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Abstract: In this paper, we propose an intra-picture prediction method for depth video by a block
clustering through a neural network. The proposed method solves a problem that the block that
has two or more clusters drops the prediction performance of the intra prediction for depth video.
The proposed neural network consists of both a spatial feature prediction network and a clustering
network. The spatial feature prediction network utilizes spatial features in vertical and horizontal
directions. The network contains a 1D CNN layer and a fully connected layer. The 1D CNN layer
extracts the spatial features for a vertical direction and a horizontal direction from a top block and a
left block of the reference pixels, respectively. 1D CNN is designed to handle time-series data, but it
can also be applied to find the spatial features by regarding a pixel order in a certain direction as a
timestamp. The fully connected layer predicts the spatial features of the block to be coded through
the extracted features. The clustering network finds clusters from the spatial features which are the
outputs of the spatial feature prediction network. The network consists of 4 CNN layers. The first
3 CNN layers combine two spatial features in the vertical and horizontal directions. The last layer
outputs the probabilities that pixels belong to the clusters. The pixels of the block are predicted by
the representative values of the clusters that are the average of the reference pixels belonging to the
clusters. For the intra prediction for various block sizes, the block is scaled to the size of the network
input. The prediction result through the proposed network is scaled back to the original size. In
network training, the mean square error is used as a loss function between the original block and the
predicted block. A penalty for output values far from both ends is introduced to the loss function for
clear network clustering. In the simulation results, the bit rate is saved by up to 12.45% under the
same distortion condition compared with the latest video coding standard.

Keywords: intra prediction; depth video coding; deep learning; 1D CNN; clustering

1. Introduction

Depth video stores the distances in pixels which are measured by a ToF (Time of
Flight) sensor or are calculated by comparing two pictures captured by stereo cameras. 3D
surfaces can be calculated through 2D coordinates and depth pixel values. The applications
of depth video through the information of the 3D surface are as follows: the human action
is recognized by detecting a body and analyzing a 3D movement from depth video [1,2]; in
autonomous driving, an object approaching the driving car is detected by depth videos
captured by side-mounted lidar sensors [3,4]; in the immersive video, a video at a specific
viewpoint is restored based on texture and distance information [5]. Therefore, depth video
compression is required to store and transmit depth video.

The most common method of video compression is a residual coding by a block-based
prediction. The block-based method predicts pixels in a rectangular block by referring to
temporally or spatially adjacent pixels. The block-based prediction applies to video coding
standards such as HEVC (High Efficiency Video Coding) [6] and VVC (Versatile Video
Coding) [7]. Even though the intra prediction for the conventional standard algorithms
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also can be applied for depth video, a coding performance is lower than for color video,
because the spatial redundancy for depth video is different from that for color video. The
spatial redundancy for color video means the similarity of adjacent pixels, while the spatial
redundancy for depth video means the similarity of surfaces. Our previous study [8]
improved the performance of the block-based intra prediction through a plane modeling
method, which predicts pixels as a point on a plane surface modeled from the reference
pixels. Another factor of the low performance of the depth video coding is hard to predict
a block which contains two or more clusters. The angular intra prediction modes in the
conventional standards can solve this problem a little if a boundary between the clusters
is consistently oriented. However, the modes still inaccurately predict the block with
non-linear boundaries. The problem greatly reduces the coding performance for depth
video due to the extended range of pixel presentation than color video.

Though RNN (Recurrent Neural Network) has been mainly for analyzing time-series
data, RNN is also possible to predict the spatial features for the intra prediction by regarding
the order of the reference pixels in a vertical or horizontal direction as time [9,10]. However,
a recursive structure in RNN causes gradient vanishing or exploding in training. In the
proposed network, 1D CNN (Convolution Neural Network) replaces RNN for the spatial
feature prediction. Similar to RNN, 1D CNN also takes continuous data to predict features.
The structure of 1D CNN is simpler than RNN, so then the network training is easier. The
network performance is reported to be better for 3D CNN than for RNN [11,12].

In this paper, we propose an intra prediction method through a neural network for
clustering. The network consists of a spatial feature prediction network and a clustering
network. The spatial feature prediction network finds spatial features in the vertical and
horizontal directions from the reference pixels through 1D CNN. The clustering network
calculates the probability that pixels belong to each cluster by CNNs. The pixels are
predicted through the cluster prediction result.

