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Abstract: Multi-UAV (multiple unmanned aerial vehicles) flying in three-dimensional (3D) mountain
environments suffer from low stability, long-planned path, and low dynamic obstacle avoidance
efficiency. Spurred by these constraints, this paper proposes a multi-UAV path planning algorithm
that consists of a bioinspired neural network and improved Harris hawks optimization with a periodic
energy decline regulation mechanism (BINN-HHO) to solve the multi-UAV path planning problem in
a 3D space. Specifically, in the procession of global path planning, an energy cycle decline mechanism
is introduced into HHO and embed it into the energy function, which balances the algorithm’s
multi-round dynamic iteration between global exploration and local search. Additionally, when the
onboard sensors detect a dynamic obstacle during the flight, the improved BINN algorithm conducts
a local path replanning for dynamic obstacle avoidance. Once the dynamic obstacles in the sensor
detection area disappear, the local path planning is completed, and the UAV returns to the trajectory
determined by the global planning. The simulation results show that the proposed Harris hawks
algorithm has apparent superiorities in path planning and dynamic obstacle avoidance efficiency
compared with the basic Harris hawks optimization, particle swarm optimization (PSO), and the
sparrow search algorithm (SSA).

Keywords: multiple unmanned aerial vehicles; Harris hawks optimization; bioinspired neural
network; energy cycle decline mechanism; dynamic obstacle avoidance

1. Introduction

The development of network information technology has promoted the emergence
and rapid development of UAV clusters [1]. Multi-UAV cooperative combat has become a
significant development trend in future air combat. Compared with a single UAV, multi-
UAV afford a higher combat effectiveness and stronger combat ability. Path planning [2]
technology provides path guidance for the UAVs, which is one of the key techniques to
achieve cooperative combat with UAVs [3].

In the actual flight of UAVs, there are still some problems, such as a slow calculation
speed, long flight path, unreasonable path planning, or inability to effectively reduce fuel
consumption. Therefore, how to improve the safety and effectiveness of flight has become
a practical problem to be solved.

Currently, multi-UAV path planning consists of global path planning [4] and local path
planning [5]. Global path planning means planning paths based on all information in a
given environment, with the literature suggesting several swarm intelligence algorithms [6],
such as the red deer algorithm (RDA) [7], pigeon-inspired optimization (PIO) [8], whale
optimization algorithm (WOA) [9], ant colony optimization (ACO) [10], and sparrow search
algorithm (SSA) [11]. Local path planning refers to selecting the UAVs’ next flight direction
according to the current environmental constraints and dynamic obstacles, effectively
improving the UAVs’ dynamic obstacle avoidance capability.

Obstacle avoidance [12] is key to realizing autonomous and intelligent UAV flights.
A perfect autonomous obstacle avoidance system should significantly reduce the damage
accident rate caused by UAV operation errors. The primary purpose of UAV dynamic
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obstacle avoidance is to make the UAV sense the position and speed of its surrounding
obstacles in real time. Compared with static obstacle avoidance, the core difference is that
the UAV must predict the obstacle location in real time and change its flight direction in
advance to achieve obstacles avoidance.

Therefore, aiming at the dynamic obstacle avoidance problem during the flight of
multi-UAVs, this paper introduces an energy cycle decline mechanism to improve the
traditional HHO algorithm, and combines it with a BINN. The UAVs’ path planning
switches between the improved HHO algorithm and the BINN according to the sensor’s
judgment of obstacles, so that the UAVs can effectively avoid static and dynamic obstacles,
improving the computing speed and convergence ability.

The rest of this paper is organized as follows. Section 2 shows related works. The path
planning modeling and constraints are then illustrated in Section 3. The overview of HHO
is given in Section 4. Section 5 introduces the specific content of improved BINN-HHO
algorithms for multi-UAV path planning. Section 6 carries out simulation experiments
and analyzes the results in four cases. Finally, Section 7 summarizes this research and
introduces future research directions.

2. Related Works

In recent years, researchers have conducted a lot of studies in the field of UAV path
planning, both in global and local path planning.

