
Citation: Geng, H.; Jiang, J.; Shen, J.;

Hou, M. Cascading Alignment for

Unsupervised Domain-Adaptive

DETR with Improved DeNoising

Anchor Boxes. Sensors 2022, 22, 9629.

https://doi.org/10.3390/s22249629

Academic Editors: Zhaoyang Wang,

Hieu Nguyen and Minh P. Vo

Received: 26 October 2022

Accepted: 29 November 2022

Published: 8 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Cascading Alignment for Unsupervised Domain-Adaptive
DETR with Improved DeNoising Anchor Boxes
Huantong Geng 1,2, Jun Jiang 1,* , Junye Shen 1 and Mengmeng Hou 1

1 School of Computer Science, Nanjing University of Information Science and Technology,
Nanjing 210044, China

2 School of Information Technology, Jiangsu Open University, Nanjing 210036, China
* Correspondence: 20211220012@nuist.edu.cn

Abstract: Transformer-based object detection has recently attracted increasing interest and shown
promising results. As one of the DETR-like models, DETR with improved denoising anchor boxes
(DINO) produced superior performance on COCO val2017 and achieved a new state of the art.
However, it often encounters challenges when applied to new scenarios where no annotated data
is available, and the imaging conditions differ significantly. To alleviate this problem of domain
shift, in this paper, unsupervised domain adaptive DINO via cascading alignment (CA-DINO) was
proposed, which consists of attention-enhanced double discriminators (AEDD) and weak-restraints
on category-level token (WROT). Specifically, AEDD is used to aggregate and align the local–global
context from the feature representations of both domains while reducing the domain discrepancy
before entering the transformer encoder and decoder. WROT extends Deep CORAL loss to adapt class
tokens after embedding, minimizing the difference in second-order statistics between the source and
target domain. Our approach is trained end to end, and experiments on two challenging benchmarks
demonstrate the effectiveness of our method, which yields 41% relative improvement compared to
baseline on the benchmark dataset Foggy Cityscapes, in particular.

Keywords: object detection; detection transformer; domain adaptation; DINO

1. Introduction

As the fundamental task of computer vision (CV), object detection, which involves
two sub-tasks: classification versus regression, is widely used in automatic driving [1], face
recognition [2], crowd-flow counting [3], and target tracking [3], etc. Over the past decade,
classical convolution-based object-detection algorithms have made significant progress.
Derived methods consist of one-stage methods, such as the YOLO series [4–7], and two-
stage methods, such as the RCNN series [8–12]. Recently, transformer-based models have
attracted increasing attention in CV. As a new paradigm for object detection, detection
transformer (DETR) [13] eliminates the need for hand-designed components and shows
promising performance compared with most classical detectors based on convolutional ar-
chitectures due to the processing of global information performed by the self-attention [14].
In the ensuing years, many improved DETR-like methods [15–17] have been proposed
to address the problems that slow the training convergence of DETR and the meaning
of queries. Among them, DETR with improved denoising anchor boxes (DINO) [18] be-
came a new state-of-the-art approach on COCO 2017 [19], proving that transformer-based
object-detection models can also achieve superior performance.

Deep neural networks training is extremely dependent on external manual annotation
data whose training set and validation set are supposed to be independent and identically
distributed. Data labeling is time-consuming and the process can be costly; while some
public benchmarks [19,20] already exist, they only cover a limited number of scenarios.
In general, the labeled training data is known as the source domain, and the unlabeled
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validation data, which has a large distribution gap from the training data, is termed the
target domain. When applied to the target domain with varying object appearance, altering
backgrounds and changing illumination, etc., the performance of the model trained on
the source domain would suffer dramatic degradation. To solve the domain shift problem
between two domains and to avoid expensive laborious annotations, numerous domain-
adaptive methods have been proposed for object detection. Most existing works [21–24]
have achieved significant progress in improving cross-domain performance; universally,
these specific methods are based on Faster RCNN [24],YOLOv5 [25] and FCOS [26,27]. Al-
though considerable progress has been made, they complicate network design, and cannot
fully utilize synergistic relationships between different network components. Compared
with the well-established CNN-based detectors, how to develop efficient domain adapta-
tion methods to enhance the cross-domain performance of DETR-like detectors remains
rarely explored. The design draws on DN-DETR [17], DAB-DETR [16], and deformable
DETR [15], with DINO achieving an exceptional result on public datasets. However, as with
previous object detectors, it cannot be directly applied to new scenarios when variations in
environmental conditions change, which results in significant performance degradation.

