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Abstract: Hand gesture recognition systems (HGR) based on electromyography signals (EMGs)
and inertial measurement unit signals (IMUs) have been studied for different applications in recent
years. Most commonly, cutting-edge HGR methods are based on supervised machine learning
methods. However, the potential benefits of reinforcement learning (RL) techniques have shown that
these techniques could be a viable option for classifying EMGs. Methods based on RL have several
advantages such as promising classification performance and online learning from experience. In
this work, we developed an HGR system made up of the following stages: pre-processing, feature
extraction, classification, and post-processing. For the classification stage, we built an RL-based agent
capable of learning to classify and recognize eleven hand gestures—five static and six dynamic—
using a deep Q-network (DQN) algorithm based on EMG and IMU information. The proposed
system uses a feed-forward artificial neural network (ANN) for the representation of the agent
policy. We carried out the same experiments with two different types of sensors to compare their
performance, which are the Myo armband sensor and the G-force sensor. We performed experiments
using training, validation, and test set distributions, and the results were evaluated for user-specific
HGR models. The final accuracy results demonstrated that the best model was able to reach up to
97.50%± 1.13% and 88.15%± 2.84% for the classification and recognition, respectively, with regard
to static gestures, and 98.95%± 0.62% and 90.47%± 4.57% for the classification and recognition,
respectively, with regard to dynamic gestures with the Myo armband sensor. The results obtained
in this work demonstrated that RL methods such as the DQN are capable of learning a policy from
online experience to classify and recognize static and dynamic gestures using EMG and IMU signals.

Keywords: hand gesture recognition; electromyography; inertial measurement unit; reinforcement
learning; deep Q-network

1. Introduction

In recent years, the use of non-verbal communication techniques has proven useful
for creating human–machine interfaces (HMIs). In particular, hand gesture recognition
(HGR) systems have been used in applications such as sign language recognition, human–
machine interfaces, muscle rehabilitation systems, prosthesis design, robotic applications,
and augmented reality, among others [1–6]. However, designing HGR systems that are
capable of determining with high accuracy the moment a certain gesture was performed is
a challenging problem. This is due in part to the variability of the signals of each gesture
between different users, as well as the similarities that the signals of different hand gestures
may have.

Several HGR systems use vision-based methods, for example, Kinect [7] and Leap
Motion Sensor [8]. On the other hand, sensor-based HGR systems typically use gloves with
inertial measurement units (IMU) [9,10], as well as non-invasive surface electromyography
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(EMG) methods for the detection of arm muscle activity, such as the G-force and Myo
armband sensors [6]. However, the performance of vision-based method systems can be
affected by occlusion and illumination issues, as well as the distance between the sensor
and the hand. For this, sensor-based HGR systems based on EMG or IMU signals are
preferred for different HGR applications. It is worth mentioning that EMG signals (EMG)
are often selected when static gestures are used since the information from muscle activity
is usually sufficient to characterize this type of hand gesture [1,4,5]. On the other hand,
IMU signals (IMUs) are usually selected to characterize dynamic gestures since this type
of gesture primarily depends on hand and arm movements [6]. Therefore, a combination
of EMG and IMU signals to recognize static and dynamic hand gestures could increase
the performance of HGR systems since more information is analyzed for each gesture [11].
However, this is still an open research problem [12,13].

EMG signals can be modeled as a stochastic process that depends on whether the
muscle contraction is static or dynamic. However, to address these problems, machine
learning (ML) and deep learning (DL) techniques have been commonly used to classify and
recognize EMG signals instead of mathematical models since the latter have high design
complexity and performance issues [1,14]. In particular, supervised methods, such as
support vector machines (SVMs), k-nearest neighbors (K-NNs), artificial neural networks
(ANNs), convolutional neural networks (CNNs), a fusion of the transformer model and
the CNN model (transformer-CNN), and long short-term memory (LSTM) networks, have
shown high-performance results for HGR systems (at least 80% classification accuracy
and 300 ms processing time) [1,15–20]. However, these models still require a fully labeled
dataset to be trained, which makes them unsuitable for learning using new experiences
gained online when the user interacts with the system. On the contrary, reinforcement
learning (RL) approaches can help build models that learn online from experience. These
models could help improve the performance of the HGR system over time since the system
can adapt to each user in an online manner after each interaction with the system, which
helps reduce the problem of interpersonal variability. Reinforcement learning methods
are based on the maximization of the accumulated reward that is obtained by trying to
correctly predict a gesture from online experiences, which allows for finding an optimal
policy for an agent to use to predict categories of signals in a given environment [16].

