickly to the simultaneous chemical attacks in different regions, as shown in
Figure 1. If there is a model that has already been trained sufficiently in advance, immediate
responses to the chemical attacks are possible, but if not, training a model to identify the
chemical agent should be performed quickly. However, due to the danger of chemical
agents, it is not easy to generate Raman spectrum data of chemical agents, and it also takes
a considerable amount of time. Therefore, it is challenging to generate the data required
for training. Motivated by this, we devise a system that generates sufficient amounts of
Raman spectrum data based on a small number of collected real data, which properly
reflects diverse changes while maintaining the characteristics of the real data. Figure 1
shows the proposed system’s application concept. The proposed system utilizes not only
deep generative models, such as GAN and DAE, but also additional techniques, such as
the random transformation-based DA and ZP, to generate Raman spectrum data properly.
Furthermore, the system leverages FL to enable cooperation among decentralized troops
and faster learning. Using FL, it is possible to build a global model more quickly without
exchanging raw data between the troops, as shown in the figure.

Figure 1. The application concept of the proposed system.

3.2. Overall Design

In this subsection, we describe the overall procedure of the proposed system and give
brief descriptions of each process. The proposed system should be able to mass-produce
data that include variations while having a certain level of similarity with the existing real
data. To meet such requirements, the system includes two training processes to generate
data that satisfy the conditions.
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Figure 2 shows the first training process in the proposed system. The DA based on
random transformation is the first step in the first training process. Noise and shifting
can be found in Raman spectrum data being influenced by the surrounding environments.
Thus, the system performs DA to create more diverse data by reflecting the appropriate
Gaussian noise and shifting in the real data. After that, the system utilizes a 1-D signal
GAN to generate many and more diverse data. General GANs optimized for 2-D image
generation are not suitable for 1-D data, such as Raman spectra, so we chose to utilize
the 1-D signal GAN derived from the typical GANs in our system. If the GAN is trained
using only a small number of real data, the GAN model is overfitted to the training data.
The model trained in this way creates only the same data as the original data and cannot
generate diverse data affected by various environmental factors. Therefore, using the
aforementioned augmented data, the system trains the GAN to create data that maintain
the characteristics of the original data but differ to some extent.

Figure 2. The first training process in the proposed system.

As we explained above, the augmented data are used as the training data to improve
the diversity of the GAN, but as a side effect of this, the GAN generates noise-enhanced data.
Thus, the system utilizes DAE to alleviate the excessive noise included in the generated
data. Similar to the autoencoder, DAE includes an encoder and a decoder, but there are
some differences in the learning process. Figure 3 shows the training procedure of DAE,
which is the second training process in the proposed system. We will give a detailed
explanation of the training for DAE in Section 3.5.

Figure 3. The second training process in the proposed system.

Using the trained GAN and DAE, the system generates various types of data, including
reasonable variations. However, the generated data contains unnatural soaring values at
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both ends due to the discontinuity at both ends of the data used for training. To solve this
problem, the system uses data with some padding values added to both ends as the training
data, as shown in Figure 2. After data generation and denoising, the system removes the
values added in the padding regions to get rid of the aforementioned artifacts and finally
completes the process. Figure 4 shows the generation process of the proposed system. We
will present the detailed results of each step in Section 5.

Figure 4. The generation process in the proposed system.

Through the above operations, the system is able to obtain a large number of data that
properly reflect diverse changes while maintaining the characteristics of the original data.

3.3. One-Dimensional Signal Generative Adversarial Network

As explained in Section 3.2, other steps, such as the DA and the ZP, exist before training
the GAN, but we first explain the GAN to make it easier to understand the context between
the consecutive steps.

GAN is the main technique of the proposed system. We describe the mathematical
explanation of the GAN with reference to [5,30,31]. The GAN is composed of two models,
a generative model, G, and a discriminative model, D. The loss function is derived from
the binary cross-entropy loss as follows:

L(ŷ, y) = [y log ŷ + (1− y) log(1− ŷ)]. (1)

While training the discriminator, the label of data from the original data distribution,
Pdata(x), is y = 1 (i.e., real) and ŷ = D(x), and Equation (2) is derived by substituting these
into Equation (1).