This paper is organized as follows. Related works are described in Section 2 about
the intra prediction through the neural networks and the depth video compression. In
Section 3, we propose the neural network for a block clustering and the intra prediction
method through this network. In Section 4, we present the simulation results to show
the improvement of the depth data coding compared with VVC, the latest video coding
standard. Finally, we will make a conclusion for this paper in Section 5.

The contributions of this paper are as follows. The proposed method can solve the
problem of inaccuracy intra prediction for a block with multiple clusters. 1D CNN layers
can replace RNN layers for finding the spatial features of video.

2. Related Works
2.1. Intra Prediction Methods through Neural Network

The intra-picture prediction methods through the neural network are classified into
end-to-end methods, that the entire picture is processed, and block-based methods. Au-
toencoders [13–17] are the typical end-to-end methods for the picture compression. In the
autoencoder, an encoder network reduces the features dimension through CNN or RNN
in order to compress the input picture. The pixel-based method [18,19] predicts a pixel by
inputting the top and left pixels through CNN. The end-to-end methods are hard to apply
to conventional block-based video compression frameworks.

Similar to the intra predictions in conventional video coding standards, the block-
based methods predict the pixels of a block by referring to the adjacent pixels that are
already coded. The conventional intra prediction generally refers to the adjacent pixels in a
single line, whereas the block-based methods utilize the pixels in multiple lines. J. Li [20]
and I. Schiopu [21] propose neural networks with fully connected layers and CNN layers,
respectively, for the intra prediction. However, the methods have a problem that reference
pixels with low spatial similarity are able to participate in predicting a pixel of the block.
F. Brand [22] proposes a network with an autoencoder structure. Unlike the end-to-end
autoencoder networks, the network takes the reference pixels as input. The output of the
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network is block restoration information through the reference pixels. The block-based
intra prediction is also performed by GAN [Generative Adversarial Networks). GAN
generates a block from the reference pixels. In GAN training, the generated pictures are
discriminated as to whether they are real together with actual pictures in order to improve
a generation performance. In Zhu’s work [23], both two regions of the block to be coded
and the reference pixels are discriminated in the network training. G. Zhong [24] proposes
a GAN with two-stage coarse-to-fine architecture. A coarse generator generates a coarsely
predicted block from the reference pixels. A fine generator generates a more detailed
block from the coarse block. The performances of the intra-predictions through GANs
have a limitation because pixels at the bottom and right of the block cannot be referenced
for generating the predicted block. The intra prediction methods through networks with
RNN layers regard the reference pixels in a vertical or horizontal direction as consecutive
sequential data. Y. Hu [9] proposes the intra prediction method through RNN layers with
various input sizes. The region of the reference pixels is scaled to the input sizes. The
PS-RNN (Progressive Spatial Recurrent Neural Network) [10] predicts the visual features
of the reference pixels through CNN. The spatial features are extracted through RNN
layers guided by the visual features. The pixels in the block are predicted by converting
the spatial features to the pixel domain. The neural networks with CNN can improve
computational complexities of the block split [25] and the mode selection [26] for the intra
prediction. proposes the video quality enhancement method in video decoding by the
picture prediction through CNN. Lee et al. [27] propose the video quality enhancement
method in video decoding by the picture prediction through CNN.

2.2. Depth Video Compression

Depth video has three-dimension spatial information. Therefore, depth video can
be converted to a point cloud which is a discrete set of three-dimensional points. MPEG
standardizes the point cloud compression as V-PCC (Video-based Point Cloud Compres-
sion) [28], which is a patch-based cloud point compression method. After splitting the 3D
points in the point cloud into patches with high spatial correlation, each patch is projected
onto a 2D surface. The projected patches are compressed through the prediction methods
in the conventional video coding standards such as HEVC and VVC. However, the point
cloud compression method by 2D projection removes the spatial correlation of Z-axis, so
the compression performance has a limit. The point cloud can also be compressed through
3D spatial correlation. Many studies of the point cloud compression generate an octree for
dividing 3D space. The octree is a tree structure where nodes represent bounding boxes
that are recursively divided into eight leaves. Similar to divided 2D image into blocks
through a quadtree, the 3D space can be divided into sub-cubes through octree. The loss
and the rate of the compression can be determined by adjusting the depth of the octree.
Garcia [29] proposes a method of compressing the flags of leaf nodes and their parents in
the octree through LZW algorithm and arithmetic coding. Kathariya [30] proposes a BTQT
(Binary Tree Quadtree) structure for compressing the point cloud. The points in the point
cloud are split into two sets through a binary tree. A set which presents a plane surface is
compressed by converting it into a quadtree. The other is compressed through the octree.
The point cloud can also be compressed through voxelization [31]. Adjacent 3D points are
converted into a single voxel through voxelization. The point cloud compression methods
through 3D spatial correlation are more precise predictions than 2D projection methods.
However, these methods have a limitation that has a high computational complexity due
to calculating the 3D spatial correlation.