For global path planning, Ji et al. [13] proposed a double-dynamic learning PSO
algorithm to optimize multiple terrain problems. Huang et al. [14] combined reinforcement
learning and PSO (RMPSO) for rapid path planning and practical obstacle avoidance for
autonomous underwater vehicles (AUVs). Liu et al. [15] adopted an adaptive weight of
inertia to balance the algorithm’s exploration power and convergence rate. Ma et al. [16]
suggested a mixed solution based on an artificial bee colony (ABC) algorithm’s life cycle
to generate dynamically varying populations and ensure an applicable balance between
exploration and exploitation. Yan et al. [17] introduced a WOA based on a forward-looking
sonar to achieve the 3D path planning of UAVs. This work was also established for two-
dimensional (2D) optimal path planning [18]. Wang et al. [19] proposed an improved ACO
algorithm with dynamic adaptive parameters to solve the path planning problem. At the
same time, Yan [20] suggested an optimization strategy of UAV mission planning based
on a Gauss perturbation ACO algorithm to improve the effectiveness of UAV mission
planning. Yu et al. [21] developed a sparrow particle swarm (SPSA) algorithm to optimize
UAV path planning, which selected an appropriate model for trajectory initialization,
changed the update of a finder’s position, strengthened the influence of the starting and
ending lines on the path search, and reduced blind search significantly. Although global
path planning is simple and has low calculation requirements, it cannot solve the dynamic
obstacle avoidance problem effectively.

For local path planning, Qie et al. [22] proposed an artificial intelligence (AI) approach
based on a multiagent depth deterministic strategy gradient (MADDPG) to deal with dy-
namic environments effectively. Liu et al. [23] proposed a dynamic path planning method
for unknown environments that combined a little prior knowledge and real-time survey
results to improve the autonomous navigation ability of UAVs in a complex environment.
Yao et al. [24] suggested a rolling-optimization feedback algorithm named model predictive
control (MPC) to avoid sudden and mobile threats dynamically. Feng et al. [25] proposed a
modified artificial potential field to predict the obstacles’ positions and solve local oscilla-
tions or avoid local minima simultaneously. Additionally, Wang et al. [26] predicted the late
motion state of the target according to the target position and combined the radar feedback
data and state for dynamic path planning. These schemes improved UAV intelligence and
allowed long-term tracking. However, due to the local planning calculation complexity,
this method imposed high computational requirements on the UAV that made it difficult to
achieve global optimization.
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Recently, since the HHO algorithm has the advantages of few parameters and simple
calculation, it has often been used in UAV path planning. Heidari et al. proposed the
HHO algorithm [27] in 2019 inspired by the Harris hawks’ predation behavior, which
included search and development phases. HHO has fewer parameters and a stronger
global exploration ability compared with other swarm intelligence algorithms. However,
when solving complex optimization problems, the HHO algorithm suffers from a low opti-
mization accuracy and easily falls into a local optimization. Hence, Qu et al. [28] proposed
an improved HHO that utilized information exchange to optimize HHO’s continuous
function and applied it to engineering problems. Moreover, Krishna et al. [29] suggested
the hybrid Harris hawks algorithm using the pattern search algorithm (hHHO-PS) to en-
hance the global search process of the current HHO and extend HHO’s local search space
constraints. Zhang et al. [30] introduced an evolutionary algorithm based on an improved
ABC algorithm that exploited a reverse learning Harris hawks (HABC) scheme to acquire a
high convergence accuracy and fast convergence speed. Nandi et al. [31] combined HHO
with the grey wolf optimizer (hHHO-GWO) to solve nonlinear, nonconvex, and highly
constrained engineering design problems. Liu [32] developed an improved HHO variant
to overcome the shortcomings of blindness in the global exploration phase. Although the
above-improved HHO algorithm have achieved good results in different fields, there is
little research in the field of multi-UAV path planning.

In order to overcome the existing problems, this paper proposes an effective path
planning algorithm that consists of a bioinspired neural network [33] and improved Har-
ris hawks optimization algorithm with a periodic energy decline regulation mechanism
(BINN-HHO). The developed algorithm uses numerical coding to simulate the terrain, with
smooth surfaces obtained through interpolation. When the UAV sensor does not detect
a dynamic obstacle, a periodic energy decline regulation mechanism [34] is introduced
into the HHO and embedded into the energy function to conduct global multi-UAV path
planning. When the sensor detects a dynamic obstacle during flight, it starts from its cur-
rent position and employs the improved BINN method to replan the local path. When the
dynamic obstacles in the sensor detection area disappear, the UAVs complete the local path
planning and return to the predetermined trajectory of the global path planning. Compared
with the traditional path planning algorithm, the proposed algorithm in this paper realizes
a multiround dynamic iterative balance between global exploration and local exploitation
of the HHO algorithm and a real-time switching between static obstacle avoidance and
dynamic obstacle avoidance during UAV flight, which improve the shortcomings of tradi-
tional methods such as a poor dynamic obstacle avoidance effect and the ease of falling
into a local optimization, and a safer and faster UAV flight path can be generated in an
environment with dynamic obstacles.