There have been a few attempts to use RL techniques for HGR and arm movement or
hand gesture characterization using sensor-based systems. For example, in [21], the authors
used the Myo armband sensor to extract 9-axis IMU and 8-axis EMG sensor information to
classify dynamic hand gestures using a deep Q-network (DQN) model. The experiment
consisted only of three different hand gestures based on drawing a circle, a rectangle, and a
triangle in the air. Each of these three gestures had 30 training data and 20 test data. The
agent was built using a CNN with and without LSTM layers and was demonstrated to
obtain high classification performance. In [22], the authors used the UCI dataset, which
contains EMG data from six users performing six different hand gestures. From this dataset,
time-domain features were obtained using a CNN-based automatic feature extraction
method. To learn a classification policy, a deep Q-learning dueling technique was used,
which allows for the selection of the most relevant characteristics throughout the training.
The base dataset was composed of a total of 2700 EMG signal samples for the six hand
gestures. As this was a sparse dataset, the authors used data augmentation methods using
Gaussian noise, random horizontal flipping, and vertical flipping on the EMG data to obtain
10,000 samples. The authors showed that CNN performed better than ANN for this dataset.
In another work, the authors proposed a classifier based on the neural reinforcement
learning (NRL) method to classify finger movements using only EMGs [23]. For this, the
authors used four feature extraction methods, which were the variance, mean absolute
value, zero crossing, and waveform length of seven different gesture classes. Then, they
used a k-nearest neighbor classifier based on reinforcement learning to classify the extracted
features using a trial-and-error approach. The authors performed experiments on 10 users
with general and specific models, demonstrating that it was feasible for the NRL user to
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identify typing movements using EMG signals from the forearm. In [24], a reinforcement
learning-based classifier capable of learning to classify arm and finger movements was
designed. For this, a 26T System was used to obtain EMG signals from 10 subjects using 1,
2, and 3 electrodes, respectively, to compare their results. The temporal characteristics that
were used were the length of the waveform, the mean absolute value, the variance, and
the zero crossing. An algorithm based on Q-learning was used for the classification stage,
where the agent was made up of an ANN to infer six classes of arm positions and four
classes of finger movements. The authors used 144 training samples and 95 test samples
to build specific models for each of the 10 subjects. Finally, we presented an approach to
classify and recognize five different static hand gestures based only on the EMGs in [16].
For this, we used Q-learning with an ANN as a policy representation of the agent. However,
we used only the EMG signals to recognize static gestures and data were obtained using
only the Myo armband sensor. Although the results obtained were encouraging, it is still
necessary to explore other types of gestures and sensor behaviors when using different
RL-based methods. Moreover, the use of IMU is still key to recognizing dynamic gestures,
and the combination of EMG-IMU signals still needs to be analyzed and compared to a case
when only EMGs are used to develop HGR systems based on RL methods. In summary, the
use of datasets with a considerable number of samples and participants for both dynamic
and static gestures based on EMG and IMU information still needs to be explored for
different RL-based methods and sensors. To the best of our knowledge, this work is the
first attempt to use EMG-IMU signals from a large dataset from two different sensors (Myo
armband and G-force) and compare the results with other methods.

