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Abstract: Insect pests and crop diseases are considered the major problems for agricultural produc-
tion, due to the severity and extent of their occurrence causing significant crop losses. To increase
agricultural production, it is significant to protect the crop from harmful pests which is possible via
soft computing techniques. The soft computing techniques are based on traditional machine and deep
learning-based approaches. However, in the traditional methods, the selection of manual feature
extraction mechanisms is ineffective, inefficient, and time-consuming, while deep learning techniques
are computationally expensive and require a large amount of training data. In this paper, we propose
an efficient pest detection method that accurately localized the pests and classify them according
to their desired class label. In the proposed work, we modify the YOLOv5s model in several ways
such as extending the cross stage partial network (CSP) module, improving the select kernel (SK)
in the attention module, and modifying the multiscale feature extraction mechanism, which plays
a significant role in the detection and classification of small and large sizes of pest in an image. To
validate the model performance, we develop a medium-scale pest detection dataset that includes
the five most harmful pests for agriculture products that are ants, grasshopper, palm weevils, shield
bugs, and wasps. To check the model’s effectiveness, we compare the results of the proposed model
with several variations of the YOLOv5 model, where the proposed model achieved the best results in
the experiments. Thus, the proposed model has the potential to be applied in real-world applications
and further motivate research on pest detection to increase agriculture production.

Keywords: artificial intelligence; crop diseases; convolutional neural network; Faster-RCNN;
machine learning; object detection; pest detection; pattern recognition; YOLOv5

1. Introduction

In agricultural production, pest detection has always been a serious problem, which
is responsible for 20% of annual crop losses globally [1,2]. In 2021, the affected areas
caused by pests and major diseases in China had reached almost 400 million hectares.
Therefore, timely detection of crop diseases and pests is crucial to agricultural production,
which has a significant impact on grain production, agricultural development, and farmers’
income increase [3]. Building an artificially intelligent model based on agricultural image
processing is one of the more effective ways to detect pests and classify them according
to the class label [4], which can give an efficient response and intervention to agricultural
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production, increase the effectiveness of pest detection model, reduce the losses in the
agricultural production.

Therefore, researchers used traditional machine learning (ML) [5,6], and deep learning-
based models for an efficient pest detection system. The traditional methods of detecting
insect pests based on morphological features are limited by the need for trained taxonomists
to make accurate identifications [7]. It is important to note that traditional methods for pest
detection come with many limitations. Recently, several methods for automatic pest detec-
tion using traditional machine learning are proposed [8]. For example, Faithpraise et al. [9],
proposed K-means clustering algorithms for pests detection. Manual feature extraction
and relative filter were used to recognize various species of pests, which is time-consuming
when the dataset is large. Rumpf et al. [10], proposed a support vector machine and spectral
vegetation-based sugar beet diseases recognition. These methods are capable of pest detec-
tion; however, several limitations restrict the traditional ML-based model from real-world
implementation such as when multiple features have to be extracted manually, traditional
ML algorithms are often inefficient. Secondly, in the traditional ML-based methods, the
manual features extraction and classification is time-consuming, tedious, error-prone and
requires computer experts.

The concept of deep learning refers to ML that uses multilevel neural networks for
learning and extracting automatic end-to-end deep features [11-17]. This strategy improves
detection performance while reducing the time and effort of manual feature extraction [18-20].
A DL-based method for pests and disease recognition in tomato leaves was proposed by
Shijie et al. [21]., which obtained an average accuracy of 89%. However, this approach is
only applicable to recognize pests in a simple background, which restrict the system from
real-world implementation. Gandi et al. [22]., employed a Generative Adversarial Network
to augment the dataset, and then the augmented dataset was fed to a pre-trained CNN
model for plant disease classification. Another approach, used a DL-based method for fruit
fly identification and obtained 95.68% accuracy [23]. DL-based methods to recognize ten
different pest species were proposed by Dawei et al. [24]., and achieved 93.84% accuracy.
Analysis of previous work shows that DL methods significantly improve pest classification
performance. However, several factors hinder the existing of DL-based methods from real-
world implementation such as lack of suitability for mobile devices, deficiency of robustness,
lower accuracy, and a high equipment cost. Therefore, we propose a novel method for
efficient pest detection based on a modified YOLOv5 model. The YOLOv5 model has several
advantages over state-of-the-art object detection model, such as fast inference speed, higher
mean average precision (mAP), strong customization, and lower computational complexity,
which ensures the detection accuracy. We further improve the YOLOv5 model with several
modifications to achieve higher mAP with lower computational cost. In the designing of the
proposed model, we firstly modified the cross stage partial network (CSP) to focus more on
the shallow feature extraction while the feature extraction module iterates to get more details.
Furthermore, the modified select kernel (SK) in the attention module has been proposed in
residual blocks, where the channel dimension is reweighted and fused. In the detection head,
the multi-scale features detection is improved to detect weak and small objects. To the end of
this, the major contribution of the proposed work is as follows:

1.  We develop a medium-scale pest (insects) detection dataset that includes diverse
images, captured in a challenging environment, where the object has high visual
similarity with the background. The dataset consists of five different classes that allow
a network to efficiently detect and recognize the pest species.

2. We propose YOLOvV5s models with several modifications such as extending the CSP
module, improving the SK Attention module, and modifying the multiscale feature
extraction mechanism to efficiently detect pest, and reduce computational cost.

3. We perform experiments with various versions of YOLOV5 using a self-created dataset,
where the proposed model achieves the best results in terms of model accuracy and
time complexity analysis.
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2. Related Work

The agriculture field plays a vital role to hike the economy of the countries, so it is
essential to find-out harmful pests in natural environments. Therefore, several researchers
have been working to develop an automatic system [25], for the recognition of insects in
the agriculture field. Cheeti et al. [26], utilized a Convolution Neural Network (CNN) [27]
and You Look Only Once (YOLO) model to classify and detect pests in the agriculture
fields. They used their own manually created dataset from the internet through which
they obtained promising performance in terms of the testing results. As follow-up research
by Mique et al. [28], developed a technique for detecting rice pests and diseases with
the help of CNN [29], and image processing. They trained their model on collected
images from the internet and achieved 90.9% training results in terms of accuracy. In
addition, they deployed their proposed model on the mobile application for public use.
However, their technique is quite expensive and needs further improvement in terms of
accuracy. Nam et al. [30], proposed a pre-trained Single Shot MultiBox Detector (SSD)
model with some fine-tuning strategies for the accurate detection and classification of trap
insects. They employed Deep CNN (DCNN) [31], and achieved 84% and 86% of testing
accuracies using the custom dataset. However, their proposed model had an enormous
performance as compared to the state-of-the-art. Li et al. [32], employed the DCNN
networks (namely Faster-RCNN, Mask-RCNN, and Yolov5) for the effective detection of
insects in agriculture fields using the IP102 dataset. They achieved a promising performance
and stated that the Faster-RCNN and Mask-RCNN have better results than Yolov5, which
leads to 99% while Yolov5 has 97% performance in terms of accuracy, but the real-time
testing speed for pest detection and localization of Yolov5 was faster than the Faster-RCNN
and Mask-RCNN. Alsanea et al. [33], proposed an effective region-based CNN to detect
and classify red palm weevil (RPW), their model achieved optimal performance in terms
of evaluation matrices using the RPW dataset, however, the inferencing speed and model
complexity restricted their method from a real-time implementation. Kouba et al. [34],
utilized a sensor-based technique for monitoring agriculture. They used a customs dataset,
which was created with the help of accelerometer sensors. In addition, their method is
deployed on a mobile application for public use, which early detects the RPW based on
their movement. Hu et al. [35], used a near-infrared imaging technology-based method and
YOLOVS for the accurate classification and detection of the pest in the agriculture fields.
They obtained promising performance which was 99.7% of mAP using their custom dataset.
Burhan et al. [36], compared the performance of four pre-trained deep learning models
(namely VGG16, VGG19, ResNet50, and ResNet50V2) with some fine-tuning strategies for
the detection of pests and identification of rice field diseases in agriculture fields. They
achieved comparatively promising performance with an accuracy of 86.799%. However,
their proposed model needs further improvement to enhance the performance in terms of
evaluation matrices. Svenning et al., [37], proposed a pretrained CNN-based model with
some fine tuning techniques for the classification of carabid beetle species. They achieved
an average classification of 74.6% while it classified 51.9% of test images accurately to
species level. The speed of their proposed model in the testing phase bounded the model
from a real-time implementation. Chen et al. [38], proposed an Al mobile-based model
for the detection of pests in the agriculture fields using a custom dataset. They focused
on different types of pretrained deep learning (DL) models named faster region-based
convolutional neural networks (R-CNNs), single-shot detectors (SSDs), and YOLOv4
for correct identification. They stated that the YOLOv4 achieved comparatively better
performance in terms of Fl-score, i.e., 100% fl-score in mealybugs, 89% in Coccide, and
97% in Diaspididae.