L(D(x), 1) = log(D(x)). (2)

Similarly, when the label is y = 0 (i.e., fake data) and ŷ = D(G(z)) for data from the
generator, we can derive Equation (3).

L(D(G(z)), 0) = log(1− D(G(z))). (3)

In order to classify the fake and the real, Equations (2) and (3) should be maximized
as follows:

LD = max[log(D(x)) + log(1− D(G(z)))]. (4)

On the contrary, the generator tries to minimize the loss as follows:

LG = min[log(D(x)) + log(1− D(G(z)))]. (5)

To consider the entire dataset, we take the expectation of the combined form of
Equations (4) and (5) as follows:

min
G

max
D

[
Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1− D(G(z)))]

]
, (6)

where Pz(z) denotes the input noise distribution.
The proposed system utilizes a 1-D signal GAN to generate a large number of Raman

spectrum data. In Raman spectrum data, the x-axis refers to the Raman shift and the y-axis
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means the intensity of the Raman spectrum obtained at each Raman shift value. Raman
spectra are data in 1-D form, so we needed GANs suitable for such forms to augment
the data. In general, widely used GANs are 2-D GANs suitable for images, and the 2-D
convolution matrices are used for convolution calculations for the image data. If Raman
spectra are deemed images, the 2-D convolution can be applied to Raman spectrum data.
However, unlike typical images, the Raman spectrum image has almost all areas of the
image filled with white, and the line that is the intensity values is only a small fraction of
the data. Thus, the 2-D convolution is not suitable for Raman spectra in 1-D data form. In
addition, since Raman spectra are not data with temporal flows, such as a stock chart, it
is not appropriate to apply recurrent neural network (RNN)-based models, such as long
short-term memory (LSTM) and gated recurrent units (GRU). For these reasons, we found
that the 1-D signal GAN using Conv1d operations is suitable for the augmentation of
Raman spectrum data, so the proposed system utilizes the 1-D signal GAN.

3.4. Random Transformation-Based Data Augmentation

The performance of the neural network model can significantly depend on how much
data are used for training, and the larger the number of various training data, the better
overfitting can be avoided. In other words, overfitting should occur when the GAN is
trained using only a small number of real data. Actually, when the 1-D signal GAN was
trained using only a small number of data, the trained GAN generated only very uniform
data, which limited the diversity of the GAN. Therefore, the proposed system leverages the
DA to generate various initial training data with a certain level of change by shifting or
adding noise to a small number of real data. DA is a technique to generate larger amounts
of new data by changing existing data [32]. The system utilizes the random transformation-
based DA, which is suitable for Raman spectrum data because such a technique can be
applied to data that have a shape similar to the Raman spectrum. There are various methods
in the random transformation-based DA, and among them, the methods applicable to the
1-D signal are jittering, scaling, rotation, permutation, magnitude warping, time warping,
cropping, flipping, and window slicing [22]. Among these methods, the proposed system
performs DA using jittering and shifting because such methods can mimic the changes that
frequently occur in Raman spectrum data due to environmental influences.

Gaussian noise is the most commonly known noise that exists in all frequency bands.
This noise is easily seen in nature and also exists in the Raman spectrum data [33], so
jittering with Gaussian noise was chosen as one of the DA methods. Shifting is an aug-
mentation method that moves each value of data in a certain direction without modifying
the overall form of the data. Thus, it can be utilized to imitate the changes in the peaks’
location of the Raman spectrum due to the influence of the environment when measuring a
chemical. The shifting moves values in a vertical or horizontal direction in general, but only
the horizontal moving was used in the proposed system because the peaks in the Raman
spectrum generally move horizontally.

Using the above methods, the system performs DA using a small number of real data
to secure sufficient amounts of initial data for training the GAN.

