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Abstract: In recent years, machine vision systems (MVS) with convolutional neural networks (CNN)
for precision spraying have been increasingly investigated due to their robust performance in plant
detection. However, the high computational requirement of CNNs makes them slow to be adopted
in field operations, especially in unstructured working environments such as broadcast-seeded fields.
In this study, we developed a modular precision sprayer by distributing the high computational load
of CNN among parallel low-cost and low-power vision computing devices. The sprayer utilized a
custom precision spraying algorithm based on SSD-MobileNetV1 running on a Jetson Nano 4 GB.
The model achieved 76% mAP0.5 at 19 fps for weed and soybean detection in a broadcast-seeded field.
Further, the sprayer targeted all weed samples and exhibited up to 48.89% spray volume reduction
with a typical walking speed up to 3.0 km/h , which was three times faster than similar systems with
known targeting performance. With these results, the study demonstrated that CNN-based precision
spraying in a complex broadcast-seeded field can achieve increased velocity at high accuracy without
needing powerful and expensive computational hardware using modular designs.

Keywords: precision agriculture; agricultural sprayer; convolutional neural networks; machine
vision; modular robot; agricultural robot; weeding; broadcast-seeded; soybean

1. Introduction

Soybean (Glycine max L.) is a widely cultivated crop in the world due to its rich oil and
protein content [1]. These crops are commonly planted in rows [2–4], but broadcast seeding
is also being practiced due to its low labor requirements at minimal yield loss. For example,
in the study of Whaley and Uddin [5], they demonstrated that broadcast seeding resulted
in only 8% yield loss, but at less labor compared to line-sowing. Similarly, in a recent study
by Vandeplas et al. [6], broadcast-seeded soybean with single-pass weeding required only
11% of the planting time of hill-drop-seeded soybean at the expense of 15% yield reduction.

In any field cropping system, weed control plays an essential role in preventing yield
loss by minimizing unnecessary resource competition of crops with unwanted plants. Thus,
during the last 70 years, chemical-based weed control has become a common component
of modern crop production [7]. Nonetheless, despite the increasing environmental and
health concern surrounding herbicide usage in recent years [8], the lower labor demand of
chemical over mechanical weed control remains the reason for its wide adoption [9]. Further,
the absence of distinct row-spacing makes inter-row cultivating and mechanical hoeing
inapplicable due to the risk of damaging the crops in broadcast-seeded conditions [10].
Thus, modern soybean farming often plants herbicide-resistant varieties and controls weeds
using chemical herbicides [11,12].

Still, uniform herbicide application is economically inefficient and harmful to the envi-
ronment [13]. Precision agriculture (PA) seeks to minimize chemical usage by using modern
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sensors, control systems, actuators, and software and delivering site- and time-specific
quantities of inputs. Modern PA equipment often utilizes spectrometric, optoelectronic,
and imaging sensors for real-time weed detection [14]. For example, to minimize herbicide
usage in soybean, experiments using a machine vision system (MVS) and discrete wavelet
transform to analyze soil, weed infestation, and crop zones reduced spray volumes by
48% [15]. Their system was 100% accurate in detecting bare soil regions but only 75% and
47.8% accurate in weed and crop zone detection, respectively. On the other hand, using
spectrometric sensors and variable valve control reduced the volume of post-emergence
spray by approximately 51% [16]. However, the study also reported that the spectrometric
sensor could not differentiate the phenological stages of weeds and soybeans, causing high
variability in spray reduction.

The complexity of farming environments limits the commercialization and wide
adoption of weed sensing technologies. The high variation in spectral characteristics of
weeds and crops at different growth stages and weather conditions makes differentiating
between plant species using spectrometric and optoelectronic sensors difficult [17]. Addi-
tionally, spectral-based sensing with current approaches cannot reliably identify weeds at
sufficiently low weed densities due to inadequate differences between the field spectral
characteristics of weed and crop [18]. On the other hand, image-based sensing delivers
promising results. However, increasing the robustness of algorithms using complex ap-
proaches, such as machine-learning-based segmentation and classification, for image-based
sensing generally increases computational cost [14,15]. For example, a precision sprayer for
targeting weeds between carrot rows by color-based thresholding of normalized difference
vegetation index images could operate up to 4.17 m/s, but without differentiating between
weeds and crops [19]. A more recent precision sprayer utilized a support vector machine to
classify shape, texture, and color feature vectors from a 4-megapixel RGB-IR camera for
in-row weed targeting in carrots but limited the operation to 0.8 m/s [10].