This work aims to train DINO on the labeled source domain so that it can be applied
to the unlabeled target domain, as shown in Figure 1. As a pioneering work in domain
adaptation for object detection, DAF [24] introduced adversarial training by adding domain
discriminators to allow the model to learn domain-invariant features. In initial attempts,
this paper emulates previous work, an existing domain-adaptation method [28] based
on the adversarial paradigm with a single discriminator was directly involved. While
achieving a considerable performance gain, there is still a significant deviation from the
result by training on labeled data in the target domain. Figure 2 shows the distribution of
features extracted by DINO, the single discriminator version and our method. For DINO
trained on a source domain only, the features extracted by the backbone, encoder and
decoder can all be easily separated by domain. This means the models trained on the source
domain do not transfer well to the target domain. For the single-discriminator version,
while the source and target features extracted by the backbone are aligned, the features
from the transformer, encoder and decoder are not aligned properly, which substantially
affects the model’s performance. This visualization suggests that it is challenging to learn
the domain-invariant features when migrating a single discriminator for domain-adaptive
classification tasks into object-detection models such as DINO directly. We began to re-
examine the adversarial learning process. Since this weak discriminator is readily tricked,
its loss drops dramatically in the middle of training. Furthermore, the model may acquire
few domain-invariant features.

To tackle the above problem, a novel cascading alignment strategy was proposed for
learning domain-invariant features and applying them to the DINO; then, cascading align-
ment DINO (CA-DINO), a simple yet effective DETR-like detector, was further designed.
CA-DINO consists of two key components: attention-enhanced double discriminators
(AEDD) and weak-restraints on category-level token (WROT). Concretely, AEDD contains
two parameter-independent discriminators with attention enhanced, which act on the
second-last and third-last layer of the backbone, respectively, to learn the domain-invariant
features via adversarial training. The backbone containing domain-invariant features is of
great help to the unsupervised training of the encoder and decoder, because usually the de-
coder is more biased towards the source domain with supervised training. A well-aligned
backbone could guide the transformer encoder and decoder during training. Compared to
the original discriminator, the capacity of discrimination between two domains is consider-
ably improved by AEDD, which makes it less conceivable it will be easily deceived. The
introduction of two discriminators for adversarial training leads to instability in training. It
makes it difficult for the model to converge in the right direction, making both fine tuning
and end-to-end training challenging. Motivated by these findings, a weak constraint based
on the statistical method was proposed to regularize the category-level token produced
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by the transformer encoder and decoder and increase their discriminability for robust
object detection.

Target domain : unlabeled foggy dataSource domain :  labeled normal data

Learning domain-invariant features from 
source domain to predict target domain labels.

Unsupervised domain adaptation 
for object detection

Figure 1. Unsupervised domain-adaptation approach for object detection in foggy scenes. Given a
source domain (normal data) with bbox labels and a target domain (foggy scenes) with no annotation.
Our goal is to train a model to predict bbox labels of the target domain.
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Figure 2. T-SNE [29] visualization of features extracted by DINO [18], single discriminator version and
our method. Both methods are built on ResNet-50 [30] backbone and evaluated on the Cityscapes [31]
to Foggy Cityscapes [32] scenario (red: Cityscapes; blue: Foggy Cityscapes). Since they contain spatial
information, the features from the encoder and decoder do not have a typical cluster attribute.
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Overall, the collaboration of these two components results in the proper alignment of
domain-invariant features. Compared to other models, our method produced superior out-
comes and experiments on two challenging benchmarks, demonstrating that our strategy
considerably improves the cross-domain performance of DINO and outperforms various
competitive approaches.

