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Abstract: Environmental pressures, such as temperature and light intensity, food, and genetic factors,
can cause chicken eggs to develop abnormalities. The common types of internal egg abnormalities
include bloody and damaged egg yolk. Spectrometers have been recently used in real-time abnormal
egg detection research. However, there are very few studies on the optimization of measurement
systems. This study aimed to establish optimum parameters for detecting of internal egg abnor-
malities (bloody and damaged-yolk eggs) using visible and near-infrared (Vis/NIR) spectrometry
(192–1110 nm range) and multivariate data analysis. The detection performance using various system
parameters, such as the types of light sources, the configuration of the light, and sensor positions, was
investigated. With the help of collected data, a partial least-squares discriminant analysis (PLS-DA)
model was developed to classify normal and abnormal eggs. The highest classification accuracy
for the various system parameters was 98.7%. Three band selection methods, such as weighted
regression coefficient (WRC), sequential feature selection (SFS), and successive projection algorithm
(SPA) were used for further model optimization, to reduce the spectral bands from 1028 to less than 7.
In conclusion the results indicate that the types of light sources and the configuration design of the
sensor and illumination affect the detection accuracy for abnormal eggs.

Keywords: spectral analysis; nondestructive measurement; abnormal egg detection; waveband
selection; system optimization

1. Introduction

The nutritional value of eggs increases global egg consumption. As egg consump-
tion increases, the demand for safe, hygienic, and high-quality eggs also increases. This
condition necessitates a screening technology for pre-sorting and removal of abnormal
eggs, which is becoming increasingly important [1]. In recent years, the incidence of abnor-
mal eggs has decreased due to the development of pure line selection and cross-breeding
techniques, aviary lighting control programs, and feed improvements [2]; however, the
abnormal condition is still prevalent. If abnormal eggs enter the commercial market or are
sold, they induce aversion and have a detrimental impact the poultry industry and food
hygiene, causing bacterial infection and food spoilage; therefore, they must be minimized.
Abnormal egg types include those with blood spots, meat spots, bloody eggs, putrefactive
eggs, yolk-destroyed eggs, yolkless eggs, speckled eggs, pimpled eggs, eggs with calcium
deposits, and misshaped eggs [3]. Among all, bloody eggs and meat spots were the most
common types of internally abnormal eggs. Bloody eggs are eggs with mixed blood inside
and meat spots in an eggshell pigment or oxidized blood vessel [4]. Although it depends
on the amount of blood, eggs with blood spots and meat spots are also commonly referred
to as bloody eggs. In the case of blood spots, the capillary vessel bursts into the egg yolk
when it is formed. It usually appears on the egg yolk surface. Severe bloody eggs are
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rare; however, the entire egg albumen is congealed and pink [5]. There are various causes
of bloody eggs, but it is known that the breed of laying hens, poor feeding, intermittent
and continuous lighting, age of the chickens, and temperature of the cage can have an
adverse effect [5,6]. In addition, yolk-destroyed eggs are caused by external influences
such as the centrifugal force when the eggs are rolled during the laying process. Further,
the decayed/rotten eggs may occur when external microbes enter the egg due to eggshell
damage or when eggs stay in the corner of a cage for a long-time during summer, resulting
in spoilage. Egg industries use egg sorters for rapid and non-destructive detection of
problematic internal abnormalities.

Many researchers have conducted studies on non-destructive sorting techniques to
classify eggs. Most screening techniques for detecting bloody eggs include spectrometer-
based detection methods and Red Green Blue (RGB) and hyperspectral image analysis [7–10].
Chen et al. [9] demonstrated a visible near-infrared (Vis/NIR) spectrometer in the range
of 200–1100 nm on a roller conveyer belt that passed four eggs per second and detected
the artificially prepared bloody eggs by injecting 0.05 mL of chicken blood into brown
eggs. It has been reported that bloody eggs were classified with an accuracy of 96.9%
using the binary logistic regression technique. Omid et al. [7] classified internally abnormal
white eggs by analyzing RGB images obtained using a light-projection-type screening
machine. It was reported that bloody eggs were classified with 98% accuracy using a
fuzzy-classification model. Feng et al. [10] attempted to classify bloody eggs using a
hyperspectral imaging device in the 450–1000 nm wavelength region. The obtained spectral
images were analyzed using a support vector machine, which showed that classification
was possible with an accuracy of 96.4%. However, to date, methods for detecting bloody
eggs through image analysis have been limited to the sorting of white eggs. Hyperspectral
imaging systems have not been easily applied to real-time online detection of abnormal
eggs because of their high cost and slow scanning speed. Therefore, most currently used
commercialized systems for egg quality measurement adopt spectrometer-based technology.
Although several studies have been conducted on detecting internal abnormal eggs using a
spectrometer, studies related to optimization for system parameters, such as the types of
light sources, the configuration of the light, and sensor positions for detecting abnormal
eggs have not been attempted.