Depth video can also be treated as a single channel video whose range of pixel rep-
resentation is extended. Therefore, depth video can be compressed by the conventional
video coding standards. Nenci [32] proposes a depth video coding method through depth
video conversion. The channel of depth video is divided into 8-bit multi-channels. The
multi-channel video is compressed through AVC. Wang [33] proposed the inter-frame pre-
diction method of finding camera movements between temporally adjacent depth pictures.
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Our previous study [8] proposes a new intra prediction mode based on a plane surface
estimation. The 3D plane surface is estimated through the reference pixels. The depth
pixels are predicted through the estimated plane surface. The study greatly improves the
performance especially of intra prediction for the depth pictures with simple backgrounds.

3. Intra Prediction Method by Block Clustering through Deep Learning
3.1. Spatial Feature Extraction through 1D CNN

In conventional video coding standards such as HEVC and VVC, the spatial features
of the block are extracted through the various modes of angular intra predictions. The
angular mode predicts pixels as a reference pixel in a certain direction. Figure 1a shows the
predictions results of the angular modes in a vertical and horizontal directions. The errors
of the predictions are calculated for the angular intra prediction mode and a DC mode,
which predicts pixels as the average of the reference pixels. Then, the prediction mode is
selected to make the prediction error smallest. The angular intra prediction can extract the
spatial features in the linear direction well, but non-linear spatial features can hardly be
extracted as shown in Figure 1c.
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Figure 1. Spatial feature extraction in video coding standards: (a) angular intra predictions in a
vertical direction and a horizontal direction; (b) a block with non-linear spatial features; (c) the result
of the intra prediction of VVC for (b).

Though RNN is designed for the continuous data in essence, RNN can extract the
spatial features of a video if a pixel order in a certain direction is regarded as a timestamp.
RNN extracts the features based on the data order in 1D domain, but the spatial features
of the video are in the 2D domain. Therefore, it is necessary to appropriately combine
the spatial features in various directions in order to extract the spatial features in the 2D
domain. In PS-RNN [10], RNN layers extract two spatial features in the vertical and the
horizontal directions. CNN layers combine both of the spatial features and predict the
block. Figure 2a shows the extraction of the spatial features through RNN. The spatial
feature extraction through RNN can extract non-linear spatial features that conventional
angular modes cannot. 1D CNN can replace RNN in the spatial feature extraction of the
video similar to the feature extraction of the time series data. 1D CNN can avoid gradient
vanishing or exploding in network training, which is the critical problem of RNN. 1D CNN
has equal performance to or better performance than RNN [11,12]. The kernel moves the
input block, which is the top or the left reference pixels, in one direction and extracts the
vertical or horizontal spatial features, respectively. Figure 2b shows the extraction of the
vertical spatial features through 1D CNN.



Sensors 2022, 22, 9656 5 of 16Sensors 2022, 22, x FOR PEER REVIEW 5 of 17 
 

 

 
(a) 

 
(b) 

Figure 2. Spatial feature extraction in a block: (a) through RNN; (b) through 1D CNN. 

3.2. Block Clustering Network 
The block clustering network proposed in this paper predicts multiple clusters from 

an input block based on the depth pixel values. The network consists of both a spatial 
feature prediction network and a clustering network. The input of the block clustering 
network is a 32 × 32 block with values in the range [0, 1]. In the input block, areas of a 
block to be coded and reference pixels are defined as a target area and a reference area, 
respectively, as shown in Figure 3. The output of the block clustering network is a 32 × 32 
× C cluster probability map, where C is the number of the clusters to predict. Figure 4 
shows the structure of the block clustering network. 

 
Figure 3. Input block of the proposed network. 

 
Figure 4. Structure of the proposed network. 
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3.2. Block Clustering Network

The block clustering network proposed in this paper predicts multiple clusters from an
input block based on the depth pixel values. The network consists of both a spatial feature
prediction network and a clustering network. The input of the block clustering network is a
32 × 32 block with values in the range [0, 1]. In the input block, areas of a block to be coded
and reference pixels are defined as a target area and a reference area, respectively, as shown
in Figure 3. The output of the block clustering network is a 32 × 32 × C cluster probability
map, where C is the number of the clusters to predict. Figure 4 shows the structure of the
block clustering network.
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3.2.1. Spatial Feature Prediction Network

A spatial feature prediction network finds the spatial features of the input block.
Horizontal and vertical spatial features are predicted from left reference and top reference
blocks, respectively. The prediction of the horizontal features of the left reference block can
be regarded as equal to predict the vertical features of the transposed block. Therefore, the
prediction of two spatial features can be performed through the same network. It makes
the complexity lower and the learning efficiency improve for the network. Figure 5 shows
the transformation of the left reference block.
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Figure 5. Input of the spatial feature prediction network.