The main contributions of this paper are as follows:

• We observe that a weak discriminator is a primary reason why alignment of feature
distribution on the backbone yields only modest gains and propose AEDD. It directly
scopes the backbone to alleviate the domain gaps and guide the ascension of the
cross-domain performance of the transformer encoder and decoder.

• A novel weak-restraints loss is proposed to regularize further the category-level
token produced by the transformer decoder and boost its discriminability for robust
object detection.

• Extensive experiments on challenging domain adaptation scenarios verify the effec-
tiveness of our method with end-to-end training.

2. Related Work
2.1. Object Detection

Object detection is a crucial challenge in CV. Representative object detectors based
on deep learning may be broadly classified as either two-stage or one-stage approaches.
Specifically, in two-stage detectors such as Faster RCNN [10], a region proposal network is
designed to propose candidate object bounding boxes, and a region of interest (ROI) pooling
operation retrieves the features from each candidate box for the following classification and
regression tasks. Typically, they are accompanied by outstanding performance. One-stage
detectors, such as YOLO [4], suggest predicted boxes straight from the input without an
ROI pooling phase, making them time-efficient and suitable for real-time devices.

Typically, the performance of these models is significantly influenced by hand-designed
components, such as anchor generation, for which prior knowledge about the task needs
to be explicitly encoded alongside non-maximum suppression [33]. To simplify these
processes, DETR [13] views object detection as a direct-set prediction issue and designs
an end-to-end architecture based on the transfomer [14]. The following variants [34–36],
Deformable DETR [15], performs a (multi-scale) deformable attention module, an efficient
attention mechanism, which achieves superior performance to DETR and considerably in-
creases the convergence speed of the model. DAB-DETR [16] demonstrates that the primary
reason for the sluggish convergence of DETR is that its decoder is challenging to train and
proposes a method of using anchors as a query to provide better prior spatial knowledge
for the model and speed up the convergence of decoder. DN-DETR [17] indicates that
the instability of bipartite graph matching may cause slow convergence and proposes
integrating denoising training to accelerate convergence and improve performance. Based
on prior research, improving the denoising training, query initialization, and box prediction
of DINO [18] considerably enhances both the training efficiency and the final detection
performance.

2.2. Pipeline of DINO

Like other DETR-like models, DINO generally consists of three parts: the backbone for
extracting low-level features, the transformer encoder and decoder for modeling sequence
features, and multiple prediction heads for making predictions.

Given an image, the backbone extracts the representation of multi-scale features
{ f l

map}L
l=1, where f l

map ∈ RB×Hl×W l×Cl
denotes the lth feature map, and B denotes batch

size. Then these are fed with hierarchical features into the deformable transformer en-
coder with corresponding positional embeddings to attain refined image sequence features
fs

enc, where fs
enc ∈ RB×N×C , N = ∑L

l=1 HlW l , and C refers to the number of channels.
Subsequently, a mixed query selection approach is used to initiate anchors as positional
queries and add learnable content queries to deformable transformer decoder along with
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the sequence features of the encoder outputs. Finally, the feedforward neural network
predicts classification probability vectors and bounding boxes based on the output of each
deformable transformer decoder layer with denoising training approach.

DINO uses the L1 loss [10] and GIOU [37] loss for regression and focal loss [38] for
classification and adds additional interim losses after the query selection. `det denotes the
supervised loss on the source domain.

2.3. Domain Adaptation for Object Detection

Domain-adaptive object detection, which seeks to train the detector on the source
domain and then apply it to the target domain, has attracted growing interest in recent years.
As the pioneering work in adapting domain-adaptive techniques to object detection, DA
Faster R-CNN [24] proposes a joint adaptation, which consists of an image-level adaptation
module and an instance-level adaptation module to alleviate the performance deterioration
caused by domain shift. Inspired by this, SWDA [23] proposes a weak alignment model
to align the similar overall feature, and an alignment model to enhance the local sensing
field of the feature map based on the discovery of different background layouts of other
domains. D-adapt [39] proposes decoupled adaptation, which decouples adversarial
adaptation from detector training and introduces a bounding-box adaptor to improve
localization performance.