Considering the literature review presented above, the main contributions of the
present work are listed below:

• We use our large dataset composed of 85 users with information on 11 different hand
gestures (5 static and 6 dynamic gestures) that contain EMG and IMU signals. The
data were taken from two different armband sensors, the Myo armband and G-force
sensors.

• We successfully combine the EMG-IMU signals with the deep Q-network (DQN)
reinforcement learning algorithm. We propose an agent’s policy representations based
on artificial neural networks (ANN).

• We compare the results of the proposed method using both sensors, the Myo armband
and G-force sensors. We also compare the results found in the present work, which
uses EMG and IMU signals, with those of a method previously developed on a dataset
that used only EMG signals and the Q-learning algorithm.

The rest of this work is organized as follows. In Section 2, the proposed method for an
HGR system based on EMG-IMU signals and RL is presented and each stage is explained
in detail. The classification and recognition results of the proposed method are presented
in Section 3. The discussion section is in Section 4. Finally, the conclusions are provided in
Section 5.

2. Hand Gesture Recognition Method

In this section, we present the proposed method for the HGR system based on EMG-
IMU signals and RL (Figure 1). As can be observed, the proposed method is composed
of data acquisition, pre-processing, feature extraction, classification (DQN), and post-
processing stages. The data were taken from two different armband sensors to compare
results, which are the Myo armband and G-force sensors. We combined the EMG-IMU
signals with the deep Q-network (DQN) reinforcement learning algorithm to develop the
proposed HGR system. Next, we explain in detail each stage.
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Figure 1. Hand gesture recognition method based on EMG-IMU and RL.

2.1. Data Acquisition

In this work, we use EMG-IMU data of 12 different hand gesture categories—11
different hand gestures and 1 relax gesture—in which 5 of them are static gestures—wave
in, wave out, fist, open, and pinch—and the other 6 are dynamic gestures—up, down,
left, right, forward, and backward. The data were collected using the Myo armband—a
sensor with 8 channels at a sampling rate of 200 Hz—and the G-force armband—a sensor
with 8 channels at a sampling rate of 1 kHz. The proposed dataset consists of 85 users, of
whom 43 are used for training and validation to find the best possible hyperparameter
configurations. From this group, 16 users are from the Myo armband sensor data and
27 from the G-force sensor data. On the other hand, 42 users are used for testing to
evaluate overfitting and to calculate the final results. From this group, 16 users are from
the Myo armband sensor data and 26 from the G-force sensor data. The data of each user
in the training set is composed of 180 hand gesture repetitions—15 repetitions for each
gesture—and the other 180 samples are for validation. This division of samples is similar
to the test set. We summarize the dataset distribution for both the training and testing
sets in Table 1. The dataset has been made public and is available at the following link
https://laboratorio-ia.epn.edu.ec/en/resources/dataset/emg-imu-epn-100 accessed on
18 November 2022.

Table 1. Dataset distribution to evaluate user-specific models [25].

User-Specific Model (One Model for Each of the 85 Users)

Number of Models Training Validation Test

Training
set

43 models trained
(to find the best

hyperparameters)

180 samples
per user

180 samples
per user -

Testing
set

42 models trained
(to use the best of the found

hyperparameters)

180 samples
per user - 180 samples

per user

2.2. Pre-Processing

The preprocessing of each EMG sample consisted of using a sliding window on each
sample to analyze it separately [1,14]. In this work, we chose a window length of 300 and
a step of 40, where these values were selected based on experimentation to achieve high
classification and recognition accuracy. Since we had two different sensors—Myo armband
and G-force—with different sample frequencies—200 Hz and 1 kHz—a resampling was
performed by applying an FIR antialiasing low-pass filter to the signals so that the EMGs

https://laboratorio-ia.epn.edu.ec/en/resources/dataset/emg-imu-epn-100
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and IMUs would have the same number of 1000 points for both sensors. However, only
one window of 300 points was sent to the feature extraction stage to be evaluated at each
time instant. Each EMG sensor had 8 channels, and to obtain the IMU signal, the 4 signals
of the quaternions were used; thus, each EMG-IMU window information had a dimension
of [300, 12].