The spatial features of the reference pixels are extracted through a 1D CNN layer. The
kernel size of the 1D CNN layer is 16 × 3, which is the same height as the input block.
Then, the spatial features in the pixel unit are predicted through a fully connected layer.
PReLUs (Parametric Rectified Linear Unit) [34] are used as activation functions in the block
clustering network. PReLU outputs the input value directly if the input value is greater
than 0, otherwise outputting the input value multiplied by a learned parameter. The output
vector is reshaped to a 32 × 32 block. Figure 6 shows the structure of the spatial feature
prediction network.
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The output for the left reference block is transposed again. Then, both the horizontal
and the vertical spatial features are concatenated. Figure 7 shows the flow of the feature
prediction network. The shared weight of two networks means that both networks are
actually identical. Table 1 specifies layers in the network.

Table 1. Specifications of layers in the spatial feature prediction network.

No. Layer From No. Layer Name No. Kernel Shape of Kernel Stride/Padding Activation Function Output Shape

1 Input - - - - (32,32,1)
2 1 Top block - - - - (16,32,1)
3 1 Left block - - - - (32,16,1)
4 3 Transpose - - - - (16,32,1)

5 2
4 Conv_1 32 (16,32) (1,1)/

(0,0) PReLU (1,30,32) × 2

6 5 Dense 1024 - - PReLU -
7 6 Reshape - - - - (32,32,1) × 2
8 7 Concatenate - - - - (32,32,2)
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3.2.2. Clustering Network

The clustering network predicts the clusters of the input block from the spatial features
of both horizontal and vertical directions. The clusters are found through multiple CNN
layers. The first CNN layer extracts 12 features combining vertical and horizontal directions.
The second CNN layer reduces the dimension of the feature map by a 1× 1 kernel. The third
CNN layer refines the spatial features. The cluster probability for each pixel is calculated by
the softmax activation function in the last CNN layer. The output of the clustering network
is a 32 × 32 × C cluster probability map. The network outputs are cluster probabilities for
the input block. The ranges of the output values are [0, 1]. When an output value in the (i,
j, c) position is closer to 1, it means a pixel in the (i, j) position has a higher probability to
belong to the cth cluster. Figure 8 and Table 2 show the structure and specification of the
clustering network, respectively.
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Table 2. Description of layers in the clustering network.

No. Layer From No. Layer Name No. Kernel Shape of Kernel Stride/Padding Activation Function Output Shape

1 Input - - - - (32,32,2)
2 1 Conv_1 12 (3,3) (1,1)/(2,2) PReLU (32,32,2)
3 1 Conv_2 6 (1,1) (1,1)/(0,0) PReLU (32,32,2)
4 3 Conv_3 6 (3,3) (1,1)/(2,2) PReLU (32,32,2)
8 7 Conv_4 C (3,3) (1,1)/(2,2) softmax (32,32,C)

3.3. Intra Prediction through Block Clustering Network

In order to predict a M × N block through the proposed network, the 2M × 2N
block including adjacent already coded pixels is inputted. The 2M × 2N block is scaled to
32 × 32 size by a bilinear interpolation. The pixel values are normalized to the range [0, 1]
as follows:

x(i, j) =
(p(i, j)− pmin)

pmax − pmin
, (1)
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where p(i, j) and x(i, j) are the values of an original pixel and a normalized pixel in (i, j)
position, respectively, and pmax, pmin are the maximum value and the minimum value of
the reference pixels, respectively.