With the extensive use of a transformer in object detection, the DETR-like domain-
adaptive object detector has also produced some remarkable outcomes. SFA [40] proposes
a novel sequence-feature-alignment method designed for DETR-like models to extract the
domain-invariant features of sequence features, as well as a binary matching consistency
loss to enhance the robustness of the model further.

In this paper, CA-DINO adopts adversarial learning as the primary mechanism and
aims to improve the cross-domain performance of DINO, which is still unexplored.

3. Methods
3.1. Framework Overview

Figure 3 depicts the overall architecture of CA-DINO which introduces AEDD for
optimal-feature alignment and WROT for minimizing the difference in second-order statis-
tics between the source and target category-level token. The training data contains both
labeled source data Ds = {(xi

s, yi
s)}Ns

i=1 and unlabeled target data Dt = {xi
t}

Nt
i=1, where,

Ns(Nt) represents the number of samples in dataset Ds(Dt), yi
s represents the labels of the

sample image xi
s, and Dt does not contain label yi

t which corresponds to sample image xi
t.

Given a pair of images xs ∈ Ds and xt ∈ Dt, backbone produced feature maps { f l
maps}

L
l=1

and { f l
mapt}

L
l=1, then fed to the encoder to obtain latent features f enc

s and f enc
t . After mixed

query selection, the selected features f obj
enc were used for WROT. These selected features were

fed to an auxiliary detection head to obtain predicted boxes, which were used to initialize
reference boxes. Additionally, ( f L−1

maps , f L−2
maps) and ( f L−1

mapt , f L−2
mapt) will be supplied into the

AEDD to calculate loss `adv for adversarial feature alignment. With the initialized anchors
and the learnable content queries, the sequence features f enc

s and f enc
t are also fed to the

deformable transformer decoder to predict a set of bounding boxes and pre-defined seman-
tic categories f obj

dec , which will be used to calculate a detection loss `det. `coral is constructed

from f obj
enc and f obj

dec to minimize the difference between source and target correlation.

3.2. Attention-Enhanced Double Discriminators

Domain-invariant features from the backbone are essential for detection transformers
to alleviate the domain shift problem. As in Deformable DETR, DINO applies the multi-
scale backbone features to enhance the detection performance for small objects. The
structure of AEDD is shown in Figure 4. Gradient reversal layer (GRL) [28] is adopted to
enable the gradient of Ladv to be reversed before back-propagating to backbone.
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To distinguish the feature distribution between source and target domains in different
perspectives, the backbone was made to learn domain-invariant representations to fool the
discriminator; the features of different domain ( f L−1

map , f L−2
map ) were fed into AEDD, which

contains two parameter-independent domain discriminators with spatial and channel
attention-enhancement:

P = Fsig(D1( f L−1
map ), D2( f L−2

map )) (1)

where Fsig() is an activation function to limit P in [0, 1], D1 and D2 denote those two
discriminators with convolutional block attention module (CBAM) [41] included. The
structure of these two discriminators can be implemented in different ways that slightly
impact the final result. In this paper, their implementation is generally based on DANN [42].
After adding CBAM, the discriminator, which acts on the antepenultimate layer of the
backbone, does not flatten the domain feature into a two-dimensional vector while directly
regularising feature maps for better domain discrimination.

The standard adversarial formulation Ladv can be formulated as follows:

`adv = −[d log Ps + (1− d) log(1− Ps) + (1− d) log Pt + d log(1− Pt)] (2)

where d is the domain label, which values 0 for source domain and 1 for target domain.
Both source source and target source (Ps, Pt) ∈ P are utilized to compute adversarial loss.