Liu et al. [39], proposed an end-to-end region-based DL model named PostNet for
multi-class classification and identification of pests using the MPD2018 database. Their
article is focused on three tiers of processing, in the first tier, they utilized the concept of
Channel-Spatial Attention (CSA) to enhance the performance of the model. The second
tier is based on region proposal network while the third is focused on the replacement of
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the fully connected (FC) layers. The experimental results show that the PestNet achieved
75.46% mAP, which is comparatively better than state-of-the-art methods. However, their
model has enormous performance and needs more enhancement in terms of evaluation
matrices. As a follow of research Liu et al. [40], implemented a DL-based YOLOvV3 model
to detect pest and tomato diseases in a natural environment in the agriculture fields using
a custom dataset. Similarly, Legaspi et al. [41], implemented a DL-based YOLOv3 model
for the classification and detection of pests especially whiteflies and fruit flies using a
custom dataset. Their research is focused on hardware implementation namely Raspberry
Pi, desktop, and web applications for public use. Their experimental result demonstrates
that the model obtained 83.07% performance in terms of accuracy for the classification and
detection of pests. However, their technique needs further enhancement for accurate predic-
tion. Lim et al. [42], proposed a pre-trained convolution-based AlexNet model with several
fine-tuning strategy techniques for the accurate classification of insects in real environments.
Karar et al. [43], presented a DL technique based on the mobile application to recognize
pests in the agriculture fields. Their experiment results are focused on Faster-RCNN for
the accurate identification of pests in a real environment. The experiments of the proposed
model show that the model achieved 99.0% accuracy in the testing phase. Likewise, their
proposed model is comparatively better than other state-of-the-art DL architectures such
as SSD and traditional back propagation (BP) neural networks. G.M.Esgario et al. [44],
proposed a CNN model for automatic biotic stress detection in coffee leaves. They also
developed a mobile app to assist coffee farmers. Furthermore, Habib et al. [45] proposed
a traditional machine learning-based model to automatically recognize and classify the
brown- and yellow-rusted diseases in wheat crops. In [46], the researchers proposed a
novel DeepPestNet model for pest recognition, which consists of eight convolutional layers
and three fully connected layers, and achieved higher performance. However, their method
is computationally expensive.

Based on the literature review, traditional machine methods learning need two basic
steps such as features extraction and classification, where the selection of an effective
features extractor and classifier is a major concern, time-consuming, and requires experts
in the fields. The deep learning model leverages these issues by adopting an end-to-end
features extraction mechanism, however, in the literature some of the methods produced
limited results and the other requires large computational resources, which cannot be
deployable over resource constraints devices for real-time pest recognition.

To cope with this, we propose a DL-based YOLOVS pipeline for the real-time recogni-
tion of pests in the natural environment. We conduct our experiment on a custom dataset
and achieved promising performance in terms of accuracy. In addition, our proposed
model is also focused on reducing the false prediction rate and outperforming other state-
of-the-art methods. In the coming section, we provide details information on the proposed
method of our article.

3. The Proposed Method

In this section, we provide a detailed description of the proposed DL-based object
detection model. For object detection, one-stage DCNN such as YOLOv3, YOLOv4, and
YOLOVS5 have obtained remarkable performance in terms of inference speed, model size,
and accuracy. In these versions, the YOLOVS is the most recent version, which utilizes
various network structures and two different varieties of CSP modules to increase the
YOLOvV4 performance. Therefore, this work presents a method based on YOLOVS5 for pest
detection and recognition by modifying the network structure. As a result, the proposed
model obtained good performance to detect weak and smaller objects efficiently and
effectively in the tested images. The proposed framework is demonstrated in Figure 1,
which consists of three parts that are backbone, neck, and head. The dimension of the input
images changes from 512 x 512 x 3 to 256 x 256 x 4 after the focus module operation.
Then, we use an extended CSP module in the backbone to extract promising features from
shallow and deep feature maps after the operation of the focus module. We also introduce
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Input Image

an attention mechanism in the CSP, which focuses more on small objects in an image. In
the SPP module, a concatenation operation is used for fusing the acquired results from
channel dimension using four pooling layers that efficiently solve the problem in anchors
and feature maps. In the neck part, a path aggregation network (PANet) is used for feature
pyramid generation and the bottom-up and top-down approach is used for multiscale
features fusion obtained from the backbone network and increase the object detection
performance using different scales. Finally, in the head part, we use four different sets of
feature maps for object detection at different scales with recognition of class labels and
score predictions.