After finding the clusters of the block through the proposed network, the pixel is
predicted as a sum of multiplication between the cluster probabilities and the representative
values of the clusters in the position of the pixel. The representative value of the cth cluster
is calculated as the average of the reference pixel values in the cth cluster, as follows:

mc =
∑i,j∈re f erence(ŷ(i, j, c)× x(i, j))

∑i,j∈re f erence(ŷ(i, j, c))
, (2)

where mc is the representative value of the cth cluster and ŷ(i, j, c) is the probability of the
cth cluster in the (i, j) position. A pixel value p̂(i, j) is predicted as follows:

p̂(i, j) =
C

∑
c=1

(mc × ŷ(i, j, c)) . (3)

The 16× 16 target area of the predicted block is cropped. The area is scaled back to the
original size M × N for the intra prediction. Figure 9 shows the proposed intra prediction
through the block clustering network.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 17 
 

 

No. 
Layer 

from No. Layer Name No. 
Kernel 

Shape of 
Kernel 

Stride/ 
Padding 

Activation 
Function 

Output 
Shape 

1  Input - - - - (32,32,2) 

2 1 Conv_1 12 (3,3) (1,1)/ 
(2,2) PReLU (32,32,2) 

3 1 Conv_2 6 (1,1) 
(1,1)/ 
(0,0) PReLU (32,32,2) 

4 3 Conv_3 6 (3,3) (1,1)/ 
(2,2) 

PReLU (32,32,2) 

8 7 Conv_4 C (3,3) (1,1)/ 
(2,2) 

softmax (32,32,C) 

3.3. Intra Prediction through Block Clustering Network 
In order to predict a M × N block through the proposed network, the 2M × 2N block 

including adjacent already coded pixels is inputted. The 2M × 2N block is scaled to 32 × 32 
size by a bilinear interpolation. The pixel values are normalized to the range [0, 1] as fol-
lows: 𝑥ሺ𝑖, 𝑗ሻ = ሺ𝑝ሺ𝑖, 𝑗ሻ − 𝑝௠௜௡ሻ𝑝௠௔௫ − 𝑝௠௜௡  , (1) 

where p(i, j) and x(i, j) are the values of an original pixel and a normalized pixel in (i, j) 
position, respectively, and pmax, pmin are the maximum value and the minimum value of the 
reference pixels, respectively. 

After finding the clusters of the block through the proposed network, the pixel is 
predicted as a sum of multiplication between the cluster probabilities and the representa-
tive values of the clusters in the position of the pixel. The representative value of the cth 
cluster is calculated as the average of the reference pixel values in the cth cluster, as fol-
lows: 𝑚௖ = ∑ ൫𝑦ොሺ𝑖, 𝑗, cሻ ൈ 𝑥ሺ𝑖, 𝑗ሻ൯௜,௝∈௥௘௙௘௥௘௡௖௘∑ ൫𝑦ොሺ𝑖, 𝑗, cሻ൯௜,௝∈௥௘௙௘௥௘௡௖௘   , (2) 

Where mc is the representative value of tℎ𝑒 cth cluster and 𝑦ොሺ𝑖, 𝑗, 𝑐ሻ is the probability of 
the cth cluster in the (i, j) position. A pixel value 𝑝̂ሺ𝑖, 𝑗ሻ is predicted as follows: 

𝑝̂ሺ𝑖, 𝑗ሻ = ෍൫𝑚௖ ൈ 𝑦ොሺ𝑖, 𝑗, cሻ൯஼
ୡୀଵ  . (3) 

The 16 × 16 target area of the predicted block is cropped. The area is scaled back to 
the original size M × N for the intra prediction. Figure 9 shows the proposed intra predic-
tion through the block clustering network. 

 
Figure 9. Flow of the proposed intra prediction.

3.4. Network Training
3.4.1. Dataset for training

The proposed network is trained through 1446 depth pictures about different scenes
in NYU Depth Dataset v2 [35]. Figure 10 shows the samples of the depth picture for the
network training. Block measuring 16 × 16, 32 × 32, and 64 × 64 at various locations
are cropped in the depth pictures. The cropped blocks are clustered into two areas by
the K-mean algorithm. The following blocks are not used for the network training: the
difference between the pixel averages of two areas is 500 or less; either of two areas occupies
less than 30% of either the reference or the target area. The network is trained by about
151,000 blocks in 1157 depth pictures, which is 80% of the total pictures, and is validated
through about 51,000 blocks in the others.
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3.4.2. Loss Function

In the network training can be considered applying MSE (Mean Square Error) between
the original and the reference blocks as a loss function, as follows:

loss =
1

32× 32

32

∑
i=1

32

∑
j=1

(
( p̂(i, j)− p(i, j))2

)
. (4)