Recently, MVS that utilized Convolutional Neural Networks (CNN) for plant detection
have been gaining popularity due to their high detection reliability in dense agricultural
environments [20]. For example, past studies showed that CNN-based weed detection
in soybean can achieve 65% to 99.5% precision [21–23]. Nonetheless, despite the high
potential of CNN for robust weed detection, the volume of research that demonstrated
the use of CNN for actual precision spraying in soybean was very small and had low
targeting accuracy. In the study of Sabóia et al. [23], their precision sprayer for specific
targeting of cord grass in row-seeded soybeans using Mask R-CNN and YOLOv3 was
only 78% and 20% accurate, respectively. Similarly, precision sprayers with CNN-based
MVS operate at lower travel velocities than spectral- or optical-based sensors due to the
high computational cost. For example, the CNN-based precision sprayer for soybean
operated only at 0.5 m/s [23], compared to 5.6 m/s using spectrometric sensors [16] and
1.17 m/s using MVS with traditional image processing [15]. Developed systems often
rely on powerful hardware, such as NVIDIA GTX 1050 [23,24], 1070 Ti [25], and 1080 [26],
to achieve sufficient inference speed. In a study that compared fast CNN models in the
detection of weed patches in soybeans, the inference times for Faster R-CNN and SSD on a
desktop with NVIDIA RTX 2080 Ti were 0.23 and 0.21 s, respectively [21]. Offsetting the
computation to a powerful remote server with NVIDIA Tesla M10 connected through a 5G
network was also explored to increase the speed of CNN-based precision spraying, but the
system achieved a similar 0.25 s overall processing time [27].

The high computational requirement of CNN-based detection using image sensors,
despite having high detection performance and robustness compared to spectrometric, op-
tical, and distance sensors, hinders its wide adoption for real-time precision spraying [17].
If the precision sprayer is traveling too fast relative to the inference speed of the CNN,
gaps will occur between consecutive frames causing certain plants to be missed [28]. To
solve the high computational cost of CNN, various CNN architecture designs and opti-
mizations were proposed and showed promising results. Some of these techniques include
using single-stage architectures such as Single Shot MultiBox Detector (SSD) [29] and You
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Only Look Once (YOLO) [30], implementing depth-wise separable convolutions [31,32],
reducing feature reuse within convolution [33], and optimizing trained CNN model using
TensorRT [34]. In this research, we implemented modular software and hardware architec-
ture to localize the computational load of TensorRT-optimized SSD-MobileNetV1 among
multiple low-power and low-cost hardware for precision spraying. This approach, in effect,
would increase the operating travel velocity of CNN-based precision sprayers without the
need for powerful desktop- or server-grade systems by having dedicated computational
hardware for each capture device. Therefore, this paper evaluates the targeting perfor-
mance and spray volume reduction of the developed modular agrochemical precision
sprayer (MAPS) with CNN-based MVS in broadcast-seeded soybean. The suggested design
approach and field testing methods in this study aim to increase the feasibility of precision
sprayers with CNN-based MVS and contribute towards sustainable farming environments.

2. Materials and Methods
2.1. Precision Sprayer

Figure 1 shows the precision sprayer developed at the Mechanical Engineering Department
of Rowan University, Glassboro, NJ, USA. A summary of the technical specification of the MAPS
is then shown in Table 1. The repeating components of the MAPS were grouped into an assembly
called a scalable unit (SU), composed of vision and sprayer modules. The MAPS used in the
test had three SUs mounted on a push-type frame and were separated by 0.5 m. The overall
cost of all sprayer components shown in Figure 1 was approximately USD 2100.

Nozzle

Camera

Supply TankTouchscreen

Scalable Unit
Scalable Unit 

Control Assembly

Solenoid Valve

Power and Central Modules 
Assembly

Figure 1. Components of the modular agrochemical precision sprayer mounted on a push-type frame.
The precision sprayer had four key modules: central, power, vision, and sprayer. The modules were
held together by a push-type reconfigurable frame.