In reality, detecting bloody eggs using a spectrometer is more complex for brown
than for white eggs. This is due to protoporphyrin IX (PPIX), a pigment found in brown
eggs [11,12]. PPIX is also present in white-shell eggs and blue-shell eggs, but its content
is low [13]; therefore, it does not pose a significant problem while detecting bloody eggs.
Improved breeding techniques also produce white eggshells with high PPIX content;
however, it is still relatively easier to detect bloody eggs among them than brown eggs [1].
Various studies have been conducted on bloody egg detection [7–12,14]; however, no
specific research is available on optimizing of the system parameters, such as wavebands,
light source, and position of components, for abnormal egg detection. This study was
conducted under the hypothesis that optimization of the spectral system parameters would
increase the abnormal egg detection performance. The objective of this study was to
investigate the optimal condition of the system parameters, such as the type of light source,
the configuration of illumination and detector, and the waveband combination for the
detection of internal abnormal eggs, such as bloody eggs, and yolk-destroyed eggs.

2. Materials and Methods
2.1. Sample Preparation

The regular eggs and bloody eggs within 24 h of spawning used in this experiment
were obtained from a local grading and packaging center in Anseong, Korea. Upon
returning to the laboratory from the farm, all egg samples were checked using the light
transmission method, and cracked eggs were removed.

The overall experimental flow is as the Figure 1. The difference in wavelength for
each component of internally abnormal eggs and normal eggs was investigated using gold-
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and silver-coated lamps. Silver-coated lamps and gold-coated lamps are generally used
in spectrometer-based sorters. The selection of a specific light source increases the sorting
performance efficiency.
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Figure 1. Experiment flow chart for the development of the abnormal egg detection algorithm.

Ten normal, five bloody, five meat spot, and five blood spot egg samples were used
to check the difference in wavelength for each component of bloody and regular eggs
using gold and silver-coated lamps. The normal and bloody egg samples were broken up,
divided into albumen, yolk, meat and blood spots, and eggshells, respectively, and stored
in a Petri dish (diameter, Ø: 90 mm; height: 15 mm). The eggs were stored at 5 ◦C before
the measurement.

After investigating the spectral characteristics of each component of the normal and
bloody egg, 50 normal eggs, 50 bloody eggs, and 50 yolk-destroyed eggs (Figure 2) were
measured to build an initial classification model and optimize the waveband combination
for abnormal egg sorting according to the position of illumination and the sensor. Egg
shakers (SY-A001, FTVOGUE, China) were used to produce yolk-destroyed egg samples by
rotating the normal eggs for 1 min. All the egg samples (normal eggs, bloody eggs, and
yolk-destroyed eggs) were stored at 5 ◦C before the experiment.
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Figure 2. Sample images of yolk-destroyed eggs and bloody eggs.

2.2. Hardware Setup

Spectral measurements were performed using a spectrometer (Ocean HDX, Ocean
Insight, Inc., New York, NY, USA) capable of detecting wavelengths (192–1110 nm) in
the Vis/NIR region using Ocean View 2.0.8 software (version 2.0.8, Ocean Insight, Inc.,
New York, NY, USA). The spectral resolution of the spectrometer was 0.17 nm, consisting
of a total of 2068 wavelengths. A sample stage for spectral measurements (Figure 3a,b)
of each egg element (eggshell, meat spot or blood spot, bloody albumen, bloody yolk,
normal albumen, and normal yolk) was prepared. A focusing lens was installed in the
light-emitting part so that the light source could illuminate only the region of interest. The
light-receiving part was placed under the sample stage, and a disk with a field of view (FOV)
of 1◦ was installed in front of the Gershun tube (Ocean Insight, Inc., New York, NY, USA)
to reduce the amount of incoming light and prevent light saturation. For data acquisition,
gold-coated (JCR12V, 100 W; Ushio Inc., Yokohama-shi, Japan) and silver-coated halogen
lamps (JCR12V, 100 W; Ushio Inc., Japan) were used for sample illumination.
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2.3. Spectral Acquisition

