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Abstract: The automatic segmentation of retinal vessels is of great significance for the analysis and
diagnosis of retinal related diseases. However, the imbalanced data in retinal vascular images remain
a great challenge. Current image segmentation methods based on deep learning almost always
focus on local information in a single image while ignoring the global information of the entire
dataset. To solve the problem of data imbalance in optical coherence tomography angiography
(OCTA) datasets, this paper proposes a medical image segmentation method (contrastive OCTA
segmentation net, COSNet) based on global contrastive learning. First, the feature extraction module
extracts the features of OCTA image input and maps them to the segment head and the multilayer
perceptron (MLP) head, respectively. Second, a contrastive learning module saves the pixel queue
and pixel embedding of each category in the feature map into the memory bank, generates sample
pairs through a mixed sampling strategy to construct a new contrastive loss function, and forces the
network to learn local information and global information simultaneously. Finally, the segmented
image is fine tuned to restore positional information of deep vessels. The experimental results show
the proposed method can improve the accuracy (ACC), the area under the curve (AUC), and other
evaluation indexes of image segmentation compared with the existing methods. This method could
accomplish segmentation tasks in imbalanced data and extend to other segmentation tasks.

Keywords: medical image processing; image segmentation; optical coherence tomography angiography;
retinal vascular plexus; imbalanced data; contrastive learning; convolutional neural network

1. Introduction

Optical coherence tomography angiography (OCTA), a non-invasive imaging tech-
nique, has been increasingly utilized for imaging the retinal and choroidal vascular system
at capillary-level resolution. Compared with previous angiographic methods, OCTA has
the merits of easier handling, faster imaging, and greater imaging depth, thus facilitating
quantitative assessment of the morphological structure of the retinal and choroidal vas-
cular system. Abnormalities on OCTA images usually indicate the presence of a number
of diseases, such as early glaucomatous optic neuropathy [1], diabetic retinopathy [2],
and age-related macular degeneration [3]. Some other recent studies have shown that
deep microvascular morphological changes revealed by OCTA images are associated with
Alzheimer’s disease [4] and mild cognitive impairment [5]. This opens up new ideas to
investigate the relationship between abnormalities in retinal vessels and various neurode-
generative diseases. This shows that the precise segmentation of retinal vessels, especially
deep capillaries, is of great importance to clinicians.

Before the popularity of deep learning, most of the automatic vessel segmentation
methods were based on filters, and such methods are generally referred to as traditional
methods. Azzopardi et al. [6] designed a rod structure selection filter based on the COSFIRE
filter, which can effectively extract information about branching structure compared to
other filters. A detailed review of the methods for conventional vessel detection and
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segmentation can be found in the literature [7]. A common limitation of all these traditional
vessel segmentation methods is that they usually require manual tuning of parameters for
a specific dataset, which makes the algorithms less scalable.

Compared to traditional methods, deep learning performs better generalization.
However, deep learning methods applied to medical images still face challenges, which
Zhou et al. [8] attribute to the characteristics of medical images itself: the lack of stan-
dardized big data; the multimodality of medical data; and the long-tailed distribution of
morbidity. Such problems also exist in the field of ophthalmic images, and more detail
can be found in earlier work [9–13]. In previous retinal vascular datasets, the number of
samples is generally low, such as in DRIVE [14], CHASE-DB1 [15], etc. To alleviate the
shortage of such datasets, Li et al. [16] released the largest multimodal OCTA image dataset,
OCTA-500, and also proposed the IPN image projection network. Taking advantage of the
vertical consistency of 3D OCTA images, the IPN method compresses information in a 3D
image to a 2D image and finally outputs segmentation maps. Ma et al. [17] constructed a
dataset called ROSE with retinal superficial and deep vascular annotations, respectively, to
make up for the lack of datasets in this domain. The segmentation network OCTA-Net was
also proposed to first generate an initial confidence map of blood vessels and then optimize
the vessel details using a finetune module.