# —D[ 256x256]—>[128x128}>[64x64H32x32H16x16H SSP H SK *[l6x16J > #
J

Backbone Part E 16x 16

Focus module

|

CSP module

|

Convolution

D

Concatenation

1

Detection head

32x32 32x32 @/\E e
| 32x32 /
: N

i 64 x 64

; Final Output
-[ 128x 128 }»6 128x 128 }_‘@—\E
128 x 128
Neck Part Head Part

Figure 1. Illustrated the overall framework of the proposed model for pest detection.

3.1. Extended CSP Module

In the DL-based model the hidden layers are gradually increasing, which extracts
the semantic information of high-level features more precisely, with a reduced number of
dimensions. In contrast, the dimensionality of the shallow layer is higher, which extracts
the low-level feature in the network. For weak and small object detection with a few
features, deep CNN may fail to achieve promising results. To increase the feature extraction
capability for the weak and smaller objects in the input image, it is essential to make full
use of the high-level features of the CNN in the shallow layer. Therefore, in the features
extraction part, we extended the thickness of the CSP module in the shallow layer for
feature extraction. This strategy is a follow-up in the upcoming layer to extract the multi-
scale object features from shallow to deeper layers. Furthermore, when deepening the CSP
in the entire network for feature extraction by controlling the depth and width factors, we
expand the CSP module thickness to extract shallow features. The backbone part of the
proposed model is shown in Figure 2. This strategy increases the model size and complexity
but also increases the capability to extract prominent features from the shallow layers which
are beneficial to detect small and weak objects in images. Moreover, the CSP part splits
the features maps into two branches for feature extraction and then fuses them, which can
obtain a richer gradient combination with a reduced number of calculations.

g H{ Focus H Conv I CSp H Conv I CSp ]—{ Conv I CSp ]’[ Conv I SSP I CSp }'
Input Image | i

’

Figure 2. The Backbone part of the proposed work with the extended CSP module.

In the proposed model, we stack the convolution and CSP modules three times after
the focus module. In this regard, the shallow layer is expended to the similar size of
CSP module feedback as the deeper layer, and the feature maps with different sizes are
acquired step-wise. Then, we obtain full fine-grained features of shallow and deep semantic
information as shown in Figure 3, where convolution represents three basic operations that
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are 2D convolution, batch normalization, and activation function. By the concatenation
operation, the feature maps that have two convolution branches and the attention (SK
Layer) are fused. Finally, a 128 x 128 features vector is extracted in the shallow layer. When
comparing the proposed model with the YOLOv5m model that added 108 layers to extend
the shallow layer of the CSP module, we only added 18 layers to the network without
compromising the network performance.

[ Focus ]—P[ Convl Conv2 *[Conv4 H SK H Conv5

T

£

Input Image

A 4

‘ Conv2d \

’

Figure 3. The extended CSP module of the proposed work with modified SK attention module.

3.2. Modified SK Attention Module

The visualization part of any system focuses on a piece of information that helps to
evaluate the image and ignores unnecessary information. In the DL-based model, an atten-
tion module can be used in the residual blocks of the shallow layer in the feature extraction
stage for prominent feature selection and assigned more weights to weak and small objects
to enhance feature extraction capabilities for accurate object recognition/detection [47,48].
The SK Net model adaptively modifies the receptive field size according to the multi-scales
of the input information. Thus, we propose an improved version of the SK attention mech-
anism in each CSP and utilizes two convolutional operations with different filter sizes for
channel weight learning. The output feature maps continue to perform 1 x 1 convolution
as shown in Figure 4.

Filter
3x3

=55

Filter
5x5

Ix1xC
Fuse

HxWxC Al

HxWxC

Figure 4. Represents the internal architecture of the modified SK attention module of the proposed work.

The improved version of the SK attention mechanism is directly employed in the
residual blocks, which is divided into three parts such as (1) Split: separates the input
vector to perform convolution operation with two different filters size i.e., 3 x 3and 5 x 5
to achieve the output vectors U; and U, and acquired U after the addition process. (2) Fuse:
utilizes the global average pooling denoted by (Fg) for the matrix compressionto1 x 1 x C,
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and employs a channel descriptor for the representation of each channel information. Thus,
the dependency between channels is determined, which is mathematically formulated in
Equations (1) and (2). The fully connected layers (Fy.) established the relationship between
the channels flexibility and nonlinearity. In the proposed work, we use two Fy. layers
to add nonlinearity, fit the complex correlation between channels, decrease the training
parameters and computations as much as possible, and obtain the weight value, as given
in the following Equation:

W H

Fgp(U) = WiH.Z;.Ziu(i’j) 1)
i=1j—

where W represents the weight, H height, i ith row, and j jth column of the given image,
respectively.