After the spectral acquisition of each normal and bloody egg element, an initial predic-
tive model was developed for the detection of abnormal eggs. The model for classifying
abnormal eggs was constructed using a 3 × 2 factorial design method. Six groups were set
up using three different setting conditions of light-receiving and light-emitting parts, where
light saturation did not occur, and halogen lamps were coated with two kinds of metals
(gold and silver). A Gershun tube was mounted on the light-receiving part and on a disk
with a FOV of 10◦ in front of the Gershun tube to increase the light signal of the egg sample
(Figure 4). When measuring the spectrum of the egg, the blunt end of the egg where the air
cell was located, faced upward for the spectral measurement. The measurement condition
of the spectrum was set to a 10 ms integration time, and the spectra of 10 measurements for
each sample were averaged and used for analysis. Two types of light sources, gold-coated
and silver-coated halogen-tungsten lamps, were installed in the light bank (LS-F100HS)
and used to illuminate the eggs through a light guide (GS5-100F, Seokwang Optical Co.,
Ltd., Hwaseong-shi, Korea). A collimator lens (AL-15H, Seokwang Optical Co., Ltd., Ko-
rea) was used to collect light with a diameter of 10 mm at a working distance (W/D) of
20 mm so that light could illuminate only a certain area of the egg. The light-receiving part
(the light fiber connected to the spectrometer), which acquires light transmitted from the
egg, was positioned at 10 mm from the egg. The light-receiving and light-emitting parts
were constructed with three different configurations (I–III) to determine the optimized
measurement conditions, as shown in Figure 4a,b. In all cases, the light-emitting part was
placed 20 mm away from the egg. The spectra of 150 eggs (50 eggs, 50 normal eggs, and
50 yolk-destroyed eggs) were measured five times by rotating each egg, and 750 spectra
were obtained.
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2.4. Intensity Calibration

The intensity calibration was performed to convert the raw intensity value to the
relative transmittance value. The intensities of the white reference with a Teflon disk
and the dark reference in the darkroom state were measured for intensity calibration.
The calculation for the calibration was done by following Equation (1), where ‘W’ is the
transmittance intensity value of the white reference, and ‘D’ is the intensity value of the
dark room condition. ‘B’ is the intensity of the acquired transmittance spectrum value for
each wavelength [15]:

Calibration sample band =
B − D
W − D

(1)

For the dark reference measurement used for calibration, the spectrum was measured
10 times by closing the cover of the Gershun tube in a dark room. For the measurement of
the white reference, a white Teflon disk with a thickness of 0.5 mm and a diameter (Ø) of
10 mm was mounted in front of the Gershun tube without an egg and measured 10 times.
Subsequently, the average value of the obtained spectra was used for the calibration.

2.5. Data Preprocessing

The acquired spectrum includes various types of noise such as random noise, variation
from different sample shapes and the direction of light, and light scattering generated
from the sample. Therefore, applying a spectral preprocessing algorithm is necessary to
minimize unnecessary noise in the data [16]. Spectral preprocessing methods, including
normalization methods (minimum, maximum, and range normalization) [17], standard
normal variate (SNV) [18], multiplicative scatter correction (MSC) [19], and Savitzky-Golay
(SG) 1st and 2nd derivative for spectral pretreatment [20] were used in this study. In
general, SNV and MSC normalization methods reduce sample-to-sample variability and
adjust the baseline shift between samples. The SG 1st derivation removes the baseline
of the spectrum, and the SG 2nd derivation removes the baseline and linear trend of the
spectrum [16].

2.6. Model Development

The partial least-squares discriminant analysis (PLS-DA) method was used to develop
a classification model to predict three different egg groups (normal eggs, bloody eggs, and
yolk-destroyed eggs). Each group reference value was labeled as a number for PLS-DA
analysis: the normal egg was labeled as ‘0’ (dependent variable Y = 0), the bloody egg
spectrum data as ‘1’ (dependent variable Y = 1), and the yolk-destroyed egg group as ‘2’
(dependent variable Y = 2).

Y =


0 = Normal egg group
1 = Bloody egg group
2 = Yolk − destroy egg group

(2)

PLS algorithm is as the following equation:

X = TPT + E (3)

Y = UQT + F (4)

Y is a matrix of dependent variables containing reference values that define the condi-
tion of the egg (0, 1, and 2). X is an n × p matrix of independent variables corresponding
to each spectral variable. n is the number of sample wavebands and p is the number of
wavebands. Matrix X is decomposed into the loading matrix P, score matrix T, and error
matrix E. Matrix Y is composed of a loading matrix Q, score matrix U, and error matrix
F. For the development of the classification model, 70% of the 750 spectral data points
were randomly assigned to the calibration set, and the remaining 30% were assigned to the
validation set.
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2.7. Waveband Selection Methods

Because most egg grading lines in Korea measure 10 eggs per second, the per-egg-
spectra analysis time is a critical consideration. Herein, extraction of a few influential
wavebands from the multitude acquired from the spectrometer can reduce the processing
time per egg. In this study, four band selection methods, weighted regression coeffi-
cient [21], sequential feature selection [22], successive projection algorithm [23], and step-
wise regression [24] were used to investigate the important wavelengths for discriminating
abnormal eggs.

2.7.1. Weighted Regression Coefficient (WRC)

By measuring the weight, the weighted regression coefficient (weighted β-coefficient)
calculates the correlation between the wavelength of each predictor variable and the
corresponding response variable. In the WRC, auto-scaling was performed on the same
scale by dividing each spectral wavelength by the standard deviation of the PLS-DA model.
Generally, a higher magnitude of the beta coefficient indicates a variable that contributes
more to building the model. Therefore, wavelength regions with higher beta coefficients
are commonly selected as the important variables. However, the transmittance value of the
original sample spectrum must be considered when selecting the primary wavelength. For
example, a variable with a high beta coefficient and low spectral intensity in the waveband
may contribute less to the model prediction.