Among many deep learning-based medical image segmentation networks, the core
ideology of U-Net [18] is the most prevalent, and our COSNet also takes advantage of it.
The U-shaped structure facilitates the extraction of semantic information, while the skip
connection contributes to restore positional information. In addition, the U-Net structure
can be applied to all types of medical images virtually. In recent years, many variants based
on the U-Net architecture have also emerged. Huang et al. [19] proposed a UNet3+ seg-
mentation network based on full-scale jump connections and deep supervision. Full-scale
skip connections combine low-level details with high-level semantics of feature maps at
different scales, whereas deep supervision learns hierarchical representations from full-size
aggregated feature maps. Isensee et al. [20] addressed the selection of pre-processing, archi-
tecture, training methods, and post-processing methods to propose a nn-UNet segmentation
network that can automatically configure parameters, outperforming most methods on
23 international biomedical competition datasets. Tomar et al. [21] proposed the feedback
attention network FANet for the network’s inability to efficiently learn information from
different iteration batches, which combines feature maps from the current and previous
batches together so that the masks of the previous batches constitute hard attention to
learn the feature maps of different convolutional layers. Although the above methods
achieve good results in image segmentation tasks, they focus only on intra- and inter-pixel
semantic information of a single image, which prevents them from forming a structured
feature space (large inter-class distance and small intra-class distance), thus limiting the
segmentation performance.

Most current medical image segmentation methods rely entirely on accurate anno-
tation, and medical image data are not as easily accessible as natural images. To address
the data integration cost problem, researchers have introduced non-fully supervised meth-
ods to image segmentation tasks to reduce the reliance on annotation. In this paper, we
focus on contrast learning, and the application of contrast learning to image segmenta-
tion is described below. Commonly used semantic segmentation methods for contrast
learning are usually pre-trained on large unlabeled datasets first and then used for seg-
mentation tasks, such as in the literature [22]. To solve the problem of training overfitting
on a small amount of labeled data, Zhao et al. [23] proposed a new contrastive learning
pre-training strategy, which is first pre-trained with label-based contrast loss and then
fine-tuned with cross-entropy loss to improve intra-class compactness and inter-class sepa-
ration. Zhong et al. [24] proposed a semi-supervised semantic segmentation method that
both maintains the continuity of the prediction space for the input transform and also
ensures the contrastive nature of the feature space. In contrast to the previous stepwise con-
trast learning segmentation, the contrast loss and semi-supervised segmentation training in
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this work are performed jointly. Alonso et al. [25] proposed a contrast learning module to
perform pixel-level feature representation of similar samples from labeled and unlabeled
data, and this work obtained good results in scenarios where the proportion of labeled
data is small. Although all these methods noted above have achieved good results in the
corresponding fields, they have not completely solved the problems of category imbalance
and small target segmentation in medical image segmentation. COSNet in this paper also
refers to similar loss function forms and utilizes the memory bank approach.

To address the problems of poor detail and class imbalance in small target segmen-
tation tasks, we propose a global contrastive learning method for retinal OCTA image
segmentation. Compared with previous methods, the method in this paper focuses on both
single image information and global information (the whole dataset), which can achieve
better results in a small sample medical dataset containing two kinds of annotations.
The main contributions of this paper are as follows:

1. A two-branch contrastive learning network for retinal OCTA image segmentation is
proposed. The model is able to effectively extract features of vascular images by learning
superficial and deep vascular annotations while avoiding the feature vanishing of deep
vessels. A segmentation head and a projection head are added at the end of the decoder
to obtain both segmentation mapping and pixel embedding;

2. In this paper, a new pixel contrastive loss function is proposed. By saving same-class
pixel queues and pixel embeddings in memory bank, features within a single image can
be learned as well as same-class features in the whole dataset. The network model is
guaranteed to learn more hard-to-segment samples, thus alleviating the class imbalance
problem and improving the segmentation performance;

3. A contrast-limited adaptive histogram equalization (CLANE) method with fixed area is
used for retinal OCTA images to mitigate noise caused by imaging artifacts.

The subsequent sections of the text contain Methods and Theory, Experiments and
Results, Discussion, and Conclusions.

2. Methods and Theory

We propose a fully-supervised contrastive learning model for retinal OCTA image
segmentation called contrastive OCTA segmentation net (COSNet). This method is mainly
divided into three parts: feature extraction module, contrastive learning module, and
fine-tune module, as shown in Figure 1.