3.3. Weak Restraints on Category-Level Token

Deep CORAL [43] is a simple yet effective unsupervised domain-adaptation method
which aligns correlations of layer activations in the deep neural network for classification.
Inspired by this, WROT extends it to the category-level token to close domain gaps at the
instance level. Specifically, each category token f obj

enc ∈ RB×Nq×Nc and f obj
dec ∈ RB×Nq×Nc are

flattened to form a one-dimensional sequence z ∈ RN×Nc , where Nq means the number of
queries, Nc indicates the number of categories, and N denotes B · Nq; then, the covariance
matrices of the source and target data CS and CT are given by:

CS =
1

N − 1
(z>S zS −

1
N
(1>zS)

>(1>zS)) (3)

CT =
1

N − 1
(z>T zT −

1
N
(1>zT)

>(1>zT)) (4)

where 1 is a column vector in which each element is 1. The `coral is defined for measuring
distance between the second-order statistics (covariances) of the source and target features:

`coral =
1

4d2 ‖CS − CT‖2
F (5)

where ‖̇‖2
F denotes the squared matrix frobenius norm and d denotes feature dimension.

WROT constrains the category-level token of transformer encoder, and the performance of
DINO in the target domain is improved by it.

3.4. Total Loss

To summarize, the final training objective of CA-DINO is defined as:

` = `det + λadv`adv + λcoral`coral (6)

where λadv and λcoral are weights that trade off the adaptation. These three losses constitute
counterparts and reach an equilibrium at the end of training, where it is anticipated that
the features would perform well on the target domain.
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Figure 3. Diagram of CA-DINO for domain-adaptive detection. AEDD aligns the output features
of backbone to tackle global and local domain gaps. Moreover, WROT is proposed to improve the
performance of DINO on the target domain.
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Figure 4. The architecture of AEDD. The discriminator D is trained end to end for discrimination
from two domains.
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4. Experiments

In this section, comprehensive experiments on many cross-domain object-detection
scenarios demonstrate the effectiveness of CA-DINO. Ablation studies and visualization
analysis validate that our design makes DINO capable of detection in the target domain.

4.1. Datasets

In these experiments, the following three public datasets will be employed: Cityscapes [31],
Foggy Cityscapes [32] and Sim10k [44], which are detailed as follows.

• Cityscapes [31] has a subset called leftImg8bit, which contains 2975 images for train-
ing and 500 images for evaluation with high-quality pixel-level annotations from
50 different cities; consistent with previous work [40], the tightest rectangles of object
mask will be used to obtain bounding-box annotation of 8 different object categories
for training and evaluation.

• Foggy Cityscapes [32] is a synthetic foggy dataset which simulates fog on real scenes
which automatically inherit the semantic annotations of their real, clear counterparts
from Cityscapes. In particular, the experiment uses β = 0.02, which corresponds
approximately to the meteorological optical range of 150 m, to remain in line with
previous work.

• Sim10k [44] is a synthetic dataset consisting of 10,000 images produced from the game
Grand Theft Auto V, and is excellent for evaluating synthetic to real adaptation.

Based on these datasets, these experiments evaluate CA-DINO under two widely
used adaptation scenarios: (1) Normal weather to Foggy weather (Cityscapes→ Foggy
Cityscapes), where the models are trained on Cityscapes and validated on Foggy Cityscapes,
which aims to test domain adaptation across different weather conditions; and (2) synthetic
scene to real scene (Sim10k→ Cityscapes), where Sim10k is used as source domain and
Cityscapes is used as the target domain, which evaluates the shared category “Car”. Fol-
lowing previous works, the paper reports the results of mean average precision (mAP) with
a threshold of 0.5.

4.2. Implementation Details

By default, ResNet-50 [30] (pre-trained on ImageNet [45]) was adopted as the backbone
in all experiments. For hyper-parameters, as in DINO-4scale [18], CA-DINO uses a six-layer
transformer encoder and decoder with 256 as the dimension of the hidden feature. The
initial learning rate (lr) is 1× 10−4 and drops lr at the 40-th epoch by multiplying 0.1, and
we used the AdamW [46,47] optimizer with weight decay of 1× 10−4. The weight factor
λadv and λcoral were set as 1.0.