2.7.2. Sequential Feature Selection (SFS)

Sequential feature selection (SFS) is a method that repeatedly selects features indi-
vidually by checking the optimal model fit. The SFS consists of a criterion function and a
sequential search algorithm. The algorithm starts with an empty set and sequentially adds
features with high weights to the model based on a criterion function [22]. The reference
function can be defined in two ways. In the case of a classification model, the reference
function is the misclassification rate, and in the case of a regression model, it is the mean
square error. The search algorithm continued the same process until the required number
of variables was selected.

2.7.3. Successive Projection Algorithm (SPA)

A successive projection algorithm (SPA) is used to reduce collinearity between vari-
ables. The SPA is used to select the optimal variable by minimizing the overlapping
information included in the spectral information. The SPA algorithm starts with a single
waveband or variable, adds a new variable with the maximum projection and repeats the
process until the desired number of variables is selected. Thus, the algorithm produces a
subset of variables with the least linear relationship between them from all the variables
of the training set and applies this set to the cross-validation dataset to evaluate perfor-
mance [25,26]. SPA is widely used to select the optimal number of variables in multivariate
quantitative and qualitative analyses.

2.7.4. Stepwise Regression (SR)

The SR selection method is the most straightforward and practical method for the
variable selection of multiple linear regression models. A SR model is a method of adding
or removing variables based on the statistical significance in a regression model. In this
method, the p-value for the F-statistic is calculated to test the model with or without a
potential variable. Stepwise selection methods are divided into forward and backward
selection methods. This study uses the forward selection method to add variables to the
model. In the case of the spectrometer used in this study, the spectral resolution is 0.17 nm,
so each wavelength is very close. Therefore, in the case of a wavelength selected by the
WRC, SFS, or SPA methods, there is a possibility that the repeat may choose a wavelength
in a close and similar region, and there is also a possibility that it may overlap with the
wavelength information. However, this method is not effective in reducing the number of
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bands. Therefore, SR analysis was applied in this study to remove the overlapping spectral
regions. The model was applied to select 10 wavebands from the spectra obtained with
silver and gold lamps using the WRC, SFS, and SPA waveband selection methods. The
analysis was conducted by setting the threshold for the maximum p-value of the waveband
to 0.05, 0.01, 0.001, and 0.0001.

2.8. Model Performance Assessment

The accuracy obtained from the training and test sets for the developed model was
evaluated, and the beta coefficient was obtained according to the preprocessing method.
The formula used to evaluate accuracy is as follows:

Accuracy(%) =
Tp + Tn

Tp + Tn + Fp + Fn
× 100 (5)

In Equation, ‘Tp’ means true positive (the number of normal eggs detected as normal
eggs), ‘Fn’ means false negative (the number of normal eggs detected as abnormal eggs),
‘Tn’ means true negative (the number of abnormal eggs detected as abnormal eggs), and
‘Fp’ means false positive (the number of abnormal eggs detected as normal eggs). All
wavelength analyses were performed using MATLAB, version 2021b (MathWorks, Natick,
MA, USA).

3. Results and Discussion
3.1. Illumination Optimization

The spectral characteristics of the gold- and silver-coated halogen lamps used in this
study are shown in Figure 5. The silver-coated lamp emitted light in the wavelength
range of 400–700 nm, and the gold-coated lamp emitted light in the range of 500–1100 nm.
These phenomena are caused by the differences in the extinction coefficient and refractive
index depending on the coated mineral. The silver-coated halogen lamp showed a higher
intensity in the 565–585 nm range, known as the blood-sensitive region, than the gold-
coated halogen lamp. The light intensity in the 577 nm region, where hemoglobin reacts,
was also higher than that of the gold-coated lamp. The molecular structure of PPIX is similar
to hemoglobin (Hb), and the spectral absorbance regions are identical. The absorption
wavelengths of PPIX were 539, 589, and 643 nm [14], and those of hemoglobin were 415,
539, and 577 nm, respectively [27]. Eggshells are composed of calcium carbonate (CaCO3)
crystals. The calcium carbonate ions (CO3

2−) absorb light with a wavelength of less than
250 nm; therefore, the transmittance of light below 500 nm in eggs is generally low [1,27].
For this reason, the wavelength 415 nm cannot be used for bloody egg detection, and
the wavelength 539 nm overlaps with the PPIX wavelength, preventing the acquisition
of spectral information. Therefore, bloody egg separation can be accomplished using a
wavelength of 577 nm. However, this may interfere with detection because of the PPIX
detection wavelength of 589 nm [28]. Hence, the detector’s accuracy varies depending on
how quickly and accurately the wavelength of 577 nm can be used to detect bloody eggs.