The general workflow of each SU of the MAPS is illustrated in Figure 2. Each SU
was connected to the same local network through Ethernet. Component communication
was implemented using a robot operating system (ROS). A graphical user interface (GUI),
hosted in the central module (Raspberry Pi 4B 4 GB), was then used by the sprayer operator
to manage and monitor each SU.
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Table 1. The technical specification of the modular agrochemical precision sprayer with three
scalable units.

Description Value Unit

Fluid Pressure 550 kPa
Nozzle Delivery Rate 1.6 L/min
Nozzle Spraying Time 0.2 s

Nozzle Spray Pattern Width 1.08 m
Nozzle Height 0.45 m
Nozzle Spacing 0.5 m

Effective Spray Width @ 50% Overlap 2.08 m
Max. Operating Ground Speed 3.54 m/s
Max. Theoretical Field Capacity 2.65 ha/h

Camera Resolution 1280 × 720 px
Average Inference Speed 19 fps

Power Consumption 160 W
Min. Operating Time 1.85 h

Scalable Unit 3

Scalable Unit 2

Scalable Unit 1

Vision Module

CNN-based 
Inferencing Solenoid trigger 

time calculation

Weed and soybean 
coordinate estimation

Travel velocity 
estimation

Send spray 
command

Raw RGB Image Bounding Box Detection

Coordinates List

Instantaneous Velocity

Valve Trigger 
Schedules List

Sprayer Module
Valve Control

Open 
valve

Central Module

Scalable unit management and control

Graphical User Interface

Weed Spraying

Send triggered signal

Display 
spray count

Spray count

Display average 
velocity

Filter 
trigger 

schedule 
list

Update 
spray count

Figure 2. Work flow of a scalable unit of the precision sprayer.

As shown in the vision module of Figure 2, precision spraying starts by streaming a top
view of the soybean plot from an RGB camera (Logitech StreamCam). Then, CNN-based
inferencing using a TensorRT-optimized SSD-MobileNetV1 running on a CUDA-capable
edge device (NVIDIA Jetson Nano 4 GB) detects and generates bounding boxes of soybeans
and weeds in the image, as illustrated in Figure 3. Using a custom algorithm in Python,
the coordinates of soybeans and weeds were stored in separate lists for each object class.
All bounding boxes in the frame were then tracked accordingly, and their Euclidean travel
distances between two consecutive frames were measured. The relative velocity of the
sprayer was then estimated based on the elapsed time and the distance traveled by tracked
plants between two consecutive processed frames. Finally, knowing the instantaneous
distance of the weeds from the sprayer nozzle and travel velocity, the time to trigger the
sprayer was calculated and stored in a spray schedule list. Appending spray schedules
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was performed whenever a weed was detected in a frame. Thus, the MAPS also cleared all
elapsed spray schedules within the effective spray region of the previous spraying after a
sprayed feedback signal was received. This step filters the spray schedules in the list to
prevent multiple spraying on already sprayed weeds.

Figure 3. Layout of the positions of the detection, velocity estimation, and spray regions of the
modular agrochemical precision sprayer.

A parallel process then regularly checks the list for elapsed spray schedules. The
process then sends a trigger signal to a USB-connected microcontroller (Arduino Nano)
that controls a relay switch (Arceli KY-019) if a time value in the spray schedule has been
reached. This event causes the solenoid valve (US Solid USS2-00006) to open for 0.2 s and
delivers liquid to a fan-type nozzle (Solo 4900654-P). The microcontroller then publishes a
feedback signal to a ROS topic to indicate that the valve was triggered. The central and
vision modules then finally read this message to update the spray count and clear any
spray schedules that were within the previous spraying time, respectively.

Three key innovations differentiate this sprayer prototype from other existing designs:

1. The sprayer utilized a modular hardware and software architecture, making the
design scalable and reconfigurable. The manually pushed prototype in the test was
limited to three modules with the consideration of human power. The same design can
be easily expanded to unlimited modules as long as the power and maneuverability
are allowed by the prime mover, such as a tractor or unmanned vehicle.