3. Modeling and Constraints

This paper studies the algorithm of the UAVs’ flight path, in which a UAV is considered
as a node without specifically analyzing the control structure inside the UAV. Additionally,
since conventional fixed-wing UAVs do not have vertical takeoff ability and cannot hover,
this paper assumes that UAVs are multirotor UAVs that can adjust their flight speed and
height according to nodes and terrain.

Before path planning, we need to model the environment and barriers and set envi-
ronmental conditions. This section first introduces the establishment of the environmental
model, then sets the dynamic obstacle avoidance constraints, and finally describes the path
cost and path constraints.

3.1. Environmental Modeling

In order to simulate the real environment of UAV flight, a real battlefield environment
with dynamic and static obstacles was established. In this paper, the terrain was simulated
by numerical coding, and the peaks and valleys were described as matrices, where the
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matrix values represented the terrain elevation at the current coordinate position. The
terrain was finally smoothed and simulated by interpolation (Figure 1).
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Figure 1. Three-dimensional digital map.

This study considered the detection range of an enemy radar as the threat area,
calculated using Equation (1). The blue hemispheres in Figure 1 simulate and model the
threat areas.

Wi(x, y, z) =

{
∑
i
(x− xi)

2 + (y− yi)
2 + (z− zi)

2 = R2
i

z ≥ 0
(1)

where Wi (x, y, z) denotes threat area i, (xi, yi, zi) is the location of the radar, and Ri is the
radar’s detection radius.

When the UAV detects dynamic obstacles during its flight, it starts a local path replan-
ning, which requires local modeling according to the current environment.

Specifically, a local space was defined, and a 3 × 3 × 3 grid diagram comprising three
types of neurons was established, connected as illustrated in Figure 2. When the UAV
detects dynamic obstacles, there are 17 optional flight directions represented by neuron
Na. At the same time, the reference neuron Nr information is also examined. When the
neuron Nr behind Na is occupied by an obstacle, the neuronal activity information of Na
decreases, and the reference neuron Nr can be used as a buffer for UAV dynamic obstacle
avoidance to improve the success rate.
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When the UAV starts to avoid local obstacles, the motion information of the forwarding
obstacles is detected by the UAV’s onboard sensors, expressed as the state information of
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each neuron. The state information of the replacement neuron Na and the reference neuron
Nr are defined in Equations (2) and (3), respectively.

Na =


2E, target location

E, movable position
−2E, obstacle position

0, UAV position

(2)

Nr =


−2E, obstacle position

2E, target location
0, otherwise

(3)

3.2. Cooperative Obstacle Avoidance Constraints

During its flight, the UAV needs to avoid the detection of enemy radars, and at
the same time prevent collisions with other UAVs. Therefore, this paper considered the
reconnaissance area of the enemy radar and the safe distance between the UAVs as a threat
zone for UAVs’ flight, and we set cooperative obstacle avoidance constraints.

The threat areas, including radar detection areas and the safe distance between UAVs,
are illustrated in Figure 3, defined by the semisphere formed at the threat source O (xo,
yo, zo) with an action radius of R1. The UAVs need to avoid this threat area during
flight successfully.
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Hence, during the flight path from key node X to key node X + 1, the distance between
threat source O and any point T (xt, yt, zt) should meet the following requirements:

R1 <

√
(xt − xo)

2 + (yt − yo)
2 + (zt − zo)

2 (4)

Multi-UAV must keep a safe distance to avoid collisions between two or more UAVs
flying cooperatively. Therefore, a UAV was considered as the center and the minimum
distance R2 between two UAVs as the radius to construct a sphere. The distance between
two adjacent U1 (x1, y1, z1) and U2 (x2, y2, z2) must conform to the following formula:

R2 <

√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2 (5)

3.3. Path Cost Function

In order to evaluate the quality of the final mapped path, a path cost function was
established. The specific formula was as follows

F =
n

∑
i=1

(ω1li + ω2hi + ω3 fi) (6)
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where n means the path is divided into n segments, Li (i = 1, 2, . . . , n) means the path
length of section i, hi is the average flight height of section i, and fi means the composite
threat index of section i. ω1, ω2, and ω3 represent the weight coefficients corresponding
to path length, average flight height, and composite threat index, respectively. The fi was
calculated using Equation (7).

fi =

m
∑

j=1
Qij

(Dij)
4 (7)

where m is the total number of threat points, Qij (j = 1, 2, . . . , m) representing the threat
index of the path of section i to the threat point j that the control center can collect, and Dij
means the distance between the threat point j and UAV in section i.