The spectrometer did not detect light over 700 nm when a silver-coated lamp was
used. Therefore, the difference in the light intensity range for each light source can reduce
noise and information in the unnecessary range and increase hemoglobin classification
accuracy. Therefore, in this research, to reduce the noise and number of wavelengths of the
classification model, only a wavelength range from 500 to 680 nm was selected from the
entire wavelength range (192–1110 nm).
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tungsten lamp.

3.2. Egg Component Spectra

Figure 6 shows the results of checking the spectra of the silver-coated lamp and gold-
coated lamp for each element by separating the eggs into each component. When examining
the wavelengths obtained with the silver- and gold-coated lamp in transmittance mode
for bloody egg white, bloody egg yolk, and blood spot/meat spot, the intensity of the
components in the 565–585 nm region was lower than that of normal eggs (Figure 6b,d).
This is because hemoglobin absorbs light in response to wavelengths in the range of 577 nm.
Brant et al. [14] measured the spectrum of white-shell eggs mixed with blood using the
light transmittance method. It was reported that bloody albumen and albumen containing
meat/blood spots had a lower wavelength intensity than normal egg whites. Eggshells are
composed of calcium carbonate, and it is known that calcium carbonate blocks wavelengths
below 550 nm. This study also confirmed that the wavelength intensity increased above
550 nm when the silver and gold lamps were used. The eggshell contained PPIX, which is
known to absorb light at 643 nm [14]. Similarly, a decrease in wavelength intensity was
also observed in the 643 nm region in this study.

3.3. Abnormal Egg Detection Model
3.3.1. Raw Data Spectra

Figure 7 shows the average spectrum of the different angles of the incident light and
the transmitted light for each type of lamp. The results of the average spectra indicated
that the spectral intensity of bloody eggs and yolk-destroyed eggs was lower than that of
normal eggs. Titova et al. [29] reported that the spectral intensity of decayed and bloody
eggs was lower than that of normal eggs in an experiment with Vis/NIR transmittance
measurements in 550–850 nm. Furthermore, Brant et al. [14] reported a reduced spectral
intensity of bloody eggs compared to normal eggs. Chen et al. [9] reported a difference in the
wavelength between normal and bloody eggs in the 500–600 nm region using the Vis/NIR
absorption spectral measurement. The spectral intensity of bloody eggs increases in the
absorbance method because hemoglobin absorbs light, and vice versa in the transmittance
method [9,14,29]. The spectral shape of the bloody eggs obtained in this experiment was
the same as that reported previously.
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In the case of the gold-coated lamp under condition 1, no spectral difference was
observed between the bloody egg sample and the yolk-destroyed egg sample in the
550–600 nm region, unlike the silver-coated lamp spectrum result of condition 1. By com-
paring the wavelength changes under conditions 1 and 2, it was possible to confirm the
difference in the spectral pattern. In the condition 1, an increased intensity was confirmed
in the range of 642–708 nm. However, in the condition 2, the spectral intensity increased
before the range of 642–682 nm and then decreased.

3.3.2. Model Based on All Wavebands

Table 1 shows the results of the abnormal egg classification model according to the
type of light source (silver coating vs. gold coating) and the angle of the light-emitting
unit and light-receiving unit (conditions 1–3). It shows that the classification accuracy
of blood and yolk-destroyed eggs were low (78.4–85.2%) with gold-coated lamps under
condition 1. The classification accuracy of the gold-coated lamp model with condition 1
is inferior because the wavelength region of the yolk-destroyed eggs overlapped with the
wavelength region of the bloody eggs. When comparing the classification accuracy of each
condition, condition 2 showed a relatively high classification accuracy for both the gold-
and silver-coated lamps (92.0–98.7%), and the gold-coated lamp with mean normalization
preprocessing showed the highest accuracy. Chen et al. [9] classified sound and blood
spot eggs using a spectrometer in the VIS/NIR region and showed an accuracy of 90.6%
when using PLS-DA, and 96.9% for BLR accuracy was reported. The results of this study
showed high numerical accuracy than this research. Figure 8a,b show the confusion matrix
of condition 2 for the gold-coated and silver-coated models. The classification model result
of egg yolk destruction was 100% for both types of lamps. However, the gold-coated lamp
model showed a high prediction rate in overall accuracy (%), and the gold-coated lamp
model showed higher classification accuracy even when comparing recall and precision
results than the silver-coated lamp model. Lee et al. [8] conducted a blood egg-sorting
experiment using Vis/NIR spectrometer. Additionally, he reported that the PLS-DA model
accuracy was more than 95%, which is suitable for the sorting machine. Condition 2 also
showed more than 95% sorting accuracy in this study. The result indicates that the proposed
method can be used for the actual egg sorting machine. In the case of the model precision
for the sound egg (93.8%) measured with silver coated lamp was lower than that for the egg
with the gold-coated lamp (97.5%). The model precision of the blood egg was also higher
that for the egg with the gold-coated lamp. However, the yolk-destroyed egg precision of
gold-coated and silver-coated lamp models showed 100%. In the case of recall (%), also
known as sensitivity (%), the gold-coated lamp model showed higher values in every group
(blood egg, sound egg, yolk-destroyed egg).

