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1. Introduction

Electroencephalography (EEG) signals are used widely in clinical and research settings.
Electrical activity generated from large populations of neurons in the brain is measured
using scalp-mounted EEG sensors. As a result, we can obtain information regarding brain
activity in various cognitive and emotional states. Due to their ability to provide this type
of information, EEG signals are used in applications such as monitoring levels of alertness
and mental engagement, investigating chronic conditions, and as signals for biofeedback
or assistive devices. Innovations in this field have led to advancements in signal processing
methods and the development of novel applications ranging from brain–computer inter-
faces (BCIs) to neuromarketing. EEG signals can be processed in time, frequency, or spatial
domains, providing multi-dimensional means to interpret brain activities. Aside from pro-
viding invaluable information, EEG signals also have the advantage of capturing complex
neural patterns at a high rate of speed. As a reliable, portable, and non-invasive way to
measure the electrical activity in the brain, EEG is a central methodology for affordable
and practical research and a promising clinical healthcare tool. This Special Issue focuses
on EEG signal processing for biomedical engineering applications with original research,
communication, and review papers demonstrating broad methodologies and applications.
Fifteen papers address various informative themes. These range from examining physical
innovations for the development of EEG sensors to studies in clinical populations such as
individuals with epilepsy, spinal cord injury, and Amyotrophic Lateral Sclerosis (ALS). In
this Special Issue, many novel EEG signal-processing strategies and analysis techniques are
explored.

2. Overview of Contribution

Two communication papers are included in the Special Issue, with the first highlight-
ing a new concept for EEG sensor development [1]. As EEG signals are acquired from the
scalp, this paper presented an anatomically realistic textile-based head phantom for the as-
sessment of EEG sensors. A gelatin-based head phantom is long-lasting and can accurately
mimic body electrode frequencies, allowing for stable and accurate measurements of EEG
signals. The outcomes from this paper will add to this field by allowing newly developed
EEG electrodes to be validated. The second communication paper [2] presented a novel
network analysis approach using a multi-layer model. Traditionally, in graph analysis,
models are based on single layers. However, with the brain being a multi-layer network,
analysis will be constrained when conveying brain topologies through single-layer models.
Multi-layer networks produce more reliable approximations of the topology and dynamics
of motor functions from the brain.

Within the theme of graph analysis, papers by Hag et al., Perez-Ortiz et al., and Šverko
et al. all examined functional connectivity from EEG signals [3–5]. Friston (1994) defines
functional connectivity as the temporal coincidence of spatially distant neurophysiological
events [6]. It is said to have a measurable statistical relationship that captures two things
occurring together which are related to each other [7]. Hag et al. used hybrid multi-domain
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EEG-based machine learning feature sets to assess mental stress. The functional connectiv-
ity network showed a statistically significant decrease during mental stress. Results from
the time, frequency, and functional connectivity domains showed that the accuracy in de-
tecting mental stress from EEG signals was highest with functional connectivity. However,
combining the features from all three domains improved the overall accuracy, demon-
strating greater nuance when using multiple EEG processing methods. Perez-Ortiz et al.
examined functional connectivity and frequency power alterations in evoked potentials,
specifically P300, in patients with ALS. P300 signals were utilized in a BCI device to control
a robotic arm. People with ALS had overactivated beta bands and under-activated alpha
bands in connectivity measures compared to the control participants. The results indicated
that connectivity in EEG signals may be a valuable tool for monitoring disease progress and
measuring cognitive atrophy. In their study, Šverko et al. presented a method for analyzing
EEG connectivity. In this paper, they proposed the complex Pearson correlation coefficient
(CPCC) as a unique single measure to provide information on phase locking and weighted
phase lag. This proposed connectivity measure could accelerate the computation of brain
connectivity and enhance our understanding of brain processes. A review paper in this
issue also showed the importance of connectivity measures in mental stress assessment. In
their review [8], Katmah et al. found that the selection of the most appropriate features is
crucial to successful mental stress detection. Features with additional connectivity network
measures and deep learning approaches could improve detection accuracy in terms of
mental stress.

The examination of EEG signals in clinical populations can contribute to a better under-
standing of brain processes in people with neurological disorders. Tran et al. explored the
effects of virtual reality (VR) intervention on the brain activity of people with neuropathic
pain and spinal cord injury [9]. A significant reduction in pain intensity was reported
after VR intervention, corresponding to statistically significant changes in EEG signals,
specifically in the alpha and low gamma bands. Guo and Wang [10] examined brain activity
associated with acupuncture. As the scientific explanation for the effects of acupuncture is
still unknown, in this research, they studied the power spectrum changes during acupunc-
ture manipulation. They found acupuncture manipulations were associated with delta and
alpha rhythms. The neural responses from this study may have implications for the use of
acupuncture as a complementary treatment for improving symptoms in neurological disor-
ders. EEG signals in epilepsy were examined in two other studies [11,12], in which novel
analysis techniques were assessed. Sánchez-Hernández et al. evaluated dimensionality
reduction for feature selection methods with classification methods for epileptic seizures
from EEG signals. They found that reducing selected features increased the classifier’s
performance. Obukhov et al. used wavelet ridges as a diagnostic EEG feature for the
detection of epileptic seizures. It was shown that the application of this methodology
will reduce the total duration and number of fragments needed for analysis. Additionally,
Hossain et al. examined wavelet decomposition for the correction of movement artifacts
in single-channel EEG with fNIRS signals [13]. This method combined wavelet packet
decomposition with canonical correlation analysis. This proposed method outperformed
comparative methods in removing motion artifacts from a single EEG channel.

Novel EEG signal-processing methods for various applications were also examined in
four additional papers which focused on other topics. Zhang et al., in their review paper,
discussed the application of transfer learning for EEG signals and BCIs [14]. In machine
learning, transfer learning refers to using a model developed for one task as a starting
point for constructing another model. The decoding performance in classification and
regression tasks was found to be effective with this method. Kamrud et al. [15] investigated
the detection of vigilance decrement in both cross-participant and cross-task modes, that
is, robust models which can perform in unseen conditions. The research from this paper
demonstrated that models could be built for EEG as a marker of vigilance levels even from
unseen tasks. Charuthamrong et al. [16] used both auditory- and visual-based event-related
potential to assess speech discrimination. Both the visual and auditory methods achieved
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reasonable accuracy rates and were shown to be potentially suitable for use in an automatic
speech discrimination assessment system. Additionally, Zhou et al. used evoked potentials
to investigate repetitive transcranial magnetic stimulation (rTMS) [17]. The goal was to
develop rTMS EEG-evoked potentials as biomarkers for cortical excitability from rTMS. The
changes found in the evoked potentials may have reflected GABAergic-mediated inhibition
in specific brain regions.

3. Conclusions

A primary focus of this Special Issue was the demonstration of new methods for
the analysis of EEG signals for biomedical engineering applications. The examination of
various analysis methods led to the presentation of a diverse range of novel strategies.
Through their results, the authors of these papers have provided a better understanding of
cognitive states and brain activity based on different EEG signal processing methodologies
and machine learning strategies.

Conflicts of Interest: The author declares no conflict of interest.
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