The network trained by Equation (4) finds the clusters for the reference area well, while
the cluster prediction for the target area is not clear as shown in Figure 11b. The network
does not learn the block clustering but learns to find proportions of the representative
values for the intra prediction. In order to solve this problem, a penalty is introduced to the
loss function as follows:

loss =
1

32× 32

32

∑
i=1

32

∑
j=1

(
( p̂(i, j)− p(i, j))2

)
+ α× penalty , (5)

where α is the weight for the penalty. The penalty in Equation (5) is higher as the output
value is farther from 0 or 1, as follows:

penalty =
32

∑
i=1

32

∑
j=1

C

∑
c=1

(
1− 4(ŷ(i, j, c)− 0.5)2

)
. (6)

The network trained by Equation (5) predicts the clusters well, as shown in Figure 11c.
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4. Simulation Results

The intra prediction for depth video through the proposed method is compared with
VVC, which is the latest video coding standard. VVC has 67 intra modes including a DC
mode, a planar mode, and 65 angular prediction modes. The proposed method is added
into the intra mode of VVC. The parameters of network training are as follows: a batch
size, the number of epochs, and a learning rate are 128, 150, and 1 × 10−3, respectively. The
number of the clusters and α in Equation (5) are 3 and 3 × 10−3, respectively.

4.1. Improvement of Intra Prediction

Figure 12 shows the intra prediction results through the intra modes of VVC and the
proposed method. The first row is 32 × 32 input blocks. The areas surrounded by the
red rectangle are the target area. The 2nd to 3rd rows and 4th to 5th rows are the intra
prediction results through the intra modes of VVC and the proposed method, respectively.
When a boundary of the clusters is curved, the intra prediction through VVC is inaccurate,
while the proposed method predicts the block more accurately.
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Figure 12. Comparison between the intra prediction performances of VVC and the proposed method:
(a) 32 × 32 input blocks; (b) 16 × 16 error blocks of intra prediction by VVC; (c) 16 × 16 residual
blocks of intra prediction by VVC; (d) 16 × 16 error blocks of intra prediction by proposed method;
(e) 16 × 16 residual blocks of intra prediction by proposed method.

4.2. Prediction Performances Based on Network Structure

Table 3 shows intra prediction errors based on the number of the clusters in the
proposed network. The errors are measured as the MSE averages for the validation set,
which are not used for the network training. The prediction performance is better in case of
3 clusters than in case of 2 clusters. The prediction errors with 4 clusters increase rapidly.
The network training is difficult for 4 clusters because the block to be coded is rarely divided
into four or more clusters.

Table 3. Comparison of prediction errors based on number of clusters.

Number of Clusters Prediction Error (MSE)

2 0.0804
3 0.0643
4 0.5426
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Table 4 shows performances based on the depths of the fully connected layers in the
spatial feature prediction network. The depth increases by adding the fully connected
layer with 1024 outputs. We also measure the complexities and the processing time of the
network. The complexity of the network is measured as the number of the operations in the
network, which is the number of the network parameters. The processing time is averaged
by measuring the processing time for a block 100 times. Even though the intra prediction
performance improves by adding the fully connected layer, the complexity of the network
grows much faster than the increase of the prediction accuracy. It shows that adding the
fully connected layers is inefficient.

Table 4. Prediction performances based on structure of spatial feature prediction network.

Depth of Fully
Connected Layer

Prediction
Error (MSE)

No. Parameters
of FC Layer

No. Parameters
of Whole Network

Processing
Time (s)

1 0.0643 989,184 1,017,034 0.012
2 0.0629 2,043,904 2,071,754 0.016
4 0.0617 4,153,344 4,181,194 0.022

Table 5 shows intra prediction errors based on the depth of CNN layers in the clus-
ter prediction network. The depth increases by adding the CNN layers whose shape is
32 × 32 × 6. In the results, the prediction performance is significantly improved in case of
the structure with 4 CNNs than with 3 CNNs. The prediction performance increases little,
even though the depth of the CNN layers is increased to 4 or more. The complexity of the
network and the processing time increase less than the cases of increasements of the fully
connected layers.

Table 5. Prediction performances based on structure of cluster prediction network.

Depth of CNN
Layer

Prediction Error
(MSE)

No. Parameters
of CNN Layer

No. Parameters
of Whole Network

Processing
Time (s)

3 0.0709 18,848 1,010,560 0.012
4 0.0643 25,322 1,017,034 0.012
5 0.0637 31,796 1,023,508 0.012
6 0.0635 38,270 1,029,982 0.013