2. The vision modules used the virtual crop and weed detection bounding box to esti-
mate the travel velocity in a local coordinate system. In this “what you see is what
you detect” approach, the vision module can combine plant detection and velocity
estimation. It can also easily correct any error with real-time feedback from the incom-
ing video streams. Compared with wheel encoders [10] or global positioning systems
with real-time kinematics [25], the vision module could be potentially more accurate,
faster to obtain feedback, and more capable to accommodate uneven terrain.

3. The effective spray regions covered by the nozzles were positioned away from the
velocity estimation region, as illustrated in Figure 3. This approach will decrease
the need for computing power while increasing the permissible time delay between
detection and spraying to allow for a higher sprayer moving speed than when the
detection, velocity estimation, and sprayer regions coincide.

2.2. Experimental Field

The image dataset collection and field testing were performed in the agricultural field
in South Jersey Technological Park of Rowan University, Glassboro, NJ, USA, as shown in
Figure 4. The farm was located at 39°43′08.1′′ N and 75°08′52.5′′ W and was planted with
Pioneer-brand soybean variety during the first week of June 2022. The broadcast sowing of
soybean on the experimental fields was performed at approximately 395,000 seeds per hectare.
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Figure 4. The experimental site for collecting soybean and weed images for CNN model development
and precision spraying. The image was captured on 30 June 2022.

2.3. SSD-MobileNetV1 Training and Validation

Several videos were recorded from 30 June to 8 July 2022, at approximately 4-day intervals,
using two video capture devices (Apple iPhone 11 and Logitech StreamCam). The videos were
recorded at different camera heights, angles, times of day, and growth periods. Overall, 877 RGB
images were extracted from the captured videos and were then annotated using LabelImg [35].
A binary classification, “soybean” and “weed”, was implemented during annotation, and
all non-soybean plants were grouped into the “weed” category. Figure 5 illustrates sample
non-soybean plants found in the test field. The final dataset contained 5080 and 6934 instances
of soybeans and weeds, respectively, and was randomly divided into 80% training and 20%
validation.

a b c

d e f

g h i

Figure 5. Sample images of target plants: (a) horseweed, (b) purslane, (c) carpet weed, (d) cut-leaved
evening primrose, (e) hairy fleabane, (f) goosegrass, (g) ragweed, (h) lambsquarter, and (i) thistle.

The SSD-MobileNetV1 model was trained using an NVIDIA Jetson NX Xavier with
Jetpack 4.6.1 and Pytorch SSD [36]. The training was performed for about 4000 epochs at an
initial learning rate of 0.005, base learning rate of 0.0005, momentum of 0.9, weight decay
of 0.00005, and batch size of 24.
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The performance of the trained CNN model for soybean and weed detection was then
evaluated using PASCAL VOC 2007 metrics. Precision (P), recall (R), average precision per
class (AP), and mean average precision (mAP) at 0.5 intersection over union (IOU) thresh-
old were used to describe the detection performance. Precision quantifies the percentage of
the total detections that were correct relative to an object class, while recall indicates the
percentage of the total class samples that were correctly detected. IOU represents the accu-
racy of the localization by comparing the generated bounding box against the annotated
bounding box. APIOU

class accounts for the classification and localization performance of the
CNN model for a class by evaluating the area under the precision–recall curve at a specific
IOU. Finally, mAPIOU is the average of AP for all object classes.

2.4. Field Testing

The field testing was performed on 11 July 2022 (28.9 ◦C, 11.1 km/h wind speed, 42–44%
relative humidity) on three adjacent 0.5 m × 10 m rows of broadcast-seeded soybeans with
randomly growing weeds. A video of the test plots was recorded and analyzed per frame to
construct the 1 m resolution maps for the distribution and location of the weeds and samples
in each test row. The weed population distribution for each row is shown in Figure 6a and
were approximately 6.6, 17.8 and 11.8 weeds/m2 on the left, middle, and right test rows,
respectively. In total, 30 target weeds (Nw) and 30 non-target soybeans (Ns) were randomly
selected among the test rows, as shown in Figure 6b,c, respectively. Overall, 10 out of the 30
randomly selected soybeans had no adjacent weeds (Figure 6c), also referred to as soybean
without weeds (Ns|wow). The performance testing was then performed in three trial runs.