3.5. Denoising Autoencoder

DAE has the same encoder and decoder as the autoencoder, but there are some
differences in the learning process, represented in Figure 3. We describe the mathematical
explanation of DAE with reference to [34]. Figure 5 briefly shows the overall flow of
the mathematical operations in DAE. First, the random noise following the probability
distribution, q(x̃|x), is added to an input vector, x. Then, the encoder with the parameter fθ ,
uses x̃ as an input and outputs a latent vector, z. Similarly, the decoder with the parameter
gθ′ , outputs y by using z, and the difference between x and y is the reconstruction error.
This loss can be minimized by optimizing the parameters of the encoder and the decoder
as follows:

arg min
θ,θ′

[
Eq0(X)[L(X, gθ′( fθ(X)))]

]
, (7)
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where q0(X) denotes the empirical distribution-associated n training inputs, and L(x, y) is
a negative log-likelihood for x, given y.

Figure 5. The mathematical operation flow in DAE.

DAE is trained in a way that the decoder outputs data as similar as possible to the
original data when the original data with noise are provided to the encoder as input. After
DAE is trained sufficiently, DAE is able to remove the noise from the noisy input data [7].
As explained in Section 3.4, the proposed system uses augmented data to improve the
diversity of the GAN. However, this process causes the side effect that the GAN generates
data with amplified noise. This noise is exaggerated compared to the noise obtained in
nature, so the proposed system performs denoising on it by using the trained DAE.

3.6. Zero Padding for Removing Artifacts due to Discontinuity

The system with the trained GAN and DAE generates new data mimicking the real
data well. However, due to the discontinuous parts at both ends of the Raman spectrum,
the generated data include unintended artifacts. To solve this problem, the proposed system
utilizes the ZP technique. Instead of using the augmented data as they are, the system adds
zero values of a certain length to both ends of the augmented data and uses the zero-padded
augmented data for training. The system with the trained models generates new Raman
spectrum data that are longer than the original real data and include the artifacts at both
ends. Therefore, the system removes as many values as the length of the previously added
padding at both ends of the generated data, as shown in Figure 4. This removal operation
not only makes the length of the generated data the same as the original length but also
eliminates the artifacts.

3.7. Federated Learning for Distributed Raman Spectrum Data Augmentation System

As explained before, the proposed system leverages FL to enable cooperation among
decentralized troops and faster learning. The proposed system conducts FL by utilizing
federated averaging [35], which is the most widely used FL algorithm. Figure 6 shows the
overall operations of FL in the system. In order to explain the FL operations, we assume
that there is one server and n troops, T1, . . . , Tn, which have their own Raman spectrum
dataset, D1, . . . , Dn. In this situation, the FL in the system includes the following major
steps. First, the server, headquarters, or one of the troops, sends the initial global model
(i.e., the generator and discriminator models of GAN or the encoder and decoder models
of DAE) to all of the troops. Then, each troop trains their local models using local Raman
spectrum data as follows:

θL = θL − ηgk, (8)
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where θL, η, and gk denote the local model, the learning rate, and the gradient, respectively.
After that, the troops send their local model’s parameters, θ1

L, . . . , θn
L, back to the server,

and the model parameters are aggregated into the global model in the server as follows:

θG =
n

∑
i=1

si
s

θi
L, (9)

where θG, s, and si denote the global model, the total number of samples, and the number
of samples on the ith troop, respectively. Then, the global model’s parameters are deliv-
ered to the troops again. The above procedures are repeated until the global model is
trained sufficiently.

For instance, in the case of GAN, the server aggregates the local generator models’
parameters into the global generator model, θg = ∑n

i=1
si
s θi

g. Similarly, the server also
integrates the local discriminator models’ parameters into the global discriminator model,
θd. After that, the server delivers the global generator and discriminator models back to the
troops for the following learning in the next round.

Figure 6. The overall operations of FL in the proposed system.

4. Implementation

This section gives detailed descriptions of the implementation of the techniques used
in the proposed system.

4.1. Implementation of Data Augmentation

The DA module was implemented to generate the data according to the selected
augmentation method and the number of data. When the original Raman spectrum is
provided as input, the DA module performs jittering and shifting on the original to generate
a designated number of augmented data. In jittering, the DA module generates Gaussian
noises of deviation ranging from 0 to a predetermined value and adds them to the original
data. In shifting, the data are moved according to a randomly selected direction and value
within a determined scale, and then the empty data fields caused by the movement are
filled with zeros.