The model was trained on NVIDIA GeForce RTX 3090 GPUs with batch size 2 (1 image
each GPU × 2 GPUs) end-to-end. The software configuration adopted the deep-learning
framework PyTorch 1.9, CUDA version 11.1, and Python 3.8.13. Taking Cityscapes→ Foggy
Cityscapes as an example, it took about 14 h to train the model with 50 epochs.

4.3. Comparisons with State-of-the-Art Methods
4.3.1. Normal to Foggy

In this experiment, the Cityscapes dataset (source domain) [31] was used to train the
model, which was then applied to Foggy Cityscapes (target domain) [32] for verifying the
effectiveness of CA-DINO in weather scenarios. The mAP curves of the algorithm in this
paper were compared with DINO [18] and the single discriminator version, as shown in
Figure 5. During the training process, the performance of DINO suffers a significant decline,
and the improvement in the model with the addition of epochs is negligible. When a single
discriminator is introduced to be applied on the backbone for adversarial training, the
performance of the model improves significantly. However, there is still a substantial gap
between the model training on labeled data in the target domain. Meanwhile, CA-DINO



Sensors 2022, 22, 9629 9 of 15

significantly improves the cross-domain performance of DINO by 20.6 mAP, demonstrating
the proposed approach’s effectiveness.

0

10

20

30

40

50

60

0 10 20 30 40 50

m
AP

epochs

DINO (Source Only) SD CA-DINO (Ours)

Figure 5. mAP curves diagram for training, Cityscapes [31] as source domain and Foggy Cityscapes [32]
as target domain.

The comparisons of results with other methods are reported in Table 1. The results
show that our approach is superior to traditional CNN-based domain-adaptive object de-
tectors for most categories. In addition, the CA-DINO also performs +3.7 mAP higher than
existing state-of-the-art detection transformers due to the performance of the DINO [18].

4.3.2. Synthetic to Real

We used the SIM10k as the source domain and the Cityscapes as the target domain
to adapt synthetic scenes to the real world. The only common category between SIM10K
and Cityscapes is the car. Table 2 demonstrates that our strategy can mitigate domain
shifts in various scenarios. Compared with SFA [40], the accuracy of mAP achieved a +
2.1 improvement.

4.4. Ablation Study

In this section, we conduct exhaustive ablation experiments on Cityscapes→ Foggy
Cityscapes to determine the effect of different components in our method by adding
components to DINO and comparing components before improvements as shown in
Table 3.

First, by adding WROT, the mAP achieved a + 4.1% improvement. Then the simple
single discriminator was added without involving an attention mechanism on the penul-
timate layer of the backbone; it outperforms the last one, significantly, which indicates
that discriminator does help align the distributions. Further, we introduce the channel
attention module to this discriminator, and the mAP is +1.3% higher than this module
without attention. In addition, we separately introduce the spatial attention module on
the discriminator again, which raised the mAP to 46.4. As demonstrated by the preced-
ing results, by introducing an attention mechanism to enhance the performance of the
discriminator, the discriminator is less susceptible to being deceived and the detector can
learn domain-invariant features better during the adversarial learning process. Afterwards,
introducing CBAM which contains a spatial-attention module and channel-attention mod-



Sensors 2022, 22, 9629 10 of 15

ule to the single discriminator, the mAP is +3.1% higher than the discriminator without
attention and mAP reaches 48.6. By adding another discriminator with attention-enhanced
for united alignment, we reach our proposed method, which yields the best performance.
At the same time, we also implemented the AEDD-only version, which is slightly worse
than the final model.

4.5. Visualization and Discussion

To verify that our proposed model is effective, we visualized some detection results
by DINO [18], SFA [40] and CA-DINO, accompanied by the ground truth. The qualitative
comparison is illustrated in Figure 6. As can be seen, CA-DINO greatly minimizes false
negatives, i.e., detecting objects that are not detected by other methods, proving that our
proposed alignment modules may effectively decrease the domain gap and produces
excellent cross-domain performance.
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Figure 6. Qualitative illustration of domain-adaptive detection for Cityscapes→ Foggy Cityscapes:
our method can adapt well from normal to foggy weather conditions.