(a) Weed Population

(b) Weed sample location.

(c) Soybean sample location.

Figure 6. (a) Weed population, (b) weed sample location, and (c) soybean sample location in the three
test rows. Values enclosed in parenthesis in soybean sample distribution represent soybean plants
without adjacent weeds.
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2.4.1. Targeting Performance

Target weeds and non-target soybeans were physically labeled to serve as visual
references during the evaluation of the spray performance of the MAPS. The test videos
were also recorded and carefully inspected per frame to accurately examine the targeting
performance. Figure 7 shows a sample of the recorded frame.

Figure 7. Sample recorded frame during the field test, showing labeled target and non-targets and
spray instances.

The performance of the targeting system of the sprayer was then described in spraying
precision (Ps) and recall (Rs). In weed spraying, correctly sprayed weeds were considered
true positives (TP). Incorrectly sprayed soybeans were considered false positives (FP).
Unsprayed soybeans were true negatives (TN), and unsprayed weeds were false negatives
(FN). Ps and Rs were then calculated using Equations (1) and (2), respectively. Ps describes
the reliability of the sprayer to target weeds instead of soybeans. Rs represents the accuracy
of the sprayer in targeting all weeds. On the other hand, the wrong spraying rate (WS)
was calculated using Equation (3) and depicts the incorrect spraying rate of non-target
soybeans. Lastly, due to the proximity of soybean samples to weeds, the non-targeting rate
(NT), or the fraction of unsprayed soybeans without adjacent weeds, was also determined
using Equation (4).

Ps =
TP

TP + FP
(1)

Rs =
TP

TP + FN
(2)

WS =
FP

TN + FP
(3)

NT =
TN

Ns|wow
(4)

2.4.2. Spray Volume Reduction

The average variable spray volume in each row (Qrow|variable) was estimated by cal-
culating the product of the average number of actuation of the solenoid valve (Nvalve|row),
nozzle flowrate (Qnozzle), in L/min, and nozzle opening time (tspraying), in seconds, as
shown in Equation (5).

Qrow|variable = Nvalve|row ×Qnozzle × tspraying (5)

The sprayer was pre-calibrated and tested the flowrate of each nozzle using ASAE
EP367.2 MAR1991 (R2017) standard [37], yielding Qnozzle of 1.6 L

min . The average uniform
spray volume for each row (Qrow|uni f orm) was then the product of the Qnozzle and spraying
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trial time (ttrial), as shown in Equation (6). Finally, based on the pre-calibrated flow rate of
the nozzle, the spray volume reduction (SVR) was calculated using Equation (7).

Qrow|uni f orm = Qnozzle × ttrial (6)

SVR =
Qrow|uni f orm −Qrow|variable

Qrow|uni f orm
(7)

3. Results and Discussion
3.1. CNN Model Performance

Figure 8 illustrates the precision–recall curve of the trained CNN model at 0.5 IOU
threshold and shows that the model detected soybean better than weeds. At 68% recall and
0.5 IOU threshold, the trained model had an equivalent 71% and 90% precision in detecting
weeds and soybeans, respectively. Compared to the precisions obtained in detecting weed
patches in aerial images of row-seeded soybean using SSD (65%) and Faster R-CNN (66%)
at 0.5 IOU and 68% recall [21], our model exhibited higher weed detection precision (71%).
This difference was most likely due to differences in the experimental setups, such as the
early-season time of entry when there was less overlap among soybeans and weeds, and a
closer field of view using ground images in our study. In weed spraying, a high detection
recall lowers the rate of unsprayed weeds, while high precision increases chemical savings
by preventing unwanted nozzle openings due to false detection. Since the high rate of
unsprayed weeds can potentially reduce crop yield, we prioritize detection recall over
precision, as the former directly affects the effectiveness of weed control.

Figure 8. The precision–recall curve of the SSD-MobileNetV1 model on detecting soybean and weeds
at 0.5 IOU threshold.