Figure 13 shows the intra prediction errors in the network training during 30 epochs.
The penalty weights in Equation (5) are given as 0, 1 × 10−4, 5 × 10−4, 1 × 10−3, and
5 × 10−3. The results show that the introduction of the penalty improves the intra predic-
tion performance due to more clearly clustering. The optimal penalty weight is 1 × 10−3

with a minimum MSE of 0.0483. The intra prediction performances are almost similar when
the penalty weights are 1 × 10−4, 5 × 10−4, and 1 × 10−3. However, the intra prediction
performance rather sharply drops if the weight is more than 5 × 10−3.
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4.3. Improvement of Coding Performance

We measure the video coding performance for depth video coding by the proposed
method through following depth videos: bedroom and basement in [35]; meeting room,
kitchen, and desk in [36]; computer and hat in [37]. The depth videos store the distances to
pixels in mm. Figure 14 shows the first frames of the depth videos. The depth videos are
coded through VTM (VVC Test Model) [38]. Whole frames in the depth videos are coded
only by intra prediction. The range of QPs (Quantization Parameter) are from 0 to 50.
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For the encoding error of the depth video, it is appropriate to measure the differences
in 3D coordinates [8,39–41] instead of the PSNR, which is the video distortion metric for
color video. The depth value means a Z-axis coordinate in a 3D coordinate system, so the
2D coordinates (i, j) with a depth pixel value p(i, j) can be converted to the 3D coordinates
as follows:

X = i
f p(i, j)

Y = j
f p(i, j)

Z = p(i, j) ,

(7)

where f is the focus length of the depth camera. The difference in 3D coordinates is
calculated as follows:

e(i, j) =
(
X(i, j)− X̂(i, j)

)2
+
(
Y(i, j)− Ŷ(i, j)

)2
+
(
Z(i, j)− Ẑ(i, j)

)2

=
[

i
f ( p̂(i, j)− p(i, j))

]2
+
[

j
f ( p̂(i, j)− p(i, j))

]2
+ (( p̂(i, j)− p(i, j)))2

= f−2( p̂(i, j)− p(i, j))2(i2 + j2 + f 2) ,

(8)

where X(i, j), Y(i, j), Z(i, j) and X̂(i, j), Ŷ(i, j), Ẑ(i, j) are 3D coordinates of an original
pixel and a predicted pixel in the (i, j) position, respectively. In the depth videos for the
simulation, f is 526.370 mm. RMSE (Root Mean Square Error) is the metric of the coding
distortion for depth video. RMSE is calculated as follows:

RMSE =

√
1

MN ∑M
i=1 ∑N

j=1(e(i, j))2. (9)

The unit of RMSE is equal to the unit of pixels which means distance. Figure 15
shows the comparisons between rate-distortion curves for depth video coding through
VVC and the proposed method. In the depth videos of bedroom and basement, the coding
performance is more improved. These videos capture many objects, so then, the boundaries
are more complex. The proposed method codes the depth videos with many boundaries
more efficiently. Tables 6 and 7 shows the improvements of bit rates and RMSEs through
the proposed method and our previous method [8] compared with VVC. Through the
proposed method, the RMSEs are reduced up to 6.07% and 5.55% when the bit rates are
500 kbps and 1000 kbps, respectively. The bit rates are improved up to 12.45% and 10.63%
when the RMSEs are 10 mm and 15 mm, respectively. The points of the performance
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improvement are different between the proposed method and our previous method, depth
video coding by plane modeling. In the depth videos of basement, bedroom, and desk,
the coding performance through the proposed method is better than the previous method
since the proposed method predicts these depth videos with complex boundaries more
accurately. The previous method is better than the proposed method for coding the depth
videos of hat and kitchen, which has few objects with simple background. The previous
method performs the surface-based prediction, so then, it greatly improves the bit rates
and the distortions for the depth videos with a simple background and small number of
objects. On the other hand, the proposed method improves the coding performance for the
depth videos with a complex background and many objects.

Table 6. Improvement of bit rate for depth video by proposed method compared with VVC.

Depth Video RMSE
Intra Prediction Method

Plane Modeling [8] Proposed Method

bedroom
10 mm 3.06% 8.00%
15 mm 2.79% 5.74%

basement
10 mm 2.96% 12.45%
15 mm 2.23% 10.63%

meeting room 10 mm 3.60% 4.55%
15 mm 2.65% 2.64%

kitchen
10 mm 3.66% 3.10%
15 mm 2.78% 1.78%

desk
10 mm 3.35% 4.31%
15 mm 2.51% 3.19%

pumpkin 10 mm 5.83% 5.28%
15 mm 5.65% 3.75%

computer 10 mm 6.76% 6.83%
15 mm 6.66% 4.15%

hat
10 mm 4.06% 1.93%
15 mm 3.76% 1.97%

Table 7. Distortion improvement for depth video by proposed method compared with VVC.