Figure 1. COSNet architecture.
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2.1. Feature Extraction Module

In the feature extraction module, a two-branch U-shaped network is adopted to handle
data with two levels of annotation. This architecture has a partially shared “encoder + decoder”
structure. The upper branch deals with superficial vessels (pixel-level label), and the lower
branch deals with deep vessels (centerline-level), which can balance the importance of the
two levels of information. Unlike previous segmentation networks, our method adds both a
segmentation head and an MLP mapping head after the “encoder + decoder” structure. As
shown in Figure 1, the ResNeSt module is used as the basic module for feature extraction,
and the shallow vessel branch has five encoder layers and corresponding decoder layers,
whereas the deep vessel branch has three encoder layers and corresponding decoder layers.
Eventually, the segmentation mapping is obtained via a 1 × 1 convolutional layer, and the
pixel embedding of the feature map is obtained by the MLP projection head behind the
penultimate layer of the decoder.

As shown in Figure 2, we employ the ResNeSt [26] module as the basic unit, which
serves the purpose of treating a series of representations as a combination of several feature
groups and then using channel attention on these feature groups.

Figure 2. ResNeSt block (only two branches are shown for brevity).

The variables C, H, and W represent channels, height, and width, respectively, of the
feature map. The feature input is divided equally into K cardinal groups, which are then
fed into R identical cardinal blocks. Thus, the initial input feature map is divided into G
(G = K × R) groups along the channel dimension. Each branch contains the structure of
“1 × 1 convolutional layer + BN + Relu” and “3 × 3 convolutional layer + BN + Relu”,
resulting in a feature map with one-fourth of the original channels. In addition, each
cardinal block is followed by a split attention to integrate feature map.

As shown in Figure 3, the feature map from two branches (U1 and U2) are fused, and
then the channel-wise statistics S are generated via global pooling. It can be expressed as:

Sk
c =

1
H ×W

H

∑
i=1

W

∑
j=1

Uk
c (i, j). (1)
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Figure 3. Split-attention block (only two branches are shown for brevity).

The weighted fusion of the cardinal group representations is implemented using the
channel dimension soft attention, where the feature maps of each channel are generated
using a weighted combination. This process can be represented as:

Vk
c =

R

∑
i=1

αk
i (c)UR(k−1)). (2)

where

αk
i (c) =


exp(Gc

i (sk))
∑R

j=0 exp(Gc
i (sk))

R > 1,
1

1+exp(−Gc
i (sk))

R = 1.
(3)

Next, all the base arrays are concatenated to get the output, and by adding them up
with shortcut τ(X), the total module output is Y = V + τ(X).

2.2. Contrastive Learning Module

Currently, the loss functions used in most semantic segmentation methods focus
only on local information in a single image and ignore the global context, i.e., same-class
samples in the entire dataset. Examples include the cross-entropy loss function and the
Dice loss function. In medical image segmentation networks, cross-entropy and Dice loss
are usually used in a weighted manner to solve the problem of excessive oscillation of
the loss function during training. However, the performance of such loss functions in
segmentation becomes poor when the segmented target occupies a very small proportion
of the full image. Considering the requirement of the loss function for detail difference
sensitivity in the vessel segmentation task, we select the mean-square error loss (MSE) as
part of the loss function. The mean-square loss function is defined as follows:

LMSE =
1
n

n

∑
i=1

(
ypred − ygt

)2
. (4)

To address the category imbalance problem, our approach borrows the idea of
MoCo [27] to construct sample pairs, i.e., a memory bank. Unlike the MoCo method,
the memory bank proposed in this paper stores a queue for each class. In each class, only
a small number of pixels are randomly selected from the latest batch of images and are
queued. At the same time, the same-class pixel embedding in each image is stored by
mean-pooling. This approach achieves a better balance between learning speed and sample
diversity than storing all pixel samples directly or updating only the last few batches.
Specifically, suppose there are a total of N training images, C semantic classes, D is the
dimension of the pixel embedding, and T is the length of the pixel queue, then the image
pixel embedding size is C × N × D; the pixel queue size is C × T × D. The final size
of the memory bank is M = (N + T) × C × D. The advantage of this approach is that
more representative hard-to-segment samples could be stored, and memory consumption
is lower.
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The most vital step of contrast learning is how to reasonably select difficult samples. In
OCTA images, difficult samples refer to those detailed parts of the deep vessels, where the
width of the tiniest part is only one pixel. It can be further shown from Kalantidis et al. [28]
that an increasing number of negative samples (background) over-simplifies the training,
which leads to an ineffective penalty for contrastive loss. We use a hybrid strategy that
includes hard sample mining and random sampling. The first few most difficult samples
are sampled from the top of the memory bank using difficult sample mining, whereas the
other half is sampled randomly. This hybrid sampling method allows pixel contrastive loss
to focus more on the difficult pixels for segmentation.