Fre (Fgp, @) = 6(B(Fgp, @)) )

The @ is used for weight, J is the Relu activation, and B is the batch normalization.

(3) Scale: a simple weighting operation, where the calculated weight values in the
fusion stage are multiplied with the original matrix to achieve the outcome of the SK blocks.
This strategy improves the feature extraction process for weak and small object detection.
Then the matrix columns are fused to utilize the shallow and deep layer features. We use a
fully connected layer, where a sigmoid function is directly multiplied by the vector U to
achieve the vector V as given in Equation (3).

Fecate (u, ch) — V14 V2=U *Fp+ U+ Fp, 3)

The Fyeqe (U, ch) is channel-wise multiplication to multiply the feature maps of U

with the obtained weight of Fy, stage, and outputting the weighted feature. In the proposed
model SK is an efficient and effective module that can be directly used in the network. The
SK module has a strong model generalization capability by obtaining different receptive
field features and an adaptive adjustment structure that significantly detect and recognize
small and even large pest in the tested images.

3.3. Multiscale Feature Detection

In the YOLOVS5 object detection model, three kinds of output feature maps are used
for object detection with different sizes, which utilizes 8 different downsampling output
features maps for small object detection. The object in the proposed dataset for pest
detection and recognition is weak and small. Therefore, we employ a feature scale to focus
more on the smaller objects. When the feature maps are upsampled to 64 x 64 size, we
continue to upsample the feature maps to acquire 4 downsampling feature maps. In the
meantime, the extended 128 x 128 feature maps are combined with the similar size feature
maps of the second layer in the backbone part of the network to make full use of the deep
and shallow layer features. After the fusion of multi-scale features, the four different scales
of these features are 18 x 18, 32 x 32, 64 x 64, and 128 x 128. The YOLOvV5 adaptively
computes suitable anchors according to different datasets, which makes the convergence
capability of the model simple and detects the object with different scales. The first step is
the input image selection, which will be used for the prediction. In the second step, we use
four different layers for detection i.e., P2, P3, P4, and P5, which predict the values of central
point tx, ty, the height th, width tw, and the confidence score. Afterward, a loss function
between the ground truth and the model prediction is calculated for each detection layer.
Through this, our model gradually optimizes the error rate and increases the generalization
capability. The loss function for each detection layer is similar, which is obtained by
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computing the sum of the class loss, confidence loss, and bounding box regression loss.
The mathematical expression of the P2 detection layer loss is given in Equation (4).

lOSSpZ = 105S¢lgss + lossobject + 10SSpoundin_pox 4

where the bounding box loss utilizes CloU, the class loss is computed according to the
categorical cross entropy, and the confidence loss is obtained by categorical cross entropy
with logistics loss to fit numerical stability.

3.4. Psuedo Code Algorithms

According to our model structure, the pseudocode is designed, which explains the
training procedure of our model step-by-step as presented in Algorithm 1.

Algorithm 1: Psuedocode of the proposed model

Input: Dataset samples S = {(X1, Y1),(X2, Y2), ... ,(Xn, Yn)}. The S is categorized into a training set
(Trainy, Trainy), a validation Set (valy, Valy), and a testing set (testy, testy), where x is the number
of pest images, and y is the corresponding image labels.

T denoted the number of training epochs.

Output: converge model

Load the (TrainX, TrainY), and (valx, Valy);

Augment the (TrainX, TrainY);

Begin:

Initialize weights and biases.

Form=1,23,...,T:

Features extraction using CSP

Input the feature SK Attention Module

Generate the attention map using SK Attention Module

Fed the extraction features from SK Attention Module to Multiscale Feature Detection

Weight the multiscale feature maps, and calculate the output of the Multiscale Feature Detection.
Model fit (Optimizer, (TrainX, TrainY)) — (M(m))

Model evaluate (M(m), (ValX, ValY)) — mAP(m).

End For

Save the optimal model which has max mAP in T epochs.

End

Load the testing set;

Load the optimal model in terms of object detection performances.