Table 2 summarizes the detection performance of the SSD-MobileNetV1. Validating
the CNN model yielded 76.0% mAP0.5. Running the model on the vision module with the
custom algorithms resulted in a 19-fps effective inference speed. Compared to a sprayer
with YOLOv3-tiny running on an NVIDIA GTX 1050 mini PC [24], our design had similar
detection accuracy but 40% slower than their configuration (76.4% mAP0.5 and 31.5 fps).
However, a mini pc with NVIDIA 1050 was also about twice the cost of three NVIDIA
Jetson Nano 4 GB and one Raspberry Pi 4B 4 GB.

Table 2. Soybean and weed detection performance at 0.5 IOU threshold of SSD-MobileNetV1.

Class AP0.5, % mAP0.5, % Inference Speed a, fps

Soybean 81.4 76.0 19.0Weed 70.6
a Running on the custom software of the precision sprayer using NVIDIA Jetson Nano 4 GB.
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Figure 9 shows a sample soybean and weed detection of the trained model. The image
shows most small soybeans and weeds were undetected at a 0.5 confidence threshold. This
behavior of SSD-MobileNet-based models was similarly observed in a previous study by
the authors where the SSD-MobilenetV2 model had low detection confidence for small
objects [38]. However, this situation may not be consequential in actual spraying scenarios,
as small weeds would have difficulty competing with large soybeans for resources. Crops
could tolerate a level of weed presence without quality and yield reductions [39]. According
to the study of Datta et al. [40], in managing weeds using crop competition in soybean,
weeds that emerged after the soybean emergence stage tend to have a lower competitive
index than weeds that emerged before or during soybean emergence, and the closing of the
canopy can suppress weeds that escaped herbicide application.

Figure 9. Sample soybean and weed detections of SSD-MobileNetV1 at 0.5 confidence threshold.

3.2. Targeting Performance

Table 3 summarizes the field spraying performance of the MAPS and shows the
successful spraying of all sampled target weeds. This high targeting performance of the
sprayer can be attributed to the following: (1) operating within the maximum velocity
and (2) queuing multiple spray schedules. Based on our previous study on the effect of
travel velocity, inference speed, and camera configuration on missed detections [38], the
test velocity was within the maximum operating velocity of the vision module (18.05 m/s),
preventing undetected weeds due to gaps between processed frames. Further, despite only
having 76% mAP0.5, traversing at 0.69 m/s and 19 fps allowed the vision module to detect
plants on multiple frames. The weed targeting algorithm only required a single frame with
correct weed detection and velocity estimate to calculate an accurate spray schedule. If
a weed was incorrectly detected in a frame, the weed could still be possibly detected in
succeeding frames.

Table 3. Targeting performance of the MAPS at 0.69 ± 0.13 m/s.

Trial TP TN FP FN Ns|wow Ps, % Rs, % WS, % NT , %

1 30 7 23 0 10 56.66 100.00 76.67 70.00
2 30 7 23 0 10 56.66 100.00 76.67 70.00
3 30 9 21 0 10 58.82 100.00 70.00 90.00

Average 30 7.67 22.33 0 10 57.32 100.00 74.44 76.67

Comparing the results with other studies, our configuration achieved higher spraying
recall (100%) than a similar CNN-based precision sprayer for soybeans with Mask R-CNN
(78%) and YOLOv3 (20%) that utilized a desktop computer with NVIDIA GeForce GTX
1050 [23]. Queuing multiple spray schedules and positioning the nozzle away from the
frame center might have caused the difference in our results, as [23] had higher detection
precision (≥88%) than our configuration. Similarly, the high spraying recall, despite low
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detection performance, was also observed by Ruigrok et al. [27]. Despite having 57%
precision and 84% recall in detecting weeds, their system still achieved 96% average spray-
ing recall by requiring a single correct detection among the processed frames. However,
the 4 fps effective inference speed of their system was approximately four times slower
than our configuration. This situation resulted in more frames available in our system for
inferencing, and most likely contributed to the higher spraying recall than that of Ruigrok
et al. [27].

On the other hand, our average spraying precision (57.32%) was relatively low compared
to the results of Partel et al. [25] (78%) and Liu et al. [26] (96.67%). This difference was
most likely caused by the broadcast-seeded layout and higher weed population in our tests
compared to the mentioned studies, which had a row-seeded layout with approximately 1 m
hill spacing and up to 30 weed population. Evaluating the results of our tests, the broad
coverage of the nozzle, unintended sprays, and the natural proximity of targets and non-
targets caused the low spraying precision. As described in Figure 6c, only 10 sample soybeans
had no adjacent weeds. This high rate of FP of the sprayer caused by coarse nozzle resolution
and proximity of non-targets to targets was also observed Ruigrok et al. [27]. Their system
sprayed 50% of non-targets, on average, due to proximity to targets. On the other hand, the
MAPS sprayed approximately 74% of non-targets.