In the individual fitness calculation, it is indispensable to normalize the substitution
value of each part in the path cost function to avoid calculation errors caused by the order
of magnitude difference of each part replacement value.

3.4. Path Constraints

Considering the actual flight environment and UAV performance limitations, the path
of UAV must meet some specific constraints [35]. Therefore, it is necessary to constrain the
distance, altitude, angle, etc., of the flight of the UAV.

A. Constraint on the Maximum Path

Because of fuel constraints or mission requirements, the maximum path length must
be defined, and the length of a UAV path must not be longer than the maximum path
length. The constraint conditions are:

n

∑
i=1
|li| ≤ Lmax (8)

where Lmax means the maximum path length.

B. Constraint on the Minimum Ground Clearance

In order to avoid a collision between the UAV and the ground during the flight, this
paper set the minimum ground clearance for the UAV. The height of the UAV and the
flight process must be higher than or equal to the minimum ground clearance constraint,
defined as

hi ≥ hmin (9)

where hmin means the minimum ground clearance.

C. Constraint on the Maximum Climb Angle

A maximum climbing or descending angle must be set during a UAV flight to ensure
the safety of the UAV flight. The constraint condition of its maximum climbing angle was:

|zi − zi−1|
ai

≤ tan θmax (10)

where θmax means the maximum angle, |zi − zi−1| means the height difference of path
section i, and ai is the horizontal projection length of path section i.

4. Overview of HHO

The HHO algorithm uses mathematical formulas to simulate the predation strategy of
Harris hawks under different mechanisms in a real environment. In the HHO algorithm,
the Harris hawks represent candidate solutions, and the prey becomes gradually close to
the optimal solution through continuous iterations. The HHO algorithm consists of two
stages: global exploration and local exploitation.
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The important condition for the accurate operation of the HHO algorithm is to main-
tain a proper balance between global exploration and local exploitation, and their transition
is mainly achieved through the prey’s energy equation, mathematically expressed as:

E = 2Eo

(
1− t

T

)
(11)

Eo = 2 ∗ rand− 1 (12)

where E is the prey’s escape energy, E0 denotes the initial energy state of the prey, T means
the maximum number of iterations, and rand represents a random number between 0 and 1.
When |E| ≥ 1, HHO enters the global exploration stage, while when |E| < 1, HHO enters
the local exploitation stage.

4.1. Global Exploration

In the global exploration stage, the Harris hawks search and monitor the space within
[lb, ub] and randomly search for prey according to two strategies. In the iteration process,
they update their position with a probability of q, as shown in the following formula.

Xt+1 =

{
Xrand − r1|Xrand − 2r2Xt|, q ≥ 0.5(

Xprey,t − Xaverage,t
)
− r3(lb + r4(ub− lb)), q < 0.5

(13)

where Xt+1 and Xt mean the positions of the Harris hawks in the (t + 1)th and tth iterations,
respectively. Xprey,t is the position of prey in the tth iteration, and r1, r2, r3, r4, and q are
random numbers between 0 and 1. Xrand,t is the random position of the Harris hawks in
the tth iteration. Xavergae,t is the average position of the Harris hawks with population N in
the tth iteration, and the formula is as follows:

Xaverage,t =
1
N

N

∑
i=1

Xi,t (14)

4.2. Local Exploitation

In the local exploitation phase, the Harris hawks select a siege strategy based on the
range of the prey’s escape energy E, |E| ≥ 0.5 for soft siege and |E| < 0.5 for a hard siege.
The random parameter u generated at initialization is used to represent the probability of
the prey escaping. When u ≥ 0.5, the prey successfully escapes the siege. According to
the range of the prey’s escape energy E and the probability of the prey escape u, the HHO
algorithm can be divided into four strategies.

A. Soft siege

When |E| ≥ 0.5 and u ≥ 0.5, called the prey escape abundant energy state, the Harris
hawks will prey, as energy consumption gradually affords the best position to dive and
catch the prey. The position update strategy is as follows:

Xt+1 = ∆Xt − E
∣∣JXprey,t − Xt

∣∣ (15)

∆Xt = Xprey,t − Xt (16)

J = 2(1− r5) (17)

where ∆Xt means the position difference between the Harris hawks and the prey during
the iteration process, J is the prey’s random jump, and r5 is a random number between
0 and 1.