4.2. Implementation of 1-D Signal GAN

We built the GAN by using the PyTorch library [36] with reference to [37]. We utilized
Conv1d of PyTorch to build the 1-D signal GAN based on Wasserstein GAN [38]. To be
compatible with data of any size, we implemented the input layer width of the discriminator
and the output layer width of the generator to be flexibly adjusted depending on the size
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of the input data. Tables 1 and 2 show the network structure of the discriminator and the
generator in the GAN, respectively. As shown in the tables, the discriminator in the GAN we
implemented has five layers, and the input data are converted into the value distinguishing
whether the input data are real or fake by going through the layers. The generator also has
five layers, but unlike the discriminator, the input noise becomes fake data that are similar
to the real data by passing through the layers. The augmented 1-D signal data with zero
padding were used as input data to train the generator and discriminator networks. We
set the hyperparameters as shown in Table 3 by referring to the values widely used for
GANs [37,39]. The size of the dataset and the number of epochs vary depending on the
experiments and evaluations. Thus, Table 3 does not include these values, but instead, the
descriptions in Section 5 include such information. After training, the system utilizes only
the generator model to create Raman spectrum data.

Table 1. Network layer structure of discriminator in GAN used for the proposed system.

Layer Composition In Channel Out Channel Kernel Size Stride Padding # Parameters

1 Conv1d 1 64 4 2 1 256
LeakyReLU - - - - - -

2
Conv1d 64 128 4 2 1 32,768
BatchNorm1d - - - - - 256
LeakyReLU - - - - - -

3
Conv1d 128 256 4 2 1 131,072
BatchNorm1d - - - - - 512
LeakyReLU - - - - - -

4
Conv1d 256 512 4 2 1 524,288
BatchNorm1d - - - - - 1024
LeakyReLU - - - - - -

5 Conv1d 512 1 datasize/16 1 0 86,016

Table 2. Network layer structure of the generator in GAN used for the proposed system.

Layer Composition In Channel Out Channel Kernel Size Stride Padding # Parameters

1
ConvTranspose1d noise size 512 datasize/16 1 0 8,601,600
BatchNorm1d - - - - - 1024
ReLU - - - - - -

2
ConvTranspose1d 512 256 4 2 1 524,288
BatchNorm1d - - - - - 512
LeakyReLU - - - - - -

3
ConvTranspose1d 256 128 4 2 1 131,072
BatchNorm1d - - - - - 256
LeakyReLU - - - - - -

4
ConvTranspose1d 128 64 4 2 1 32,768
BatchNorm1d - - - - - 128
LeakyReLU - - - - - -

5 ConvTranspose1d 64 1 4 2 1 256

Table 3. Hyperparameters and values used for GAN in the proposed system.

Hyperparameter Value

Batch size 8
Learning rate 0.0001
Weight clipping 0.01
Discriminator updates per generate update 5
Optimizer algorithm RMSprop



Sensors 2022, 22, 9900 11 of 19

4.3. Implementation of Denoising Autoencoder

We built the DAE with PyTorch with reference to [40], and Tables 4 and 5 show the
network structure of the encoder and the decoder in the DAE, respectively. We utilized
the structures shown in the tables because the implemented DAE with the encoder and
decoder consisting of the three layers showed sufficient performance. The input data,
including noise, is converted into the latent vector by passing through the layers of the
encoder. The layers of the decoder are utilized to generate the new data using the latent
vector as input. We implemented DAE where the original data with noise are input and
training is performed in the direction of minimizing the error between the DAE’s output
and the original data without noise. We set the hyperparameters as shown in Table 6 by
referring to the values used for DAEs [40,41]. Like Table 3, Table 6 also does not show the
size of the dataset and the number of epochs.

Table 4. Network layer structure of the encoder in DAE used for the proposed system.

Layer Composition In
Channel

Out
Channel

Kernel
Size Stride # Parameters

1 Conv1d 1 4 4 1 20

2 Conv1d 4 16 4 1 272

3 Conv1d 16 32 4 1 2080

Table 5. Network layer structure of the decoder in DAE used for the proposed system.