For each spray, the covered land is a shape of a stretched eclipse with a width of
the 2h× tanθT and a length of tspraying × vvehicle + 2h× tanθL, where h is the height of the
nozzle from the ground, θT is the transverse spraying angle of the nozzle, tspraying is the
spraying time, vvehicle is the velocity of the MAPS, and θL is the longitudinal spraying
angle of the nozzle. Because the spraying nozzle is located at the center of the vehicle, the
influence of the wind can be ignored since the side of the frame can be covered. To improve
the precision, we could choose a nozzle with a narrow spray pattern or reduce the valve
opening time for each spray in the future.

Figure 10 then illustrates sample detection scenarios showing the labeled target and
non-targets during the experiment. An ideal scenario is shown in Figure 10a, where the
weed at the center of the frame only had another weed in proximity along the horizontal
axis of the frame. Furthermore, the soybeans at the bottom of the frame also had no adjacent
weeds, resulting in them not being sprayed. This case was also observed in Figure 10c,
where the soybeans at the top of the frame were also not sprayed. Figure 10b, on the other
hand, shows a non-target soybean in the middle of the frame with weeds growing on its
left side. This non-target soybean was unintentionally sprayed. Lastly, Figure 10d shows a
non-target soybean incorrectly detected as a weed causing it to be sprayed.

Figure 10. Sample detection scenarios during the experiment showing labeled targets weeds (yellow)
and non-target soybeans (green): (a) labeled non-overlapping target and non-targets along the
horizontal frame axis; (b) labeled non-target with an adjacent target; (c) labeled non-target with no
adjacent target along the horizontal frame axis; and (d) non-target incorrectly detected as a target.
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The sprayer successfully avoided spraying 76.67% of soybeans without adjacent weeds,
on average. Still, due to inaccuracy and extreme fluctuations in weed location and travel
velocity estimates, the multiple spread-out spraying schedules for a weed and incorrect
detections also caused unintentional spraying of 10% to 30% of soybeans without adjacent
weeds. If soybean is incorrectly detected as a weed, this situation results in incorrect
targeting. Moreover, the algorithm measures the distance traveled by a detected plant
between two consecutive frames. If a wrong detection occurs in the succeeding frame, the
error contributes to inaccurate velocity estimates and may cause the valve to open when
soybeans are directly below the nozzle.

Overall, the targeting performance of the MAPS maintained similar performance
while operating at up to three times the velocity of existing CNN-based sprayers. The
average velocity of MAPS was 0.69 m/s (2.5 km/h ). Due to the rough terrain, the recorded
velocity varied between 0.53 m/s (1.9 km/h ) and 0.83 m/s (3.0 km/h ). The theoretical
velocity can reach 3.54 m/s (12.7 km/h ), which was only limited by the current push-style
configuration. Among the compared studies, Liu et al. [26] reported 0.28 m/s (1.0 km/h)
during the field test on real plants. Sabóia et al. [23] reached 0.5 m/s (1.8 km/h) at low
targeting performance. On the other hand, Farooque et al. [24] reported 1.38 m/s (5.0 km/h)
on the field test of their developed sprayer, but the field targeting performance was not
quantified.

3.3. Spray Volume Reduction

Table 4 summarizes the variable sprayed volume of the MAPS on each row with
different weed populations. The results showed that the average count of the solenoid
valve opening increases with the weed population, an indicator of the variable spraying
capability. The left row had the lowest weed population of 33 and average spray instances
of 38. Similarly, the middle row with the highest weed population of 89 had the highest
average spray count of 57. The disproportional increase is due to the high density of the
weeds, where one single spray could cover two or more weeds with the movement of the
MAPS. Theoretically, the 0.2 s spray duration and 0.69 m/s velocity would cover 0.138 m,
which resulted in a maximum of 73 spray instances for a 10-m row fully covered with
weeds. In contrast, the average space between weeds was only 0.112 m in the middle row.
As a result, the Nvalve|row to the weed population per row (Nw|total) at the middle row was
lower than that of the left and right.