The global pixel contrastive loss proposed in this paper is defined as follows:

LNCE
i =

1
|Pi| ∑

i+∈Pi

−log
exp(i · i+/τ)

exp(i · i+/τ) + ∑i−∈Ni
exp(i · i−/τ)

. (5)

where i+ and i− represent positive and negative samples, respectively; Pi and Ni represent
the set of positive and negative pixel embeddings, respectively (positive and negative
samples are from the entire dataset); “·” represents the inner product; τ represents a
temperature hyperparameter. When pixel i belonging to class C is calculated, the pixel
embedding of the same class C is considered as a positive sample and the other classes are
considered as negative samples.

Therefore, combining the respective advantages of mean-square loss and global pixel
contrastive loss, the objective function proposed is as follows:

Lobj = ∑
i

(
LMSE + λNCELNCE

i

)
. (6)

Ultimately, both the superficial vascular complexes (SVC) branch and the deep vascular
complexes (DVC) branch of COSNet utilize Equation (6) as the objective function, so the
segmentation loss function equation of this module is defined as follows:

Ltotal = λSVCLSVC + λDVCLDVC. (7)

2.3. Fine-Tune Module

To address the problem of detailed breakpoints in vessel segmentation, we directly
follow the fine-tune module in OCTA-Net [17], as shown in Figure 4.

Figure 4. Fine-tune block.
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First, the SVC prediction map, DVC prediction map, and original image (all single
channel) obtained from the previous module are channel-fused into a 3-channel input.
The input passes through two and three convolutional layers (DVC and SVC), respectively,
and then this module generates a normalized local propagation coefficient mapping of size
m×m, for all positions of the output of the convolutional layers, denoted as Equation (8),
where hP

i denotes the confidence value of neighbor P at position i, and m×m is the size of
the propagating neighbor.

ωP
i =

exp
(
hP

i
)

∑m×m
t=1 exp

(
hP

i
) , P ∈ [1, m×m]. (8)

Local propagation coefficient ωP
i of position i is multiplied by SVC and DVC confi-

dence maps from the previous module, then aggregated to the centroid to yield fine-tuned
result, denoted as Equation (9):

Predi =
m×m

∑
P=1

ωP
i · f P

i (9)

where Predi is the final prediction vector for position i, and f P
i is the confidence vector for

neighbor P at position i. Finally, the fine-tuned SVC segmentation image and the DVC
segmentation image are combined into a binary image.

In the fine-tuning module, we set the size of the aggregated neighbor coefficient m
to 3 while using Dice loss as the fine-tune loss function. Dice loss function is denoted
as Equation (10), where Pi, Gi represent the prediction and ground truth, respectively.
In addition, a small positive constant σ is used to avoid the numerical problem and
accelerate convergence of training.

LDice = 1− 2 ∑N
i=1 PiGi + σ

∑N
i=1 P2

i + ∑N
i=1 G2

i + σ
. (10)

3. Experiments and Results

In this section, we perform a comparison test and an ablation study in order to verify
the effectiveness of COSNet on retinal vessel segmentation tasks (class-imbalanced and
complex-structured vessel).

3.1. Experimental Configuration
3.1.1. Dataset and Augmentation

The ROSE dataset is the first open-source OCTA dataset for segmentation, constructed
by the Ningbo Institute of Materials affiliated with the Chinese Academy of Sciences, South-
ern University of Science and Technology, University of Liverpool, UK, IIAI, University of
Southern California, and several research and clinical institutions in China and abroad. The
ROSE dataset consists of two subsets named ROSE-1 and ROSE-2, which, in total, contain
229 OCTA images. The OCTA-500 dataset [29], built by Qiang Chen’s group from Nanjing
University of Science and Technology, contains multimodal image data and multiple labels
and different depth OCTA proiection. All datasets are divided into a training set and a
validation set in the ratio of 7:3. The details of the datasets are shown in Tables 1 and 2.