The beta coefficient showed the maximum absolute value in the wavelength region of
577 nm under all conditions except for condition 1. In general, the beta coefficients with
the largest magnitudes are the most influential on the developed model. Therefore, in the
model constructed in this experiment, the absorption wavelength region of hemoglobin
(577 nm) had the most significant influence on model construction. As a result of confirming
the beta coefficient in Figure 9a, it was confirmed that the weight of the 640–680 nm region
was important when developing the model. The range of 640–680 nm is the red visible
light region, which is the weight for eggshell color. At 600–620 nm, the beta coefficient
decreased rapidly, caused by the difference in the spectral intensity of normal eggs and
yolk-destroyed eggs in the area.
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Table 1. The whole spectrum range PLS-DA model using the different light sources (gold and silver)
for abnormal eggs classification.

Total Accuracy (%)

Experiment Light
Source

Pre-Processing
Method

Calibration Set Validation Set

Normal Bloody YB Total Normal Bloody YB Total

Condition 1

Gold
Raw 95.1 85.1 81.7 87.3 92.1 85.4 78.1 85.2

Mean norm 81.4 86.5 76.4 81.4 76.3 91.3 66.7 78.4
SG 1st 94.1 82.0 85.6 87.2 89.5 75.7 77.1 80.8

Silver
Raw 94.4 96.3 100.0 96.9 100.0 92.7 97.8 96.8

Mean norm 100.0 92.7 97.8 96.8 100.0 92.7 93.5 95.4
Max norm 100.0 92.7 93.5 95.4 94.4 90.2 97.8 94.2

Condition 2

Gold
Raw 88.9 94.0 100.0 94.3 84.0 96.4 100.0 93.5

Mean norm 100.0 94.5 100.0 98.2 98.7 97.3 100.0 98.7
Max norm 100.0 95.9 100.0 98.6 96.0 96.4 100.0 97.5

Silver
Raw 87.8 84.5 100.0 90.8 89.2 87.0 100.0 92.0

Mean norm 93.9 86.0 99.4 93.1 97.3 90.2 100.0 95.8
Range norm 96.9 88.9 100.0 95.3 97.4 92.3 100.0 96.6

Condition 3

Gold
Raw 91.2 94.8 100.0 95.3 88.6 89.7 98.7 92.3

Mean norm 100.0 96.2 98.3 98.2 100.0 93.1 97.3 96.8
MSC 100.0 95.3 96.0 97.7 100.0 94.3 96.0 96.8

Silver
Raw 89.4 90.7 99.3 93.1 95.1 89.3 95.9 93.4

Mean norm 88.3 88.0 100.0 92.1 90.2 88.1 98.6 92.3
Range norm 90.4 90.3 100.0 93.6 92.7 85.7 100.0 92.8

Condition 1: the sensor is on the top of the egg’s blunt end, and the light comes in from a position perpendicular
to the sensor; condition 2: the sensor is on top of the blunt end of the egg, and the light-emitting part illuminates
the egg at an angle of 45 degrees; condition 3: the sensor is tilted 45 degrees away from the blunt end of the
egg, and the light is illuminated from the side of the egg (Figure 4a); Raw: raw spectrum; Mean norm: Mean
normalization; Max norm: Max normalization; Range norm: Range normalization; SG 1st: Savitzky-Golay 1st
derivative; MSC: Multiplicative Scatter Correction.
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Figure 9. The beta coefficient value of the abnormal egg classification model. (a) Gold−coated
condition 1 beta coefficient; (b) gold−coated condition 2 beta coefficient; (c) gold−coated condition
3 beta coefficient; (d) silver−coated condition 1 beta coefficient; (e) silver−coated condition 2 beta
coefficient; (f) silver-coated condition 3 beta coefficient.

The gold-coated lamp model under condition 2 showed a high beta coefficient weight
in the 539 nm region, which is the spectral region of PPIX, and a high beta coefficient value
in the 647 nm region near 643 nm. In general, wavelengths of 539, 589, and 643 nm are
known as the absorption wavelengths of PPIX, and wavelengths of 415, 539, and 577 nm
are known as hemoglobin-derived wavelengths [14,26]. It was confirmed that PPIX and
hemoglobin components affected model development. The silver-coated lamp model under
condition 2 confirmed the main wavebands at 577 and 598 nm. The 577 nm waveband
is the hemoglobin region and 598 nm is not a specific chemical component wavelength.
Nevertheless, the difference in the band ratio between 577 and 598 nm can help in bloody
egg classification. Rahman et al. [26] used a band ratio of 575/598 nm to detect the sex of
early stage chicken eggs and reported a higher rate of hemoglobin production in males
than in females. For this reason, a decrease in transmittance intensity due to absorption
at a wavelength of 575 nm, which is related to hemoglobin, was observed. In this study,
the beta coefficient of every model, except for the gold-coated lamp of condition 1, showed
high beta coefficients at wavelengths of approximately 577 nm and 598 nm. In this study,
condition 2 (Figure 4a) showed the highest abnormal egg classification accuracy with
gold and silver coatings. This suggests that the light transmission position of the egg
varies depending on the angle of the light-emitting unit and light-receiving unit, and the
classification accuracy may vary depending on the angle of the light-emitting unit and
light-receiving unit. Therefore, it is crucial to set an optimal angle to detect small blood and
meat spots.