Table 4. Spray volume reduction of the modular CNN-based precision sprayer at 0.69 ± 0.13 m/s
and 15 s average traverse time along soybean plots with different weed populations.

Row Nw|total Nvalve|row Nvalve|row/Nw|total Qrow|variable
a, L SV R b, %

Left 33 38.33 ± 7.72 1.16 0.204 ± 0.012 48.89
Middle 89 57.33 ± 11.09 0.64 0.306 ± 0.059 23.56
Right 59 41.67 ± 10.21 0.71 0.222 ± 0.051 44.44

All 181 137.33 ± 22.54 0.76 0.732 ± 0.120 38.96
a Calculated at 0.2 s spray duration. b Calculated at 1.6 L/min continuous nozzle delivery rate.

The results also demonstrated that the sprayer had an average spray volume reduction
of 38.96%, most likely representing the bare soil and soybean-only regions in the experi-
mental field. The highest spray reduction (48.89%) was observed in the left row, where the
weed population was also the lowest. Consequently, the lowest volume reduction (23.56%)
was observed in the middle row, which had the highest weed population. This result is
consistent with our expectation, as the higher weed density needed more frequent sprays,
which was closer to continuous spray. The lower the weed density, the higher the spray
reduction will be. With the improved control of weeds after each spray, the reduction of
total spray volume will also improve significantly. Nonetheless, direct comparisons with
other studies were difficult, as the weed population of their test area was not reported.
Both Farooque et al. [24] and Zanin et al. [16] reported similar spray volume reduction
without the corresponding weed population.
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4. Conclusions

The developed precision sprayer with CNN-based MVS and modular architecture
successfully demonstrated its capability to target weeds and reduce spray volume in a
broadcast-seeded soybean field. By using multiple edge devices to run the CNN model,
the vision system achieved 19 fps and 76% mAP0.5, resulting in the developed sprayer
having similar targeting and spraying performance at a faster average velocity of 0.69 m/s
(2.5 km/h) than CNN-based systems with known targeting performance. Furthermore,
the field test also verified the variable spraying capability of the modular design, reducing
spray volume by up to 48.89% in the experiments. Nonetheless, direct comparisons with
existing CNN-based precision sprayers were difficult due to differences in the experimental
setups and the unavailability of weed distribution. As demonstrated in our results, high
weed density lowers spraying precision and spray volume reduction. When weed density is
high, the likelihood that weeds are next to a crop is also very high, causing non-target crops
to be unintentionally sprayed. Similarly, as the weed population increases, the number of
spray instances of a precision sprayer also increases at a diminishing rate as it approaches
the maximum spray instances equivalent to uniform spraying.

The broadcast-seeded layout and high weed density presented a challenging sce-
nario for precision spraying. Despite these conditions, our CNN-based plant detection
and vision-based velocity estimation proved to be doing well during operation regarding
weed spraying recall and spray volume reductions. The spraying errors became secondary
compared to the indirect spray caused by the wide effective spray region of the nozzle
used in the test. Up to 90% of soybean samples without adjacent weeds were not sprayed
during our trials. In contrast, all soybean samples with adjacent weeds were unintention-
ally sprayed. The former errors were caused by inaccurate plant detection and velocity
estimation, while the latter could be attributed to the coarse resolution of the nozzle.

With the initial results of the field tests, improvements can be implemented in future
design iterations to minimize unintentional spray on non-targets and improve the perfor-
mance of plant detection and velocity estimation. First, we aim to optimize the number
of nozzles per SU. While the increased number of nozzles can also increase agrochemical
savings, it also increases overall system cost. Second, we plan to explore using the crop as
the only reference for travel velocity estimation due to its higher detection performance
and more regular distribution than weeds. Third, we plan to test the system with the
aforementioned improvements at standard spraying velocity as a tractor implement or
smart attachment for an agricultural robot with autonomous navigation. Finally, we shall
explore cameras and other sensors for close-loop feedback of spray instances, as most
precision sprayers generally use open-loop feedback.
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