4. Dataset Collection

Dataset collection is a major part of model training in the field of artificial intelligence.
In this article, we develop a new dataset that includes diverse images, captured in a
challenging environment, which consists of five different classes: ants, grasshoppers,
palm_weevil, shield_bug, and wasps. The ants class includes 392 frames, the grasshopper
class has 315 images, palm_weevil class has 148 images, shield_bug class has 392 images,
and wasps class has 318 images as tabulated in Table 1.

Table 1. Tabulated form of the self-created dataset.

Class Number of Images
Ants 392
Grasshopper 315
Palm_weevil 148
Shield_bug 392
Wasps 318

We annotate the dataset according to the object detection model using labeling tool
which is publicly available on GitHub (accessed on 23 June 2022). The labeling is written in
Python programing language and uses Qt cross-platform Graphical User Interface (GUI)
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Ants < o

Grasshopper <

Palm weevil <

Shield bug <

Wasps <

toolkit (Qt GUI 5.15.11). The YOLO-based model required .txt annotated file for data
labeling, therefore we annotate the dataset according to the YOLO formats.

All images have the same size, i.e., 512 x 512 and represent the three channels (Red,
Green, and Blue). In addition, the datasets are separated into three portions thar are training,
validation, and testing, where the training sets consist of 70% data, a validation sets consist
of 20%, and a testing sets consist of 10%. Likewise, we implement a pre-trained YOLOv5s-
based model with some fine-tuning strategies using the proposed dataset for the detection
of pests in the agriculture fields. Our proposed model achieves promising performance in
terms of evaluation matrices as compared to state-of-the-art methods. Sample images of
each class of the dataset is presented in Figure 5.

Figure 5. Sample images of each class of the self-created dataset for early pest detection.

5. Experiments and Results

This section provides detailed information about the dataset and the implementation
of the pre-trained YOLOV5 architecture. In Section 5.1, we discuss the experimental setup of
the paper; followed by the convergence of the proposed model, and then the experimental
evaluations are presented.

5.1. Experimental Setup

The experimental results of this article for insect detection are conducted in Pytorch
with CUDA support. All the experiments were performed on the windows operating
system, equipped with a Core i7-9700KF CPU, and graphics NVIDIA Corporation TU104
(GeForce RTX 3070 Super GPU) with 8 GB of RAM. To assess the testing performance of the
YOLOVS5 architecture, it is difficult to use the existing evaluation metrics for each problem.
The precision, recall, and mAP are utilized in our experiments as the evaluation matrices
and the detailed description of these metrics are available in [49-52].

Precision is a measurement matric that is based on a confusion matrix, used to check
model performance in the field of machine learning and deep learning. In addition, it is
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referred to as true positive samples divided by true positive and false positive samples, as

formulated in Equation (5).
TP

" TP +FP

Recall sometimes referred to as ‘sensitivity’ [53]. It is only dependent on the positive
samples of the data and does not care about negative samples. In addition, it is calculated
as the number of true positive samples divided by the number of true positive and false
negative samples, as given in Equation (6).

P 5)

TP

R=——
TP+ FN ©)

Mean average precision (mAP) is used to evaluate the object detection models, which
measures the ground-truth bounding box to the localized box and gives a score. The highest
score leads the model toward accurate detection, as formulated in Equation (7).

1 N
AP = — AP; 7
mAP = 5 L AP 7)

whereas TP describes the number of positive detected samples, FP indicates the number of
negative detected samples, and FN represents the number of positive samples that are not
accurately classified.

5.2. Convergence Results of the Proposed Model

First, we extract the images from open-source directories and a manual labeling
technique is utilized to label each pest by its name to train the YOLOv5-based architectures
for detection to protect the agriculture fields. In the experiments, we use 200 epochs with a
batch size of 10 to train the model. To obtain better performance, the Stochastic Gradient
Descent (SGD) algorithm is utilized to train the model better and optimize the network
during training. Furthermore, we store the optimal trained weights of the model after
completing the training process. The result of the model is evaluated using the validation
and test images. In this paper, the training and validation sets are fed to the model as input
for training. The loss graphs of the training and validation is determined after 200 epochs
as mentioned in Figure 6, which contains detection frame, object loss, classification loss,
precision, recall, and mean average precision (mAP).