2.3. Feature Extraction

Feature extraction methods are used to extract relevant and non-redundant features
from EMGs and IMUs. For this purpose, different domains can be used such as time,
frequency, or time-frequency domains. In this work, five different features were extracted
in the time domain over each step of the sliding window. The feature extraction functions
used were root mean square (RMS), standard deviation (SD), energy (E), mean absolute
value (MAV), and absolute envelope (AE), which are typically used to extract features
of EMGs [1,14]. We used all these features in a feature vector since we obtained better
results than when we used only one or a few of them. Since we had 5 feature extraction
methods and an EMG-IMU window size of [300, 12], a feature vector with a size of [60, 1]
was extracted from each of the EMG-IMU windows, which was made up of a feature vector
with a size of [40, 1] that corresponded to the EMGs and a vector with a size of [20, 1] that
corresponded to the quaternions obtained from the IMU.

2.4. Classification of EMGs

The objective of this stage is to identify the category of a hand gesture using an EMG-
IMU signal among a set of categories with which the proposed algorithm was previously
trained. In this work, we used an RL algorithm called deep Q-network (DQN), which is
made up of a neural network to represent the agent’s policy. In this section, we explain
in detail the EMG-IMU signal sequential classification problem that can be modeled as a
partially observable finite Markov decision process (POMDP).

2.4.1. Q-Learning

We can define the sliding window classification on an EMG-IMU signal sample during
the development of a hand gesture as a sequential decision-making problem. In this
problem, the actions correspond to the labels of the hand gestures to be inferred, whereas
the states are the feature vectors corresponding to the observations of each window of an
EMG-IMU sample. In this context, we can learn to estimate the optimal action for each
state. For this purpose, we maximized the expected sum of future rewards by performing
that action in the given states and then following an optimal policy [26]. Thus, considering
a given policy π, the value of the action a taken in the initial state s can be defined as

Qπ(s, a) = Eπ [R1 + γR2 + γ2R3 + . . . + γn−1Rn|S0 = s, A0 = a] (1)

where Ri are the rewards or punishments that the agent receives at each state with i = 1,
2, . . . , n, where n represents the number of states. The variable γ ε [0, 1] is the discount
factor that determines how much future rewards affect the agent’s learning process. Then,
the optimal state-action value function can be expressed as Q∗(s, a) = maxπQπ(s, a). An
optimal policy can be calculated from the optimal function Q∗(s, a) by choosing the highest
valued action at each state according to [27]. Typically, to estimate the optimal state-action
values, we can use the Q-learning algorithm, which is an off-policy temporal difference
RL method [26]. For any finite Markov decision process (MDP), the Q-learning algorithm
can find an optimal policy by maximizing the expected return function that we presented
in Equation (1) given an initial state and an initial action [27]. However, it is important to
consider that we assume that only the observations Ot are measured instead of the complete
state information of the environment st. This is because there may be a discrepancy between
the set of EMG-IMU window observations and the set of feature vectors [16]. For this
reason, in this work, we considered the HGR problem using EMG-IMU as a partially
observable Markov decision process (POMDP) [16].
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The Q-Learning algorithm uses Q-values to iteratively improve the behavior of the
learning agent. The Q-values are an estimation of the performance of a certain action At at
the observation Ot. There are different ways to represent the Q-values such as polynomial
functions, tables, or neural networks [27]. In the proposed method, we used a continuous
observation space represented by the extracted EMG-IMU features and a discrete action
space represented by the predicted hand gestures. Therefore, the Q-learning algorithm
should be combined with a function approximation approach to learningc a parameterized
value function Q(Ot, At; θt). A critic representation can be used to obtain high-performance
results when using discrete action spaces and continuous observations [27]. For a given
observation and action, a critic agent output returns the expected value of the cumulative
long-term reward. The standard Q-learning algorithm updates the parameters θt after
taking action At in observation Ot, obtaining the reward Rt+1 in Ot+1, described as follows:

θt+1 = θt + α
(

YQ
t −Q(Ot, At; θt)

)
· ∇θt Q(Ot, At; θt) (2)

Here, θt+1 and θt are the updated and the previous parameters, respectively, and α is
the learning rate. Finally, the target function YQ

t is defined as

YQ
t ≡ Rt+1 + γ ·max

a
[Q(Ot+1, a; θt)] (3)

where the term max
a

[Q(Ot+1, a)] is the estimated optimal future Q value. The term γ is

the discount factor, and a reward Rt+1 is received by the agent when moving from the
observation Ot by taking the action At to the next observation Ot+1.

2.4.2. Deep Q-Networks (DQN)

In this work, we use a deep Q-network (DQN) agent representation, which is com-
posed of an artificial neural network (ANN) as a function approximation method to learn a
parameterized value function. Thus, for a given observation Ot, a DQN returns a vector of
action values Q(Ot, · ; θ), where θ are the parameters of the neural network [24,26,27]. The
number of inputs of the network is the same as the dimension of the feature vector that
represents an observation composed of the extracted EMG-IMU features [60, 1], and the
number of neurons at the output layer is the same as the number of possible actions that
the agent can perform. According to [26,28], there are two key characteristics to consider
in the DQN algorithm that are not considered in the standard Q-learning algorithm. The
first is the use of a target network YDQN

t that is used in Equation (4), which has parameters
θ− that are updated periodically every τ steps from the online network in Equation (2),
with the parameters θt. The rest of the time, the parameters θ− remain fixed until the next
update after τ steps. This helps to remove correlations with the target [26,28].

YDQN
t ≡ Rt+1 + γ ·max

a

[
Q
(
Ot+1, a, θ−t

)]
(4)

The second important consideration is the use of experience replay, which randomly
samples the data to remove correlations in the sequences of observations, which accelerates
the training of the agent. For this purpose, the tuple Et = (Ot, At, Rt, St+1) that repre-
sents the agent’s experience at time t is saved in a pool of stored data sample transitions
D = {E1, E2, · · · , ET}. During learning, the parameters of the ANN are updated using
Equations (2) and (4), with the mini-batches of experience drawn uniformly at random
fromD [28,29]. The use of the target network with parameters θ− and the experience replay
approach help to significantly improve the performance of the DQN algorithm compared
to the standard Q-learning algorithm [26,28]. The pseudo-code for the DQN algorithm is
presented in Algorithm 1.
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Algorithm 1 DQN with Experience Replay

Initialize action-value function Q with random weights
Initialize replay memory D to capacity N
for episode = 1, M do

Initialize agent in observation Ot
for t = 1, T do

With probability ε select a random action At
otherwise, select max

a

[
Q
(
Ot+1, A, θ−t

)]
store transition Et = (Ot, At, Rt, St+1) in D
Sample random mini-batch of transitions (Ot, At, Rt, St+1) in D

YDQN
t =

{
Rt+1 f or terminal Ot

Rt+1 + γ ·max
a

[
Q
(
Ot+1, a, θ−t

)]
f or non− terminal Ot

Perform gradient descent to update θt+1 = θt + α
(

YQ
t −Q(Ot, At; θt)

)
·

∇θt Q(Ot, At; θt)

end for
end for

2.4.3. DQN for EMG-IMU Classification

The proposed method modeled as a partially observable Markov decision process
(POMDP) that we use in this work uses DQN the algorithm to learn an optimal policy,
which allows an agent to learn to classify and recognize hand gestures from EMG-IMU
signals. A figure that represents the interaction between the DQN agent representation and
the proposed environment for the EMG-IMU classification is illustrated in Figure 2. We
briefly explain each part of Figure 2 below.

Figure 2. Scheme of the interaction between the DQN agent representation and the proposed
environment for the EMG-IMU classification.