3.3.3. Model Based on Selected Wavebands

Band selection was selectively conducted on the data obtained under condition 2,
which showed the best model classification accuracy. As for the spectral region, the
550–600 nm region showed the highest weight based on the beta coefficient of condition 2;
therefore, this region was selected to remove band noise generated by other materials. We
used three variable selection methods (WRC, SFS, and SPA) and SR for wavelengths selected
using the three variable selection techniques to remove wavelengths in similar regions.
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First, through the WRC method, four and five bands were selected from the silver-
coated and gold-coated models, respectively. For the chosen bands through the WRC
method, wavelengths of 556, 566, 578, and 596 nm were selected in the silver-coated
lamp model, and wavelengths of 556, 567, 579, 586, and 596 nm were selected in the
gold-coated lamp model (Figure 10). The model using different lamps selected a similar
wavelength region, with a difference of ±2 nm. Among them, the wavelengths of 578 nm
and 579 nm extracted from the silver- and gold-coated lamp models were related to the
effect of hemoglobin. A sharp difference in intensity was found between the wavelength of
the yolk-destroyed eggs in the 596 nm region and that of normal eggs in the 600 nm region.
This is due to the intensity difference between the different groups of samples. In the case
of the gold-coated lamps, the beta coefficient in the 586 nm region was high, known as the
PPIX wavelength.
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Figure 10. Selected bands using the WRC method: (a) silver−coated light WRC; (b) gold−coated
light WRC.

For the second band selection method, sequential feature selection (SFS), the cutoff
value was set to 3. In the silver-coated lamp data, 577, 597, and 598 nm were selected.
Additionally, in the gold-coated lamp data, the same 577, 595, and 598 nm wavelengths
were chosen. The wavelength of the corresponding region showed a similar trend, con-
firming that the acquired wavelength information corresponded to the hemoglobin region
(Figure 10).

The silver-coated lamp model selected wavelengths of 577, 589, and 598 nm when
using SPA, the third band selection method. In addition, for the gold-coated lamp model,
wavelengths of 576, 593, and 598 nm were selected. The three-wavelength selection algo-
rithms selected 9 and 10 wavelengths, including overlapping wavelengths in the silver
coating and gold coating models, respectively. The wavelength information selected using
the three-wavelength selection method is presented in Table 2. Wavelengths of 556, 566,
576, 577, 578, 589, 596, 597, and 598 nm were selected for the silver-coated lamp data, and
wavelengths of 556, 567, 576, 577, 579, 586, 593, 595, 596, and 598 nm were selected for the
gold-coated lamp data.

Although two different lamps were used, the wavelength ranges used to detect blood
and abnormal eggs were similar. In addition, some regions overlap in the selected wave-
length information. For example, the wavelengths of 576, 577, and 578 nm of the silver-
coated lamp are in a nearly similar range, so there is a need for additional wavelength
selection (Figure 11). In this study, a SR model was applied to the extracted wavelengths
and analyzed for additional wavelength selection. p < 0.05, p < 0.01, p < 0.001, and p < 0.0001
were applied to the selected silver- and gold-coated lamp spectra, respectively, as threshold
values. Six, five, four, and three wavelengths were selected for each threshold on the
silver-coated lamp model, and seven, six, five, and three wavelengths were selected for the
gold-coated lamp model (Table 3). Finally, the selected wavelength was used to build the
final classification model.
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Table 2. The selected wavelengths for identifying the abnormal eggs using different variable selection
methods.

Lamp Type Variable Selection
Method

Selected Variable
Numbers Selected Wavelengths (nm)

Silver Lamp

WRC 4 556. 566, 578, 596
SFS 3 577, 597, 598
SPA 3 577, 589, 598

Total band 9 556, 566, 576, 577, 578, 589,
596, 597, 598

Gold
Lamp

WRC 5 556, 567, 579, 586, 596
SFS 3 577, 595, 598
SPA 3 576, 593, 598

Total 10 556, 567, 576, 577, 579, 586,
593, 595, 596, 598
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Figure 11. Graphical representation of the selected wavebands using the three variable selection
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Table 3. Band selection results using a forward stepwise regression model to a gold- and silver-coated
lamp model.