In addition to using common augmentation methods (e.g., random cropping, rotation,
etc.), we employ a contrast-constrained adaptive histogram equalization (CLANE) method
for preprocessing images in a fixed region. This method could enhance the detail features
in DVC while reducing the noise generated by artifact problem. As can be seen in Figure 5,
the DVC details in the green box are enhanced.
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Table 1. Details of the ROSE dataset.

ROSE-1 ROSE-2

Acquisition device Optovue, USA Heidelberg OCT2, Germany
Number 117 112

Resolution 304 × 304 512 × 512
Image type SVC, DVC, SVC + DVC 1 SVC

Annotation type pixel and centerline level centerline level

Disease type Alzheimer’s disease, macular
degeneration, glaucoma, etc. macular degeneration

1 SVC stands for superficial vascular complex angiography; DVC stands for deep vascular complex angiography.

Table 2. Details of the OCTA-500 * dataset.

OCTA-3M OCTA-6M

Number 200 300
Resolution 304 × 304 400 × 400
Image type SVC SVC

Annotation type pixel level pixel level
* OCTA-500 contains images of different depths (FULL, ILM-OPL, and OPL-BM); we use only the ILM-OPL data.

(a) (b)

Figure 5. Original image (a) and enhanced image (b).

3.1.2. Development Environment, Parameter Configuration, and Evaluation Metrics

The experimental hardware environment is an NVIDIA A40 graphics card, 80 GB
running memory, and an AMD EPYC 7543 processor on AutoDl-GPU server; the software
environment is the Ubantu18 system, Python 3.6.5, Pytorch 1.8.2 framework. Our COSNet
method trains 200 epochs in both the segmentation and fine-tune stages, with the following
settings: batch size of 16, temperature τ of 0.07, memory bank size of 400, Adam opti-
mization with the initial learning rate of 0.0005, and weight decay of 0.0001. To speed up
training, COSNet makes use of the ResNeSt50 pre-trained weight.

The following six metrics were tested: area under the curve (AUC), accuracy (ACC),
G-mean, Kappa, Dice, and false discovery rate (FDR). They are defined in Equations
(11)–(16), where P stands for positive and N for negative.

AUC =
∑
(

pi, nj
)

pi>nj

P× N
. (11)

ACC =
TP + TN

TP + TN + FP + FN
. (12)

G-mean =

√
TP× TN

(TP + FN)(TN + FP)
. (13)
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Kappa =
ACC− pe

1− pe
, pe =

(TP + FN)(TP + FP) + (TN + FP)(TN + FN)

(TP + TN + FP + FN)2 . (14)

Dice =
2× TP

FP + FN + 2× TP
. (15)

FDR =
FP

TP + FP
. (16)

3.2. Comparison Test

To validate the superiority of COSNet on OCTA image segmentation tasks, COSNet is
compared with existing methods on ROSE and OCTA-500. To ensure fairness, batch size is
set to 16 and epoch of 400 (except COSFIRE), as listed in Tables 3–6.

Table 3. Performance comparison on ROSE-1.

Method AUC ACC G-Mean Kappa Dice FDR

COSFIRE [6] 0.8764 0.8978 0.7253 0.6125 0.6673 0.0985
U-Net [18] 0.9028 0.8859 0.8038 0.6310 0.7015 0.2889

nnU-Net [20] 0.9109 0.8996 0.8185 0.6687 0.7311 0.2253
FANet [21] 0.9285 0.9057 0.8223 0.6815 0.7406 0.2230

OCTA-Net [17] 0.9371 0.9098 0.8335 0.7022 0.7570 0.2045
COSNet (Ours) 0.9452 0.9133 0.8402 0.7097 0.7645 0.2013

Table 4. Performance comparison on ROSE-2 *.