B. Hard siege

When |E| < 0.5 and u ≥ 0.5, called the strength to run out of the prey state, the escape
energy E is extremely low. At this point, the Harris hawks will quickly surprise their prey,
and the position update strategy is as follows:
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Xt+1 = Xprey,t − E|∆Xt| (18)

C. Soft siege with progressive rapid dives

When |E| ≥ 0.5 and u < 0.5, called the prey escape abundant energy state, the Harris
hawks pounce before establishing a soft siege. In this situation, the Levy function (LF) [36]
is integrated into HHO to simulate the prey’s jumping and escape action with the updating
position strategy being:

Xt+1 =

{
Y : Xprey,t − E

∣∣JXprey,t − Xt
∣∣, i fF(Y) < F(Xt)

Z : Y + S× LF(D), i fF(Z) < F(Xt)
(19)

LF(x) = 0.01× u× σ

|v|
1
β

(20)

σ =

 Γ(1 + β)× sin(πβ
2 )

Γ( 1+β
2 )× β× 2(

β−1
2 )

 1
β

(21)

where D means the dimension of the problem, S represents a 1 × D random vector, u and v
are random values within (0, 1), and β is a default constant, set to 1.5.

D. Hard siege with progressive rapid dives

When |E| < 0.5, u < 0.5, called the prey escape energy shortage state, the Harris hawks
first establish a hard siege to capture the prey. Their position update strategy is as follows:

Xt+1 =

{
Y : Xprey,t − E

∣∣JXprey,t − Xm,t
∣∣, i fF(Y) < F(Xt)

Z : Y + S× LF(D), i fF(Z) < F(Xt)
(22)

To sum up, the HHO algorithm uses the prey energy E and escape probability u to
select the appropriate predation mechanism to achieve the optimal solution.

5. Path Planning Algorithm Based on BINN-HHO

In this research, a multi-UAV path planning algorithm that consists of a BNN and
an improved HHO with a periodic energy decline regulation mechanism (BINN-HHO) is
proposed to solve the multi-UAV path planning problem in a 3D space. When the UAV
sensor does not detect a dynamic obstacle, the improved HHO is adopted for multi-UAV
path planning. When the sensor detects a dynamic obstacle during flight, it employs the
improved BINN method to replan the local path. When the dynamic obstacles in the sensor
detection area disappear, the UAVs complete the local path planning and return to the
predetermined trajectory of the global path planning.

5.1. Global Path Planning Based on HHO with Energy Cycle Decline Mechanism

In the HHO algorithm, the size of the prey energy E reflects the search and capture
ability of the optimal solution of the Harris hawks problem. The larger the E, the easier
the HHO algorithm conducts global exploration. Otherwise, it is easier to perform local
mining. However, in the traditional HHO algorithm, E decreases linearly from a maximum
to a minimum in a single period. Therefore, the Harris hawk require several rounds of
synergy to round up and eventually capture the prey.

Thus, for the rounds between the mathematical Harris hawks and the prey “stalking–
escape” phenomenon, this research adjusted the mechanism and energy cyclical decline
so that the prey energy E depicted the multiplicity of the game. The rounds of the Harris
hawks’ stalking and the final capture of the prey were represented by the number of graded
energy cycles E. When E periodically approached zero, the Harris hawks approached and
captured the prey according to a probability, thus optimizing the multiple rounds of “global
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+ local” search. In this paper, the cosine function was used to describe the periodic recursion
of the prey energy E under this mechanism, defined as follows.

E = 2E0(1−
t
T
)· cos((2k +

1
2
)π

t
T
) (23)

where k = 0, 1, . . . is the decreasing cycle number of the prey energy E. Given the excellent perfor-
mance of the hHO-PD6 algorithm [34], we set k = 6 for the subsequent BINN-HHO experiments.

5.2. Local Path Replanning Based on Improved Bioinspired Neural Network

A BINN is derived from the circuit model of the nerve membrane and the action
potential transfer formula proposed by Hodgkin et al. [37]. In 1988, Grossberg applied this
method for motion control and path planning [38]. At present, more and more scholars
apply this method in the field of UAV path planning. Compared with other algorithms,
the BINN algorithm has the advantages of a high obstacle avoidance flexibility and a fast
calculation speed for path planning in a complex environment. However, sometimes there
are disadvantages such as a long planning path and a low security [38].

This paper improves the BINN algorithm by enhancing the activity of the target
neurons on the predetermined global planning path and adjusting the network model to
avoid falling into a local optimum solution, thus improving the algorithm’s efficiency. The
UAV initiate local path replanning when the sensor detects a dynamic obstacle ahead. The
UAV starts from the current position, and the current flight direction is used as the target
area for path replanning. When no dynamic obstacle ahead is detected by the sensors, local
path planning ends, and the UAV returns to the predetermined path.