Lamp Type Stepwise P Value
Threshold

Selected
Variable
Numbers

Selected Wavelengths (nm)

Silver Lamp

0 9 556, 566, 576, 577, 578, 589, 596,
597, 598

0.05 6 556, 566, 577, 589, 596, 598
0.01 5 556, 577, 589, 596, 598

0.001 4 577, 589, 596, 598
0.0001 3 577, 596, 598

Gold
Lamp

0 10 556, 567, 576, 577, 579, 586, 593,
595, 596, 598

0.05 7 556, 576, 577, 586, 593, 595, 598
0.01 6 556, 576, 577, 593, 595, 598

0.001 5 556, 577, 593, 595, 598
0.0001 3 577, 595, 598

3.3.4. Model Performance

This study developed a model to evaluate previously selected wavebands. Construc-
tion of the PLS-DA model. Table 4 presents the results of the final PLS-DA model developed
using the selected wavelengths. For the silver-coated lamp, the model classified normal
and yolk-destroyed eggs with 100% accuracy. However, in the case of bloody eggs, the
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classification accuracy decreased from 92.6% to 82% as the number of wavelengths de-
creased. The total accuracy decreased from 97.5% to 94% as the accuracy of bloody egg
classification decreased. The four wavelengths finally selected in the silver-coated lamp
model were 577, 589, 596, and 598 nm, and 577 nm was the wavelength range associated
with hemoglobin. In addition, in the case of 589 nm, as the wavelength range of PPIX,
the corresponding wavelength range was also confirmed to affect model construction.
However, the 589 nm waveband was removed by lowering the stepwise threshold to 0.0001.
In addition, the wavelength region of 596 and 598 nm is an area in which the wavelength
intensities of normal eggs and yolk-destroyed eggs are significantly different, and the band
is also considered to be a wavelength region that helps detect internal abnormalities with
characteristics of decreasing light transmittance.

Table 4. Selected bands of the PLS-DA model results using silver and gold tungsten lamps for the
discrimination of abnormal eggs.

Lamp Type Selected
Bands

Validation Set Accuracy

Normal (%) Bloody (%) YD (%) Total (%)

Silver
Lamp

9 100.0 92.6 100.0 97.5
6 100.0 86.6 100.0 95.5
5 100.0 83.8 100.0 94.6
4 100.0 82.0 100.0 94.0
3 100.0 82.5 98.7 93.7

Gold
Lamp

10 100.0 89.0 98.6 95.9
7 100.0 82.3 95.7 92.7
6 100.0 79.8 98.2 92.7
5 100.0 78.3 98.4 92.2
3 100.0 78.0 95.3 91.1

Normal (%): normal egg prediction accuracy (%); Bloody (%): bloody egg prediction accuracy (%); YD (%):
yolk-destroyed egg prediction accuracy (%); Total (%): total egg group prediction accuracy (%).

It was confirmed that the accuracy of the overall gold-coated lamp model was infe-
rior to that of the silver-coated lamp model. In addition, for the gold-coated lamp, five
wavelength regions (556, 576, 593, 595, and 598 nm) were considered important when the
same threshold of 0.001 was applied. By lowering the threshold of SR to 0.0001, three
major wavebands (577, 595, and 598 nm) were selected. In the case of the gold-coated
lamp, unlike the silver-coated lamp model, the accuracy tended to be relatively low, in the
range of 95.7–98.6% when detecting yolk-destroyed eggs. When classifying bloody eggs,
the accuracy gradually decreased as the number of bands decreased (78–89%), and it was
confirmed that the accuracy of bloody egg classification affects the overall accuracy. Based
on the overall classification accuracy, silver coating is useful for reducing to six wavelengths
with an accuracy of 95% or more. When constructing an economical device, this method
has more advantages than a gold-coated lamp because it requires less than 10 wavebands.

4. Conclusions

This study optimized (1) the light source, (2) the angle, and (3) wavebands for distin-
guishing abnormal eggs from normal ones. This study constructed classification models
using gold- and silver-coated halogen lamps in stationary devices. With the wavelength se-
lection method, it was possible to classify abnormal eggs (bloody eggs and yolk-destroyed
eggs) with an overall accuracy of 93.7–95.9% with a silver-coated halogen lamp and with
an accuracy of 91.1–95.9% with a gold-coated halogen lamp. It was found that, when
evaluating on the basis of model accuracy, the appropriate number of bands in the silver-
coated lamp-based model is 6 wavelengths and the appropriate number of bands in the
gold-coated model is 10. The results can be used to construct an economic spectrometer
that handles a particular wavelength range instead of the entire spectral range.
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Our research findings show the possibility of replacing the halogen-tungsten light
sources with LEDs. This is because LED utilization simplifies the overall system and
reduces computing time by reducing unnecessary signal information. We anticipate that
the results of this study will be used as primary research for optimizing abnormal egg
detection systems. Although this study showed good performance for optimizing the
system parameters in a pilot study, it still needs to confirm the system parameters and
the developed model to be used in the condition of high-speed sample transition of the
industry sorting environment, which can be the future work of this study.
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