Agent: The agent is made up of the DQN algorithm and an artificial neural network
ANN as the policy representation. During training, the agent learns a policy that maximizes
the total sum of rewards using the DQN algorithm. The inputs of the neural network are
the features extracted from each window of the EMG-IMU signals (observations), and as
its output, the network returns the values of the predicted gestures (actions). In this way,
the agent learns to classify window observations from EMG-IMU signals. Each EMG-IMU
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signal sample is considered an independent episode, and each sliding window step is
considered an observation during that episode.

Observation: The observation Ot for a given unknown state St is defined as the feature
vector obtained from each EMG-IMU signal window. This vector is composed of RMS, SD,
E, MAV, and AE information. The end of an episode occurs when the agent reaches the last
sliding window observation of an EMG-IMU sample.

Action: An action At is defined as the category of the gesture that the agent predicts
to go from the current observation Ot to the observation Ot+1, after which it receives a
reward Rt+1. The categories of gestures used for this work are: wave in, wave out, fist,
open, pinch, and relax (static gestures), and up, down, left, right, forward, and backward
(dynamic gestures).

Environment: The environment is the defined environment within which the agent
performs an action to move from one observation to the next, which returns a reward. In
this case, we define the environment from the sliding window information—feature vectors
and labels—extracted from each EMG-IMU signal and the ground truth (vector of known
labels) of the EMG-IMU signal.

Reward: The agent receives a positive or negative reward depending on whether
during its interaction with the environment it was able to correctly predict a gesture for a
given observation. We define two different rewards, one for ranking and one for recognition.
An illustration of the rewards that the agent obtains is presented in Figure 2. The agent can
receive a positive reward Rt = +1 or a negative reward Rt = −1 depending on whether or
not it correctly predicts the label of a window gesture. Once an episode ends, the vector
of the known labels—ground-truth—is compared with the vector of the predicted labels,
and if the overlapping factor between these vectors is greater than 70%, then recognition is
considered successful and the agent receives a reward Rt = +1. If the recognition fails, the
agent is penalized with Rt = −1.

2.5. Post-Processing

Once an EMG-IMU sample is processed and the vector of the predicted labels is
obtained, we use post-processing to remove false labels and improve the accuracy of
the proposed HGR system. There are several ways to perform post-processing such as
using filters, majority voting, and heuristics, among others [1,16]. In this work, based on
experimentation, we obtained the best results by calculating the mode on the vector of the
predicted labels that are different from the relax labels. Then all the labels in those vectors
that are different from the mode are replaced with it. The post-processing step is key to
improving the classification and especially the recognition results since a single erroneous
label in an EMG-IMU window can cause the recognition prediction to fail.

3. Results

In this section, we present the validation and testing results for the proposed HGR
user-specific method for both the Myo armband and G-force sensors with regard to static
and dynamic gestures. First, to find the best possible hyperparameters, we perform a
validation procedure, and the best model results found during the validation are presented.
Then, we present the final testing results with the previously found best hyperparameters.
The validation and testing results for the Myo armband and G-force sensors are analyzed to
compare their performance, considering separately static and dynamic gestures. Finally, we
briefly compare the proposed method using the EMG-IMU signals with a similar method
that uses only EMG.

3.1. Validation Results

For the validation results, we trained and tested different user-specific models based
on an agent that uses neural networks as policy representations with the DQN algorithm
that we presented previously in Section 2.4. For each model, we evaluated different
hyperparameters such as the learning rate and mini-batch size to evaluate the classification
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and recognition results. Appendix A contains a summary of several of the tests performed
to find the best hyperparameters. The best hyperparameter values found for the proposed
method are summarized in Table 2.

Table 2. Best hyperparameters found during validation procedure.