Depth Video Bit Rate
Intra Prediction Method

Plane Modeling [8] Proposed Method

bedroom
500 kbps 2.60% 6.07%

1000 kbps 2.28% 4.13%

basement
500 kbps 1.05% 8.04%

1000 kbps 0.90% 5.55%

meeting room 500 kbps 2.51% 3.36%
1000 kbps 2.53% 3.95%

kitchen
500 kbps 12.07% 3.20%

1000 kbps 12.70% 2.45%

desk
500 kbps 2.01% 3.50%

1000 kbps 2.29% 3.43%

pumpkin 500 kbps 2.84% 2.14%
1000 kbps 2.30% 2.38%

computer 500 kbps 4.16% 3.02%
1000 kbps 3.15% 2.82%

hat
500 kbps 2.34% 1.81%

1000 kbps 2.16% 1.03%
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5. Conclusions

In this paper, we proposed the intra prediction method for depth video coding by
clustering a block through a neural network. The spatial features of an input block were
predicted through the 1D CNN layer. The cluster probabilities were calculated from the
predicted spatial features. The pixels in the block were predicted through the cluster
probabilities. In the simulation results, the bit rates and RMSEs were improved up to
12.45% and 8.04%, respectively. The proposed method can solve the problem of depth
video coding whereby it is hard to predict the block divided into multiple areas based on
pixel values.
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33. Wang, X.; Şekercioğlu, Y.; Drummond, T.; Frémont, V.; Natalizio, E.; Fantoni, I. Relative pose based redundancy removal:
Collaborative RGB-D data transmission in mobile visual sensor networks. Sensors 2018, 18, 2430. [CrossRef] [PubMed]

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015.

35. Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R. Indoor Segmentation and Support Inference from RGBD Images. In Proceedings of
the European Conference on Computer Vision, Firenze, Italy, 7–13 October 2012.

36. Lai, K.; Bo, L.; Ren, X.; Fox, D. A Large-Scale Hierarchical Multi-View RGB-D Object Dataset. In Proceedings of the International
Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011.

37. Lai, K.; Bo, L.; Fox, D. Unsupervised Feature Learning for 3D Scene Labeling. In Proceedings of the International Conference on
Robotics and Automation, Hong Kong, China, 31 May–7 June 2014.

38. Versatile Video Coding (VVC). Available online: https://jvet.hhi.fraunhofer.de (accessed on 31 October 2022).
39. Ruhnke, M.; Bo, L.; Fox, D.; Burgard, W. Hierarchical Sparse Coded Surface Models. In Proceedings of the IEEE International

Conference on Robotics and Automation, Hong Kong, China, 31 May–7 June 2014.
40. Choi, S.J.; Zhou, Q.Y.; Koltun, V. Robust Reconstruction of Indoor Scenes. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015.
41. Sun, X.; Ma, H.; Sun, Y.; Liu, M. A novel point cloud compression algorithm based on clustering. IEEE Robot. Autom. Lett. 2019, 4,

2132–2139. [CrossRef]

http://doi.org/10.1109/TPAMI.2020.2988453
http://doi.org/10.1049/el.2018.0889
http://doi.org/10.1109/TIP.2018.2817044
http://doi.org/10.1109/TCSVT.2019.2940092
http://doi.org/10.1109/JSTSP.2020.3034768
http://doi.org/10.1109/TMM.2019.2924591
http://doi.org/10.3390/electronics10020132
http://doi.org/10.33851/JMIS.2021.8.3.147
http://doi.org/10.1109/JETCAS.2018.2885981
http://doi.org/10.1109/TIP.2017.2707807
http://www.ncbi.nlm.nih.gov/pubmed/28541899
http://doi.org/10.3390/s18082430
http://www.ncbi.nlm.nih.gov/pubmed/30049979
https://jvet.hhi.fraunhofer.de
http://doi.org/10.1109/LRA.2019.2900747

	Introduction 
	Related Works 
	Intra Prediction Methods through Neural Network 
	Depth Video Compression 

	Intra Prediction Method by Block Clustering through Deep Learning 
	Spatial Feature Extraction through 1D CNN 
	Block Clustering Network 
	Spatial Feature Prediction Network 
	Clustering Network 

	Intra Prediction through Block Clustering Network 
	Network Training 
	Dataset for training 
	Loss Function 


	Simulation Results 
	Improvement of Intra Prediction 
	Prediction Performances Based on Network Structure 
	Improvement of Coding Performance 

	Conclusions 
	References