train/box_loss train/obj_loss train/cls_loss metrics/precision metrics/recall
0.030 0.04
007 —o— results :
0.06 0.025 08 08
0.03
005 0.020
. 0.6
0.04 0.02 0.6
0.015
0.03 - 04 04
002 0010
0.01 0.00 02 02
0 200 0 200 0 200 0 200 0 200
val/box_loss vallobj_loss vallcls_loss metrics/mAP_0.5 metrics/mAP_0.5:0.95
0.040
06
0.025
0035 0014 08 5
0.020
0.012
0.030 — 06 04
0.010 03
0.025 0010 04
0.2
0020 0.008 0.005
‘ 02 0.1
0.000
0 200 0 200 0 200 0 200 0 200

Figure 6. Illustrates the model effectiveness using different evaluation metrics, the X-axis represents
the number of epochs and Y-axis are the corresponding score of each evaluation matrix.
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The loss graph represents the model performance that how our model is accurately
predict the object. The model can achieve the target task when the loss function reaches
a smaller value. The object loss function is focused on measuring the probability of the
target task based on the area of interest. Higher accuracy depends on the smaller value of
the loss function. The classification loss function can accurately classify the object category.
The accurate classification of the object depends upon the lower loss as shown in Figure 6.
Similarly, precision and recall are the model performance measuring terms in ML and DL.
The higher precision and recall are the evidence of model accuracy as presented in Figure 6.

In Figure 6, the value of the loss function leads to declining during training, and
the model parameters and their weights are continuously updated based on the SGD
algorithm. After a few epochs, the model is capable of constantly reducing the loss function
value while it is able to rapidly enhance the accuracy, recall rate, and precision as shown
in Figure 6. Our proposed model achieves optimal performance in terms of evaluation
matrices such as precision, recall, mAP, detection frame, object loss, and classification loss.
The loss function value of the model in training and validation sets leads approximately to
downward trends while the precision, recall, and mAP were on the peak on 200 epochs.

The performance of the proposed model is further investigated by the confusion
matrix using the test dataset as shown in Figure 7. In the confusion matrix, we have five
different categories of pests including one extra category named background FN. The basic
purpose of the background FN category is to highlight the none detected object in the
image. To further investigate the confusion matrix of our model, the correct prediction of
ants, grasshoppers, palm-weevil, shield_bug, and wasps’ classes is 0.72, 0.87, 0.89, 0.92,
and 0.84, respectively.

0.8

0.17

0.6

0.33

-04

0.33
-02

0.1 0.06 0.16

- 0.0
Grasshopper Palm_weevil Shield_bug Wasps background FP
True

Figure 7. Represents the confusion matrix of the proposed model using a self-created dataset.
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5.3. Comparing the Proposed Model with the Various Versions of YOLOv5 Models and the Current
State-of-the-Art Models

In this section, we compare the performance of our model with nine different versions
of state-of-the-art models. The performance of the proposed model is comparatively higher
than the other models for pest detection such as ants, grasshoppers, palm-weevil, shield-
bug, and wasps as described in Table 2. In the experiments, the Faster-RCNN achieves the
second best performance as compared to other models. However, our model surpasses the
Faster-RCNN by achieving higher values of precision, recall, and mAP, i.e., 0.018, 0.015,
and 0.011, respectively. During the experiments, the lower performance is achieved by
YOLOvV3 and YOLOv4 models.

Table 2. Comparative analysis of the proposed model with various versions of the YOLOv5 models.

Models Classes Precision Recall mAP

All 0.92 0.89 0.924

Ants 0.73 0.74 0.76
Grasshopper 0.98 0.99 1

Faster RCNN Palm_weevil 0.99 0.88 0.98
Shield_bug 0.96 0.97 1

Wasps 0.94 0.86 091

All 0.82 0.87 0.86

Ants 0.59 0.75 0.64

Grasshopper 0.86 0.84 091

YoloV3 Palm_weevil 0.91 0.93 0.95

Shield_bug 0.88 0.91 0.93

Wasps 0.87 0.9 0.88

All 0.85 0.87 0.89

Ants 0.65 0.76 0.71

Grasshopper 0.87 0.83 0.93

YoloV4 Palm_weevil 0.93 0.92 0.96

Shield_bug 0.9 0.94 0.95

Wasps 0.88 091 0.89

All 0.87 0.878 0.895

Ants 0.573 0.74 0.677

Grasshopper 0.923 0.875 0.944

Yolovsn Palm_weevil 1 0.983 0.995

Shield_bug 0.933 0.972 0.978

Wasps 0.922 0.821 0.881

All 0.906 0.835 0.901

Ants 0.797 0.679 0.781

Grasshopper 0.904 0.875 0.88

Yolov5s Palm_weevil 9.965 1 0.995

Shield_bug 0.973 0.915 0.977

Wasps 0.888 0.706 0.871

All 0.936 0.845 0.907

Ants 0.861 0.655 0.731

Grasshopper 0.948 1 0.995

YoloVom Palm_weevil 1 0.816 0.995

Shield_bug 0.943 0.934 0.97

Wasps 0.93 0.821 0.846

All 0.849 0.89 0.917

Ants 0.723 0.721 9.756

Grasshopper 1 0.933 0.995

Yolov5l Palm_weevil 0.758 1 0.984

Shield_bug 0.885 0.958 0.965

Wasps 0.881 0.839 0.886
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Table 2. Cont.