Hyperparameter Name Hyperparameter Values

Activation function between layers Relu

Target Smooth Factor 5 × 10−3

Experience buffer length 1 × 106

Learn rate (α) 0.3 × 10−3

Epsilon initial value 1

Epsilon greedy epsilon decay 1 × 10−4

Discount factor 0.99

Training set replay per user 15 times

Sliding window size 300 points

Stride size 40 points

Mini-batch size 64

Optimizer Adam

Gradient decay factor 0.9

L2 regularization factor 0.0001

Number of neurons for layer
60, 50, 50, 7 for the input layer,
hidden layer 1, hidden layer 2,
and output layer, respectively

A training sample illustration of the average reward versus the number of episodes is
illustrated in Figure 3. As can be observed, the curve in the figure shows satisfactory growth
and convergence to the maximum average reward as the number of episodes increased.
It is worth mentioning that this figure varied slightly depending on the data of each user.
However, for all users, the same trend of convergence to the maximum average reward
value was observed.

We present the classification and recognition results per user for the Myo armband
sensor for static and dynamic gestures in Figure 4. Likewise, we present the classification
and recognition results per user for the G-force sensor for static and dynamic gestures
in Figure 5. Moreover, we present a summary of the best classification and recognition
results of the user-specific HGR models obtained during validation in Table 3. It can be
observed that for the validation results, the DQN-based model with the Myo armband
sensor achieved slightly better results than the same model with the G-force sensor. There
was a 6.5% classification accuracy difference between the Myo armband and G-force sensors
for static gestures and a 4.3% difference for dynamic gestures. Moreover, the standard
deviation was also lower for the Myo armband sensor, which was only 2.78% compared to
a value of 9.04% for the G-force sensor. On the other hand, for dynamic gestures, the Myo
obtained slightly better results. For example, for the Myo armband sensor, we obtained a
4.3% higher efficiency in the classification when using dynamic gestures with a standard
deviation of only 1.37% compared to a value of 7.20% for the G-force sensor. The same
analysis applied to the recognition accuracy metrics, demonstrating that the Myo armband
sensor obtained slightly better results using this metric.
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Figure 3. Sample of episode rewards versus episode numbers during the training of one user.

Figure 4. User-specific HGR model classification and recognition accuracy results for the Myo
armband sensor using DQN. (a) Static gestures. (b) Dynamic gestures.
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Figure 5. User-specific HGR model classification and recognition accuracy results for the G-force
sensor using DQN. (a) Static gestures. (b) Dynamic gestures.

Table 3. User-specific validation: best results for Myo armband and G-force sensors.

Sensor Classification Accuracy Recognition Accuracy

Myo armband
(Static gestures) 96.9%± 2.78% 87.0%± 9.36%

Myo armband
(Dynamic gestures) 98.6%± 1.37% 88.2%± 8.28%

G-force
(Static gestures) 90.4%± 9.04% 82.2%± 10.98%

G-force
(Dynamic gestures) 94.3%± 7.20% 85.5%± 12.3%

3.2. Testing Results

To present the testing results, we performed experiments on the test set based on
the best hyperparameters previously found during the validation procedure presented
in Section 3.1. This procedure helped us to evaluate our models with different data and
analyze overfitting. We summarized the test results for 306 users with the best-found
hyperparameters in Table 4. The classification results were similar for the two sensors, with
the Myo-armband sensor obtaining slightly better results, with differences of 4.26% for
static gestures and 1.82% for dynamic gestures compared to the G-force sensor. On the
other hand, the recognition accuracy was similar for both sensors for the testing results
compared with the validation results, with the exception of the G-force sensor, in which
the recognition values were 56.45%± 8.12% and 70.57%± 11.99% for static and dynamic
gestures, respectively. Overall, the testing classification results were similar to the validation
results, demonstrating that the proposed models are robust to the effect of overfitting in
terms of the classification of the proposed dataset distribution. Only for static gestures
of the G-force sensor were the recognition results slightly lower. This is explained by
the different distribution of the data and the variability of the users, as well as the fact
that the hyperparameters were calibrated only for the validation dataset and not for the
testing dataset.
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We also present the confusion matrices that represent the classification results on the
test set of the Myo armband sensor for static gestures in Figure 6 and dynamic gestures
in Figure 7, as well as for the G-force sensor for static gestures in Figure 8 and dynamic
gestures in Figure 9. In these figures, the results for each hand gesture can be observed
in detail, which include both static and dynamic gestures for both sensors. It is worth
mentioning that the processing time of each window observation was, on average, 33 ms.