Layer Composition In Channel Out Channel Kernel Size # Parameters

1 ConvTranspose1d 32 16 4 2064

2 ConvTranspose1d 16 4 4 260

3 ConvTranspose1d 4 1 4 17

Table 6. Hyperparameters and values used for DAE in the proposed system.

Hyperparameter Value

Batch size 10
Learning rate 0.001
Loss function MSE
Optimizer algorithm Adam

4.4. Implementation of Zero-Padding Technique

To eliminate the artifacts that occur in the generated data due to the Raman spectrum’s
discontinuity at both ends, we implemented the system to add zero values of the deter-
mined length at both ends of the training data. After training using the zero-padded data,
the system naturally generates the data longer than the original data. Thus, the system cuts
both ends of the data by the padding length to remove the artifacts.

4.5. Implementation of the Proposed System including Federated Learning

We implemented the proposed system, including FL, referring to [42], to build the
distributed data augmentation system. We built the system, including the aforementioned
implementations on Ubuntu 20.04, using the desktop equipped with AMD Ryzen™ 7 5800X
and 32 GB RAM. We trained the models in the system by utilizing NVIDIA’s compute
unified device architecture (CUDA) on NVIDIA GeForce RTX 3070 8GB GDDR6 PCI Express
4.0 graphic card for faster learning.
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5. Performance Evaluation

In this section, we first describe the various experiments for evaluating each tech-
nique that constitutes the proposed system and then show the evaluation results. Further,
we explain the system’s performance from the perspective of diverse evaluation indices.
In addition, we give explanations about the performance improvement when using FL
and the analysis of the effectiveness of the proposed system. We conducted the above
experiments and analyses using various chemicals, such as 2-chloroethyl ethyl sulfide
(2-CEES), Dichlorvos (DDVP), Diisopropylfluorophosphate (DFP), and Dimethyl methyl
phosphonate (DMMP). However, the experiments using different chemicals have the same
conclusions, so this section includes only the results of experiments using 2-CEES.

5.1. Performance Evaluation of 1-D Signal GAN

We evaluated the performance of GAN described in Section 4.2. In this experiment,
to clearly perform the evaluation, we conducted the training of GAN without including all
the other techniques in the proposed system. Thus, the experiment was performed using
only one real Raman spectrum data because the DA was not used in this experiment. While
training GAN, we looked into the output data produced by the generator of GAN at 1
(not trained), 1000, 2000, 5000, and 8000 epochs. We plot the graphs using the output data,
and Figure 7 shows the results and the original. As shown in the figure, the GAN generated
data more similar to the original data as the training progressed, and the sufficiently trained
GAN properly generated acceptable data mimicking the real data well. This result validates
that the GAN in our system can be used as the fundamental technique to generate Raman
spectrum data in large quantities from a small number of real data.

(a) 1 epoch (not trained) (b) 1000 epochs (c) 2000 epochs

(d) 5000 epochs (e) 8000 epochs (f) Original

Figure 7. Raman spectrum data generated by GAN as the training progressed and original data.

5.2. Evaluation of the Effect of Using Data Augmentation

As shown in Section 5.1, when the GAN was trained using a small number of real
data, the GAN generated only data very similar to the original, which means there is
low diversity in the GAN. Figure 8a–d in the first row show the original and the results
generated by the GAN trained using the original, respectively. Such GAN is inappropriate
to create data that maintains the characteristics of the original data but differs to some
extent. Thus, as explained in Section 3.4, the system performs DA using small amounts of
original data to secure sufficient amounts of initial data for training GAN, which improves
the diversity of GAN. Figure 8e in the second row shows the data augmented using jittering,
and Figure 8f–h present the results generated by the GAN trained using augmented data.
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In addition, as shown in Figure 8i, we conducted another augmentation by shifting the
original data to the left or right randomly within the scale range of 10. The augmented
data were used to train the GAN, and Figure 8j–l show the results generated by the trained
GAN. As shown in the figures, the GAN generated much more diverse types of data when
the GAN was trained using the augmented data than using only a small number of original
data. In other words, the diversity of GAN improved by using the augmented data.