The 3D task model of local path planning is shown in Figure 2. In this model, each grid
cell represents a neuron, and each neuron’s information is updated every second. Every
second, the activity information of the neurons is drawn according to the environmental
information detected by the sensors, and each neuron is connected with its neighbors
to form an active transmission network. In the basic BINN model, the UAV is placed
at the center of 26 neurons, and it spends one-third of its time calculating information
utilizing the backward-moving neurons, resulting in a low success rate of dynamic obstacle
avoidance. Since the UAV will not fly backward when flying on a predefined trajectory, the
BINN model presented in this paper places the UAV at the center of the first segment to
detect the two-step environment and make the information transmission of each neuron
more efficient.

dxi
dt

= −Axi + (B− xi)Se
i − (D− xi)Si

i (24)

where xi represents the activity value of the ith neuron, A controls the decay rate of the
neurons, and B and D represent the range of the neuron activity. Se

i stands for excitatory
excitement, and Si

i is the inhibiting excitement, expressed as:

Se
i = [As]

+ +
n

∑
j=1

ω[xj]
+ + [Rs]

+ (25)

Si
i =

(
[As]

− + [Rs]
−
)

(26)

where As and Rs represent external stimuli obtained by the environment, with their values
obtained by Equations (2) and (3). ωij means the connection weight of the ith and jth
neurons. This article used the angle between two neurons as a criterion, and the smaller
the angle, the greater the weight. [As]+ is the excitatory excitement having a positive value,
and [As]− and [Rs]− take a negative value when excitement is inhibited. n = 17 represents
the 17 alternative neurons.

The activity value of each candidate neuron was calculated using the above formula.
The UAV path selection strategy was as follows:

Pn ⇐ xn = max(xi, i = 1, 2, . . . , k) (27)
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where k represents the number of neurons near the neurons where the UAV is currently
located, which was k = 17 for this work. xn represents the neuron that is currently most
active, and Pn is its location.

When the UAV selects a path, it selects the neuron with the highest activity as the
next step by comparing the activity of adjacent neurons. These steps are repeated until the
sensors cannot detect dynamic obstacles, then the local path planning is completed, and the
UAVs return to the predetermined global plan. Because the activity of the corresponding
neurons is enhanced in the direction of the reference path, the disadvantage of the BINN of
easily falling into a local optimization is avoided.

5.3. Main Frame of Path Planning Based on BINN-HHO

Based on these introductions and analyses, the pseudocode and the flowchart of the
proposed BINN-HHO multi-UAV path planning are presented in Algorithm 1 and Figure 4.

Algorithm 1 Multi-UAV Path Planning Based on BINN-HHO

Inputs: The starting point, the ending point and threat environment information
Outputs: Optimal path length and corresponding trajectory diagram
Initialize the random population Xi (i = 1; 2; . . . N)
While (t < T)

Calculate the fitness value of Harris hawks;
Set the parameter Xprey as the best position of the prey;
for(each Harris hawk (Xi)) do
Update the initial energy E0 and jump strength J using Equation (12) and Equation (17);
Update E using Equation (23);
If (|E| ≥ 1) then // Exploration stage
Update the location vector using Equation (13);
If (|E| < 1) then // Exploitation stage
If (u ≥ 0.5 and |E| ≥ 0.5) then // Soft siege
Update the location vector using Equation (15);
If (u ≥ 0.5 and |E| < 0.5) then // Hard siege
Update the location vector using Equation (18);

If (u < 0.5 and |E| ≥ 0.5) then // Soft siege with progressive rapid dives
Update the location vector using Equation (19);

If (u < 0.5 and |E| < 0.5) then // Hard siege with progressive rapid dives
Update the location vector using Equation (22);
end
end
end

end
for i = 1: node

if (obstacle_flag = 1) %If the radar detects an obstacle
Initialize the neuron activity value;
target = i + 1; %Set the next global node to be the target point of the local

programming
while Reach the target point do

Use Equation (2) and Equation (3) to assign value to the state information of each neuron
according to the environmental information

Calculate the activity value of each alternative neuron by Equation (24)
Select the neighboring neuron with the highest activity as the next step length by Equation (27)
Update the location of neurons

end
end

end
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The UAV path planning steps based on BINN-HHO are as follows:

Step 1: Establish a 3D mountain model, set the threat zone, and initialize the parameters.
Step 2: The global static optimal path is obtained according to the HHO algorithm using a
periodic decrement mechanism.
Step 3: During the UAV flight, the sensor detects whether there is a dynamic obstacle in
front of it. If there is a dynamic obstacle, the algorithm initializes the neuron activity value,
and the BINN is used for local dynamic obstacle avoidance. After the dynamic obstacle
disappears, the UAV returns to the predetermined orbit and follows the predetermined
trajectory to reach the destination.
Step 4: Output the best path.
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6. Experimental Results and Analysis
6.1. Parameter Settings

In order to analyze the BINN-HHO algorithm’s performance in multi-UAV path plan-
ning, this paper conducted an experimental simulation and analysis in two environments,
including a static and a dynamic threat area. The simulation setup involved a Windows 11
64-bit operating system using an AMD Ryzen 7 5800H CPU at 3.20 GHz with 16 GB mem-
ory, equipped with a Radeon graphics card. The simulation software environment was
MATLAB 2018b.

The size of the simulated mission space was 150× 100× 20 km and the space contained
2–3 dynamic or static threat areas. For fairness and to enhance the experiment’s objectivity,
the overall scale N of all competitor algorithms was set to 30, and the maximum number of
iterations T was set to 200. The coordinates of the start point and end point were set as (10,
50, 5.57) and (130, 10, 6.38), respectively. The standard parameters of the four algorithms
were the same. The initial parameters of BINN-HHO and the information for the starting
and ending points are reported in Table 1.

Table 1. Initial parameters of BINN-HHO.

Parameter Meaning Value

ω1 Weight coefficient of path length 0.5
ω2 Weight coefficient of average flight height 0.3
ω3 Weight coefficient of comprehensive threat index 0.2
T Maximum iteration 200
N Population size 30
D Problem dimension 30

Lmax Maximum path 200
hmin Minimum ground clearance 5
θmax Maximum climb angle 90

6.2. Static Environment Contrast Experiment

To verify the efficiency of the proposed BINN-HHO algorithm in path planning under
a static threat environment, a comparative simulation experiment was conducted between
BINN-HHO and the other three algorithms in different static environments. Table 2 shows
the threat area information in the path planning.

Table 2. The threat information of a static environment.

Case Threat Area Coordinates Radius

Static case I
(60, 75, 0) 13
(70, 40, 0) 13

Static case II

(40, 60, 0) 10
(60, 40, 0) 10
(60, 70, 0) 10
(80, 50, 0) 10

A. Single-UAV Path Planning under a Static Environment

The developed BINN-HHO algorithm was applied for the path planning of a single
UAV under a static environment in static case I and compared with the HHO, PSO, and
SSA algorithms. The final 3D simulation result is illustrated in Figure 5, and all algorithms’
substitution values and convergence speeds are compared in Figure 6. The four algorithms
were tested 50 times, and their optimal and average path lengths are presented in Figure 7.
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Figure 6 highlights that in the same environment, the convergence speed and optimal
value of the BINN-HHO algorithm were significantly better than those of the HHO, PSO,
and SSA algorithms. The cost function value of BINN-HHO was 2.2% lower than that of
the HHO algorithm. Additionally, Figure 7 reveals that the average path length planned by
BINN-HHO was the shortest and was 1.9% shorter than that of the HHO algorithm. The
results proved that introducing the energy cycle decline mechanism could effectively and
dynamically balance the global exploration and local exploitation performance of the HHO
algorithm, thus improving its convergence speed, reducing the flight value, and shortening
the UAV flight path length.

B. Multi-UAV Path Planning under Static Environment

In order to verify the effectiveness of the BINN-HHO algorithm in multi-UAV path
planning with static threats, the simulation was conducted in environments with different
terrain and several threats, recorded as static case I and static case II, with the corresponding
environment information listed in Table 2. Similarly, the proposed BINN-HHO algorithm
was compared with the HHO, PSO, and SSA algorithms, with Figures 8 and 9 illustrating the
simulation results, and Figure 10 comparing the path lengths of the competitor algorithms.
The multi-UAV had the same start and end points, and the information is shown in
Table 1 above.

Figure 10 highlights that the average length of the six UAV paths planned by the BINN-
HHO algorithm was 1.5% shorter than that of the HHO algorithm in both environments.
Moreover, the experimental results revealed that for single and multi-UAVs, the proposed
path planning algorithm had a higher efficiency and could generate shorter planned
flight paths.