To analyze why cascading alignment improves the detection performance, we visualize
the class activation mapping [48] of backbone features extracted by the plain source model,
single discriminator version, SFA and our method in Figure 7. Thanks to the well-aligned
backbone, CA-DINO further facilitates attention to objects and decreases the attention
on the background, especially for dense and small objects. Our model surpasses existing
methods and shows advanced performance.
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Source Only                            Single Discriminator SFA CA-DINO (ours)

Figure 7. Illustration of the class activation mapping for test samples from Foggy Cityscapes.

The outstanding performance is primarily attributed to our designed AEDD, which
captures more context features at the image level. Therefore, t-SNE [29] is utilized to
visualize the feature-distribution alignment of the last convolution layer of the backbone
and transformer encoder and decoder from DINO and CA-DINO. Meanwhile, we visualize
the single discriminator version as a comparison, as shown in Figure 2. It demonstrates that
our alignment method minimizes both datasets’ domain shift. Compared to the previous
two, the features extracted from the backbone, transformer, encoder and decoder by CA-
DINO are well-aligned, allowing the model trained on the source domain to be effectively
applied to the target domain while maintaining reasonably excellent performance.

Additionally, we attempted to implement three attention-enhanced discriminators
on the backbone, and the experiments revealed that not only did we not obtain more
excellent performance, but the training time was also extended. Then, we experimented
with the optimal placement of these two discriminators and discovered that this has a lower
influence on performance than hyperparameter adjustment. Thus, we chose the present
strategy with fewer parameters. For the study, we chose CA-DINO based DINO-4scale.
The parameters have 52.4 M, which includes 47 M for DINO and 5.4 M for AEDD. WROT
does not contain parameters. It is noteworthy that the methods we proposed are only
involved in the training stage and do not take part in inference, which allows us to infer the
images at the same theoretical speed as the standard DINO, which runs at 24 FPS, similar
to Faster R-CNN-FPN with the same backbone.

Segmentation [49,50] has always been a task which attracted a lot of attention in the
CV community. Some recent work utilizing transformer for domain-adaptive semantic
segmentation [51] have yielded positive results, while they may be specifically designed
for a segmentation task. It is worthwhile to investigate how to train a segmentation model
by using the trained domain-adaptive object-detection framework. One possible strategy
is parameter sharing. As one of the DETR-like models, DINO can also be extended for
segmentation by adding a mask head on top of the decoder outputs, just like DETR. The
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process is divided into two steps: first, DINO, which can be applied to the target domain, is
trained by our proposed cascade-alignment framework, then all the weights are frozen and
only the mask head trained on the source domain, and finally, DINO with the mask head is
added and is able to infer the images from the target domain.

Table 1. Results on weather-adaption scenario, i.e., Cityscapes→ Foggy Cityscapes. mcycle is the
abbreviation of motorcycle.

Method Date Detector Person Rider Car Truck Bus Train Mcycle Bicycle mAP

DAF [24] 2018 Faster
RCNN 29.2 40.4 43.4 19.7 38.3 28.5 23.7 32.7 32.0

SWDA [23] 2019 Faster
RCNN 31.8 44.3 48.9 21.0 43.8 28.0 28.9 35.8 35.3

SCDA [22] 2019 Faster
RCNN 33.8 42.1 52.1 26.8 42.5 26.5 29.2 34.5 35.9

MTOR [21] 2019 Faster
RCNN 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1

MCAR [52] 2020 Faster
RCNN 32.0 42.1 43.9 31.3 44.1 43.4 37.4 36.6 38.8

GPA [53] 2020 Faster
RCNN 32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5