(a) Original (b) Orig.-based Result 1 (c) Orig.-based Result 2 (d) Orig.-based Result 3

(e) DA (Jittering) (f) Jitt.-based Result 1 (g) Jitt.-based Result 2 (h) Jitt.-based Result 3

(i) DA (Shifting) (j) Shift.-based Result 1 (k) Shift.-based Result 2 (l) Shift.-based Result 3

Figure 8. Performance comparison among GAN models trained using the original data and the
augmented data with jittering or shifting.

5.3. Performance Evaluation of Denoising Autoencoder

The diversity of GAN was improved by using the augmented dataset, as explained
in Section 5.2. However, the GAN generated data with amplified noise, so the proposed
system utilized DAE to alleviate the exaggerated noise. To analyze the performance of
DAE, we conducted the training using 100 data, including noise as input, and we looked
into the results while training the DAE. Figure 9 shows the analysis of training, and we can
see that the DAE removed noise better when training on 1000 epochs was performed. Thus,
the proposed system utilized DAE that had performed training on 1000 epochs. Figure 10
shows the comparison between the results with and without using DAE, and we can see
that the noise was alleviated well after denoising.



Sensors 2022, 22, 9900 14 of 19

(a) 100 epoch (b) 1000 epoch

Figure 9. Performance analysis of DAE in terms of the amount of training.

(a) without denoising (b) with denoising

Figure 10. Performance comparison between the results with and without denoising.

5.4. Evaluation of the Effect of Using the Zero-Padding Technique

Through the denoising process described in Section 5.3, the proposed system was
able to generate a large number of data, including reasonable variations. However, at both
ends of the generated data, there were artifacts that had not existed in the original data.
Therefore, the system utilized the ZP technique to eliminate the artifacts in the last step
described in Figure 4. Figure 11 shows the Raman spectrum data generated by the system
with and without the ZP technique. As shown in Figure 11a, the values in the end regions
soar when the ZP technique is not used. However, using the technique, the artifacts were
eliminated well, so the system was able to obtain realistic Raman spectrum data.

(a) w/o zero-padding technique (b) w/ zero-padding technique

Figure 11. Evaluation of the effect of using the zero-padding technique.
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5.5. Performance Analysis from the Perspective of Evaluation Indices

To further evaluate the performance of the proposed system, we analyzed the quality
of Raman spectrum data generated by the system in terms of various evaluation indices.
We utilized Fréchet inception distance (FID), Pearson correlation coefficient (PCC), and Eu-
clidean distance (ED) as criteria to evaluate the quality of the generated data. FID is an
index that measures the similarity of real data to generated data, and this index is frequently
used to determine the quality of data created by GAN [43]. FID is the distance between the
Gaussian with mean and covariance, (m, C), obtained from p(.) and the Gaussian (mw, Cw)
obtained from pw(.) as follows:

d2((m, C), (mw, Cw)) = ||m−mw||22 + Tr(C + Cw − 2(CCw)
1/2). (10)

p(.) and pw(.) denote the distribution of model samples and the distribution of the
samples from the real world, respectively. A FID value closer to 0 means higher data quality.
PCC is mainly used to evaluate the correlation between two variables, and the closer the
correlation coefficient is to 1, the higher the similarity [44]. The PCC is calculated as follows:

r =
∑(x−mx)(y−my)√

∑(x−mx)2 ∑(y−my)2
, (11)

where mx is the mean of vector x and my is the mean of the vector y [45]. ED is a method of
obtaining the shortest distance between two points, and the closer the number is to zero,
the smaller the distance between the two data is. The ED is calculated as follows:

d(x, y) =

√
n

∑
i=1

(yi − xi)2. (12)

We implemented the source code for the measurement using NumPy [46] by referring
to the work in [47].

Table 7 shows the result of the ablation study of the proposed system in terms of the
aforementioned evaluation indices. As a result, the system using DA and DAE, applying
ZP before GAN, and removing ZP in the last step showed the best performance. Thus, we
designed the proposed system to perform the operations in such order.

Table 7. Ablation study of the proposed system in terms of the evaluation indices.