Method AUC ACC G-Mean Kappa Dice FDR

COSFIRE [6] 0.7783 0.9210 0.7745 0.5698 0.6143 0.3890
U-Net [18] 0.8365 0.9317 0.8000 0.6174 0.6559 0.3546

nnU-Net [20] 0.8459 0.9342 0.8077 0.6346 0.6696 0.3328
FANet [21] 0.8536 0.9373 0.8214 0.6578 0.6935 0.3236

OCTA-Net [17] 0.8603 0.9386 0.8313 0.6721 0.7078 0.3018
COSNet (Ours) 0.8674 0.9398 0.8386 0.6738 0.7104 0.3002

* Because ROSE-2 contains only centerline-level annotations, COSNet uses only the DVC branch.

Table 5. Performance comparison on OCTA-3M (ILM-OPL).

Method AUC ACC G-Mean Kappa Dice FDR

COSFIRE [6] 0.8542 0.8645 0.7544 0.6583 0.7402 0.2213
U-Net [18] 0.9156 0.9001 0.8021 0.6847 0.8054 0.2394

nnU-Net [20] 0.9358 0.9089 0.8087 0.7065 0.8365 0.2175
FANet [21] 0.9520 0.9275 0.8322 0.7344 0.8556 0.2160

OCTA-Net [17] 0.9524 0.9246 0.8457 0.7857 0.9085 0.2037
COSNet (Ours) 0.9676 0.9345 0.8628 0.7992 0.9168 0.1857

Table 6. Performance comparison on OCTA-6M (ILM-OPL).

Method AUC ACC G-Mean Kappa Dice FDR

COSFIRE [6] 0.8248 0.8392 0.7406 0.6084 0.7078 0.2859
U-Net [18] 0.8876 0.8802 0.8085 0.7158 0.8045 0.3189

nnU-Net [20] 0.8965 0.8854 0.8196 0.7295 0.8158 0.3064
FANet [21] 0.9057 0.8935 0.8172 0.7354 0.8365 0.2930

OCTA-Net [17] 0.9196 0.9107 0.8349 0.7536 0.8754 0.2778
COSNet (Ours) 0.9388 0.9253 0.8457 0.7768 0.8869 0.2874
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Except for FDR in Table 3, COSNet obtained the best performance. Although COS-
FIRE achieved the best score on the FDR metric, it was significantly lower than the deep
learning method on other metrics. The filter-based method worked better on the simple
structure of vessels. However, in the ROSE dataset, the superficial and deep microvas-
cular structures are highly dense and intricate, which makes the segmentation effect of
the traditional method poorer. In addition, the artifacts, low resolution, and low contrast
of OCTA imaging also increase segmentation difficulty. In contrast, deep learning meth-
ods can extract higher-level distinguishing representations from local and global features,
resulting in better performance on segmentation tasks. To visualize segmentation perfor-
mance of different methods, we show the ROC curves for ROSE-1 and ROSE-2 in Figure 6.
The comparison of segmentation results is also shown in Figures 7 and 8. (We mainly focus
on tasks containing two kinds of annotations, so only the results of ROSE-1 are shown).

Figure 6. ROC curves for ROSE-1 (left) and ROSE-2 (right).

Figure 7. Segmentation results for ROSE-1.



Sensors 2022, 22, 9847 11 of 14

Figure 8. Segmentation results for OCTA-500 (ILM-OPL).

Deep learning-based segmentation methods are superior to traditional methods such
as COSFIRE for the OCTA image segmentation task. The basic structure of these seg-
mentation networks is “encoder + decoder”, which is able to extract the deep semantic
information. In addition, the use of various attention blocks can also help to improve the
AUC score, such as the feedback attention mechanism of FANet. The COSNet proposed in
this paper outperforms other approaches not only by using the ResNeSt block as the back-
bone of the “encoder + decoder” structure, but also by adopting a new pixel contrast loss
function, which improves the information extraction ability of the network under the sce-
nario of class imbalance. In addition, the fine-tune module can refine position information
of DVC. From the green box in Figures 7 and 8, it is easy to see that the previous methods
have more breakpoints at deep vascular locations. In contrast, COSNet outperforms the
other methods in the scenario of complex structure and class imbalance of microvessels.