Models Classes Precision Recall mAP
All 0.912 0.882 0.921
Ants 0.697 0.724 0.764
Grasshopper 0.969 1 0.995
Yolo5x Palm_weevil 1 0.866 0.975
Shield_bug 0.972 0.978 0.992
Wasps 0.922 0.841 0.89
All 0.938 0.896 0.934
Ants 0.79 0.76 0.80
Grasshopper 0.98 1 0.996
Our model Palm_weevil 1 0.886 0.98
Shield_bug 0.975 0.978 0.993
Wasps 0.947 0.856 0.9

The YOLOv5n achieves an average value of 0.87, 0.878, and 0.895 for precision, recall,
and mAP, respectively, which is the lowest in all YOLOV5 versions. The YOLOvV5s achieves
0.906% precision, 0.835% recall, and 0.901% mAP for pests detection while the YOLOv5m
obtains 0.936% precision, 0.845% recall, and 0.907% mAP. The YOLOv5I and YOLOv5x
achieve good results in terms of precision, recall, and mAP as presented in Table 2, where
the YOLOv5x outperformes the YOLOvSI by achieving a higher value for precision, recall,
and mAP. In the Table 2, it can be observed that the proposed model achieves higher
performance than other versions of YOLOvV5, which surpasses the YOLOv5x by obtaining
higher precision, recall, and mAP values.

5.4. Model Complexity Analysis

The detailed feasibility analysis of the proposed model in terms of parameters, model
size, and frame per second (FPS) using CPU is described in Table 3. To approximate the
inferencing time, we determine the Giga Floating Point Operations per Second (GFLOPs),
model size, and Frame Per Second (FPS) of each model and compare it with the proposed
model as presented in Table 3. The higher GFLOPs, model size, and lower inferencing speed
are associated with the YOLOVb5x, which restricts the system from real-world applications.
In Table 3, it can be seen that the proposed model is a suitable choice for pest detection
due to the higher inference speed and lower GFLOPs and model size, which increase the
potential of our model to be implemented in real-time.

Table 3. Comparing the model complexity analysis of the proposed model with five different versions
of YOLOVS.

Model GFLOPs Model size FPS (CPU)
YOLOV5Sn 4.2 3.65 31.02
YOLOVS5s 16 14.1 21.25
YOLOV5m 48.3 40.2 10.16
YOLOVSI 108.3 88.5 6.62
YOLOV5x 204.7 165 3.90

The proposed model 4.8 13 28.60

5.5. Visual Result of the Proposed Model

The proposed model is utilized to detect five kinds of pests in the natural environment
and check the classification and identification performance of the model. The visual results
of our model are shown in Figure 8. In this figure, the proposed model achieves better
performance in terms of detection and classification, where the proposed model draws
an accurate bounding box around the object and assigns a correct class label to the object.
Thus, the visualized results of our model show real-time applicability.
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Figure 8. Represents the visual results of the proposed model which show the model effective analysis.

6. Conclusions

In this research, we have experimented with nine different object detection models
including the proposed model, which is the most efficient and accurate model as proven by
the experimental section. All the experiments were performed using the manually collected
dataset, which consists of five different classes i.e., ants, grasshopper, palm weevils, shield
bugs, and wasps. Our model surpassed the state-of-the-art models by achieving higher
values for precision, recall, and mAP, i.e., 0.018, 0.015, and 0.011, respectively. Furthermore,
the proposed models can be deployed in real-time due to the higher inferencing speed
with lower GFLOPs calculations and model size. As a result, the proposed model is highly
capable of detecting and recognizing different types of species in real time.

In the future, we aim to increase the model performance with reduced model size and
GFLOPs calculations by introducing novel mechanisms in the backbone architecture and
using vision transformer for pests detection. Further, we plan to increase the number of
training and pest species in the dataset to increase the model’s robustness.
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