UMT [54] 2021 Faster
RCNN 33.0 46.7 48.6 34.1 56.5 46.8 30.4 37.3 41.7

D-adapt [39] 2022 Faster
RCNN 40.8 47.1 57.5 33.5 46.9 41.4 33.6 43.0 43.0

SA-YOLO [25] 2022 YOLOv5 36.2 41.8 50.2 29.9 45.6 29.5 30.4 35.2 37.4

EPM [27] 2020 FCOS 44.2 46.6 58.5 24.8 45.2 29.1 28.6 34.6 39.0
KTNet [55] 2021 FCOS 46.4 43.2 60.6 25.8 41.2 40.4 30.7 38.8 40.9

SFA [40] 2021 Deformable
DETR 46.5 48.6 62.6 25.1 46.2 29.4 28.3 44.0 41.3

OAA + OTA [56] 2022 Deformable
DETR 48.7 51.5 63.6 31.1 47.6 47.8 38.0 45.9 46.8

CA-DINO (Ours) 2022 DINO 54.5 55.6 69.1 36.2 57.8 42.8 38.3 50.1 50.5

Table 2. Results on synthetic to real adaptation scenario, i.e., Sim10k→ Cityscapes. mcycle is the
abbreviation of motorcycle.

Method Date Detector Car AP

DAF [24] 2018 Faster RCNN 41.9
SWDA [23] 2019 Faster RCNN 44.6
SCDA [22] 2019 Faster RCNN 45.1
MTOR [21] 2019 Faster RCNN 46.6
CR-DA [57] 2020 Faster RCNN 43.1
CR-SW [57] 2020 Faster RCNN 46.2

GPA [53] 2020 Faster RCNN 47.6
D-adapt [39] 2022 Faster RCNN 49.3

SA-YOLO [25] 2022 YOLOv5 42.6

EPM [27] 2020 FCOS 47.3
KTNet [55] 2021 FCOS 50.7

SFA [40] 2021 Deformable DETR 52.6

CA-DINO(Ours) 2022 DINO 54.7
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Table 3. Results on ablation study. mcycle is the abbreviation of motorcycle. SD is a single discrimina-
tor, cam-SD and sam-SD represent SD with channel attention module, and spatial attention module
has been introduced, respectively. AESD is attention-enhanced single discriminator. Oracle is the
result of DINO training with labeled target domain dataset.

Method Person Rider Car Truck Bus Train Mcycle Bicycle mAP

DINO [18] 38.2 38.2 45.2 18.2 31.9 6.0 22.3 37.9 29.9
+WROT 43.0 46.6 58.4 18.7 32.2 11.3 23.3 38.3 34.0

+SD +WROT 51.1 52.6 64.0 26.4 51.1 36.0 35.5 47.4 45.5
+cam-SD +WROT 51.8 55.0 64.5 32.6 51.7 37.8 31.8 49.0 46.8
+sam-SD +WROT 52.0 52.9 63.8 27.1 51.2 43.9 32.5 48.0 46.4
+AESD +WROT 51.7 54.7 67.5 29.7 52.0 44.0 40.3 49.1 48.6

+AEDD 55.0 55.0 68.6 32.1 58.5 34.2 37.9 50.8 49.0
+AEDD +WROT 54.5 55.6 69.1 36.2 57.8 42.8 38.3 50.1 50.5

oracle 58.4 54.8 77.2 36.9 56.5 39.4 40.8 51.2 51.9

5. Conclusions

In this paper, we were devoted to enhancing the cross-domain performance of DINO
for unsupervised domain adaptation. Specifically, CA-DINO includes attention-enhanced
double discriminators (AEDD), which are proposed to extract more domain-invariant
features and weak-restraints on category-level token (WROT) for minimizing the difference
in second-order statistics between the source and target domain. Numerous experiments
and ablation studies have also demonstrated the effectiveness of our method. Although
CA-DINO has excellent performance, one GPU can only carry one batch in the experiments.
Our method requires more memory than previous work and takes longer to train. The
introduction of WROT largely alleviates the instability brought by adversarial training.
However, the model’s training is still accompanied by a slight perturbations in some
scenarios, which makes the adjustment of hyperparameters particularly difficult. Balancing
performance and stability is the next important direction for us to explore.
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