3.3. Ablation Study

The ablation experiments in this subsection mainly explore the performance of dif-
ferent combinations of methods on ROSE-1. The role of skip connection has been verified
many times in previous studies, so no separate experiments are done. Each set of experi-
ments uses pre-training weight of ResNest50 and trains 400 epochs separately to record the
highest score.

As shown in Table 7, we conducted ablation experiments on the COSNet architecture.
Due to the form of the mean square loss, the difference between the predicted and true
values are amplified, forming a strong supervision for the training, which is superior to
the combination of cross entropy and Dice loss. In particular, our global contrastive loss
function improves segmentation AUC by nearly 2 percentage points; other methods have
less impact. This shows that our proposed combination of methods (Method 6) performs
better on the ROSE dataset.

Table 7. Ablation experiment on ROSE-1.

Method AUC ACC G-Mean Kappa Dice FDR

1 1 0.8874 0.8645 0.7937 0.6673 0.7284 0.2524
2 2 0.9199 0.9064 0.8285 0.6889 0.7463 0.2114
3 3 0.9307 0.9092 0.8344 0.7002 0.7561 0.2135
4 4 0.9321 0.9110 0.8375 0.7053 0.7604 0.2057
5 5 0.9304 0.9002 0.8285 0.6974 0.7552 0.2103
6 6 0.9452 0.9133 0.8402 0.7097 0.7645 0.2013

1 Cross-entropy loss + Dice loss. 2 Mse loss. 3 Mse loss + contrastive loss. 4 Mse loss + contrastive loss + image aug-
mentation (CLANE). 5 Cross-entropy loss + Dice loss + contrastive loss + image augmentation (CLANE) + fine-tune.
6 Mse loss + contrastive loss + image augmentation (CLANE) + fine-tune.
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4. Discussion

Experimental results show that our COSNet is generally superior to existing methods.
In the case of small segmentation targets and class imbalance, methods that employ only
strongly supervised loss functions (e.g., U-Net) usually perform poorly. The reason is that
the strongly supervised loss pays attention only to information in single images, but the
classes in a single image are inherently in an unbalanced state, which leads to the model
inadequately learning information of minority class (vessels).

We believe that the essence of image segmentation lies in constructing a structured
feature space (smaller intra-class distance and larger inter-class distance). Therefore,
in the network architecture, our method extracts both local information (single images)
and global information (same-class samples), which effectively alleviates class imbalance.
Due to the characteristics of contrast learning, categorization by cosine similarity, dis-
tinctive target (vessels) and background are easily segmented. The segmentation results
could be utilized for clinical diagnosis by the ratio of superficial and deep vessels width
(e.g., Alzheimer’s disease). The previous method was only designed for processing images
containing superficial vascular annotations, so the clinical application is less extensive.

The experiments also find that using different sampling strategies has a great impact
on the results, which also validates previous studies on contrast learning. The selection
of sampling strategies needs to be further investigated with regard to the features of data.
In the fine-tune stage, the breakpoint problem has not been completely solved, so there is
still potential for improvement.

5. Conclusions

In summary, we propose a segmentation method based on global contrast learning
for segmenting complex structured OCTA images, which includes a two-branch network
architecture and a new pixel contrastive learning function. The core idea is to enable neural
networks to learn similar features from a single image and the whole dataset simultaneously.
In the scene of class imbalance, our method results in better segmentation accuracy. At
the same time, COSNet is also transferable to other class-imbalanced classification or
segmentation tasks. The segmentation results of retinal vascular plexus are available for
the analysis and prediction of ocular related diseases, and some recent studies [30–32] have
been published.

However, the resultant breakpoint of complex-structured vessel segmentation is still a
problem that needs to be solved. We hope that more researchers will choose to open source
their results in the future to promote the development of medical images.
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Abbreviations
The following abbreviations are used in this manuscript:

OCTA Optical coherence tomography angiograph
MLP Multilayer perceptron
CLANE Contrast-limited adaptive histogram equalization
COSNet Contrastive OCTA segmentation net
MSE Mean-squared error
MoCo Momentum contrast
SVC Superficial vascular complexes
DVC Deep vascular complexes
AUC Area under curve
ACC Accuracy
TP True positive
TN True negative
FP False positive
FN False negative
ILM Internal limiting membrane
OPL Outer plexiform layer
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