System Composition
Evaluation Index

FID PCC ED

GAN 0.161 0.996 0.742

DA-GAN 0.324 0.992 1.025

DA-GAN-DAE 0.477 0.998 1.336

DA-ZP-GAN-RZP-DAE 0.070 0.999 0.508

DA-ZP-GAN-DAE-RZP 0.038 0.999 0.361

5.6. Evaluation of Performance Improvement When Using Federated Learning

The proposed system leverages FL to enable cooperation among decentralized troops
and faster learning. To evaluate the performance improvement when using FL, we con-
ducted the experiment, supposing that five troops performed FL. In this experiment, each
troop had 100 augmented Raman spectrum data and conducted the training using FL on
the proposed system. While training, we looked into the result data of one troop at 100,
200, and 350 epochs to analyze the training performance. Figure 12a–c show the results
when the system utilized the FL. As shown in the figures, the training was performed much
faster, and the result generated at the 350th epoch was sufficiently similar to the original
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presented in Figure 12d. On the contrary, without using the FL, the system performed
training slowly, and the generated data after about 800 epochs were similar to the original.
This experiment result proves that the proposed system can build the models more quickly
and efficiently without exchanging raw data between the troops by leveraging FL, which
improves the system’s practical feasibility on real battlefields.

(a) 100 epochs w/ FL (b) 200 epochs w/ FL (c) 350 epochs w/ FL (d) Original

(e) 100 epochs w/o FL (f) 200 epochs w/o FL (g) 350 epochs w/o FL (h) 800 epochs w/o FL

Figure 12. Performance comparison between the results with and without using FL.

5.7. Analysis of the Effectiveness of the Proposed System

Through Sections 5.1–5.6, we validated that the proposed system trains the models
quickly and generates realistic Raman spectrum data well. As we mentioned before, suf-
ficient amounts of data for training are required to build the AI-based chemical agent
detection system, so we devised the proposed system. Thus, in this subsection, we con-
ducted an additional experiment to analyze the effect of the application of the proposed
system. For this experiment, we built the convolutional neural network (CNN)-based
model for chemical agent classification and trained the model using two datasets. One was
the dataset based on the collected real data, and the other was composed of data generated
by the proposed system. Naturally, the amounts of the real data were less than those of the
generated data, which caused slow training. Thus, for fair evaluation, the real data were
duplicated to equalize the amounts of data in the two datasets. Figure 13a shows the cost
values in the training process, and we can see that the training was performed much faster
when the proposed system was used. Further, as shown in Figure 13b, the classification
model trained using the dataset generated by the proposed system outperformed the model
that utilized the dataset based on the collected real data. Repeated use of only a small
number of data caused a lack of diversity in training data, which resulted in the poor
classification performance of the existing system. These results validated the effectiveness
of the proposed system.
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(a) Cost as the training progressed. (b) Accuracy as the training progressed.

Figure 13. Performance analysis of the effectiveness of the proposed system.

6. Conclusions

In this paper, we devised the distributed Raman spectrum data augmentation system.
The proposed system utilizes not only deep generative models, such as GAN and DAE
but also additional techniques, such as the random transformation-based DA and ZP,
to generate Raman spectrum data properly. Furthermore, the system leverages FL to
enable cooperation among decentralized troops and faster learning. We implemented
the techniques that constitute our system and conducted various experiments to evaluate
each technique. Further, we analyzed the performance of the proposed system from
the perspective of diverse evaluation indices. Moreover, we proved the performance
improvement by using FL and the effectiveness of the proposed system. Based on the
evaluation results, we validated that the proposed system trains the models quickly and
efficiently and generates realistic Raman spectrum data well.

We have several directions for future work. We plan to strengthen our system to
generate Raman spectra of more diverse chemical agents by leveraging a conditional GAN.
In addition, we will improve the system to be able to consider more various factors affecting
Raman spectrum data, such as baseline drifts due to fluorescence or other reasons.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
FL Federated Learning
1-D One-Dimensional
GAN Generative Adversarial Network
DAE Denoising Autoencoder
ZP Zero Padding
DA Data Augmentation
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Units
CUDA Compute Unified Device Architecture
FID Fréchet Inception Distance
PCC Pearson Correlation Coefficient
ED Euclidean Distance
CNN Convolutional Neural Network
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