6.3. Dynamic Environment Experiment

To prove the dynamic obstacle avoidance ability of the BINN-HHO algorithm in
different dynamic environments, on the basis of the static threat area information of static
case I and static case II, dynamic barriers were added, which were denoted as dynamic
case I and dynamic case II, respectively. Table 3 shows the specific information on dynamic
obstacles of dynamic case I and dynamic case II. The dynamic obstacles moved at a speed
of 3 km/s.
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Table 3. The threat information of the dynamic environment.

Case The Starting Point Direction

Dynamic case I (50, 55, 13) y-direction
(90, 30, 13) x-direction

Dynamic case II (60, 50, 13) y-direction
(80, 40, 13) x-direction

A. Single-UAV Path Planning under Dynamic Environment

The proposed BINN-HHO algorithm was applied to a single UAV under a dynamic
environment and compared with the HHO, PSO, and SSA algorithms. Two different envi-
ronments were tested, dynamic case I and dynamic case II, and the detailed environment
information can be seen in Table 3.

The simulation results of the BINN-HHO algorithm and the other three algorithms with a
single UAV in a dynamically movable obstacle environment are shown in Figures 11 and 12.
The four algorithms’ substitution values and convergence speeds were compared, as shown
in Figure 13. The four algorithms were tested 50 times, respectively, and the statistics of their
optimal and average path lengths are shown in Figure 14.
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Figures 11 and 12 demonstrate that when the sensor detected obstacles ahead, the UAV
started from the current position, took the current flight direction as the target area and used
the BINN to replan the path. When the sensors did not detect any dynamic obstacles ahead,
the UAV returned to the predetermined path, and the local path planning was completed.
The experimental results showed that the improved method avoided dynamic obstacles
effectively and affords a collision-free flight. Furthermore, Figure 13 highlights that BINN-
HHO had the best convergence value and speed, where its convergence values were
reduced by 6% and 1.2% compared with those of the HHO algorithm. This demonstrated
that introducing the energy cycle decline mechanism could dynamically balance the global
exploration and local production performance of the HHO algorithm to obtain the optimal
value quickly.

Figure 14 reveals that the path lengths planned by the BINN-HHO algorithm in the
dynamic environment of a single UAV were 0.8% and 1.2% shorter than those of the
HHO algorithm.

B. Multi-UAV Path Planning under Dynamic Environment

To verify the superiority of the proposed fusion algorithm in the multi-UAV dynamic
obstacle avoidance environment, six UAVs were added to the above experimental envi-
ronment. Similarly, multi-UAV had the same start and end points, and the information
is shown in Table 1 above. The threat range information is presented in Table 3. The
experimental simulation results are illustrated in Figures 15 and 16, and the statistics of
their optimal path length and average path length are shown in Figure 17.

The results in Figures 16 and 17 infer that the six UAVs could effectively avoid dynamic
obstacles flying from the front or side without colliding with mountains, threatening areas,
and other UAVs.

Figure 17 demonstrates that the average flight path of six more UAVs planned by
the BINN-HHO algorithm was 0.61–0.68% shorter than that of the HHO algorithm and
1.5–2.9% shorter than that of the PSO and SSA algorithms, indicating that the path length
planned by BINN-HHO was shorter and more stable. The above experiments demonstrate
that compared with the basic HHO, PSO, and SSA algorithms, the proposed improved
algorithm is more stable in dynamic obstacle avoidance, and the planned path of BINN-
HHO is shorter and better.
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7. Conclusions

This article proposed an improved BINN-HHO algorithm for multi-UAV path plan-
ning. The 3D threat environment model was established by simulation, and the path cost
function was set up, transforming the path planning problem into a multidimensional
function optimization problem. On this basis, an energy cycle decline mechanism was
introduced into the energy function of the HHO algorithm to improve the dynamic iterative
balance between global and local search. When dynamic obstacles were detected, the BINN
was activated to replan the path to assist UAVs in avoiding dynamic obstacles, allowing
them to continue to fly along the predetermined path. The experimental results showed
that the BINN-HHO algorithm could effectively avoid static and dynamic obstacles and
obtain a safe and feasible flight path, 0.6–1.9% shorter than that of the HHO algorithm and
1.5–4.1% shorter than that of the PSO and SSA algorithms. The results highlighted that the
proposed BINN-HHO algorithm had certain advantages, such as a faster convergence and
a shorter flight length, in solving UAV path planning problems with static and dynamic
threats. Future work will continue to focus on the obstacle avoidance problem of irregular
flying obstacles in the flight process of multi-UAV. In addition, our research will always
aim to find a smooth collision-free path with the shortest speed and a higher safety in other
complex environments.
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