Table 4. User-specific testing results for Myo armband and G-force sensors.

Sensor Classification Accuracy Recognition Accuracy

Myo armband
(Static gestures) 97.50%± 1.13% 88.15%± 2.84%

Myo armband
(Dynamic gestures) 98.95%± 0.62% 90.47%± 4.57%

G-force
(Static gestures) 93.24%± 3.43% 56.45%± 8.12%

G-force
(Dynamic gestures) 97.13%± 2.04% 70.57%± 11.99%

Figure 6. User-specific HGR model confusion matrix for 16 users from the test set with the best
hyperparameter configuration for the Myo armband sensor for static gestures.
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Figure 7. User-specific HGR model confusion matrix for 16 users from the test set with the best
hyperparameter configuration for the G-force sensor for dynamic gestures.

Figure 8. User-specific HGR model confusion matrix for 26 users from the test set with the best
hyperparameter configuration for the Myo armband sensor for static gestures.
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Figure 9. User-specific HGR model confusion matrix for 26 users from the test set with the best
hyperparameter configuration for the G-force sensor for dynamic gestures.

3.3. Comparison with Other Methods

We implemented two additional tests for our proposed dataset and method, but the
classification stage was based on supervised learning methods such as k-nearest neighbor
(KNN) and a convolutional neural network (CNN). We also compared the results found in
the present work, which uses EMG and IMU signals, with methods previously developed
using the same sensor, with a similar dataset distribution with similar method stages
that work with supervised and reinforcement learning [16,25]. These comparisons were
useful for evaluating the effect of using EMG-IMU signals with respect to using EMG
signals only, as well as comparing supervised and reinforcement learning methods for
the proposed dataset. The selection criteria for the selected articles were based first on
the type of sensor and its location on the user’s arm, which needs to be consistent with
what we proposed in this work. Another important point that we considered is that we
found that in the works based on EMGs only, the HGR models were trained to recognize
static gestures only. To successfully recognize dynamic gestures, it was necessary to
use IMU signals or a combination of IMU and EMG signals. This is because dynamic
gestures are highly dependent on the user’s arm movements, which can be analyzed using
information obtained from the IMU. We searched for approaches using similar methods
that contained pre-processing, feature extraction, classification, and post-processing to
fairly and objectively assess the effect of using EMG with IMU signals instead of just
using EMG signals to develop HGR systems. The results using EMG and IMU signals that
we obtained in this work for static gestures using the Myo armband sensor can be seen
in Table 5, where we obtained 97.5%± 1.13% and 88.15%± 2.84% for the classification
and recognition, respectively. On the other hand, another approach that used only EMG
signals and Q-learning obtained 90.47%± 14.24% and 87.51%± 14.1% for the classification
and recognition, respectively [16]. The approach that used EMG and IMU signals with
supervised learning based on KNN obtained 80.04% and 66.12% for the classification
and recognition, respectively, whereas the approach based on a CNN classifier obtained
84.49% ± 7.10% for the classification and 70.02% ± 8.21% for the recognition. Finally,
another approach that used only EMG signals and a supervised learning approach based
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on a support vector machine obtained 95% and 81.6% for the classification and recognition,
respectively [25]. As can be observed, using EMG and IMU signals helped to improve the
classification and recognition results for static gestures when considering models based on
reinforcement and supervised learning. Moreover, it can be observed that our model based
on reinforcement learning with EMG and IMU signals presented the best results for this
application.

Table 5. Comparison of classification and recognition accuracy results on the test set of the proposed
model compared with other methods.

Learning Method Type of Signal Classification Recognition

Reinforcement
learning (this work) EMG + IMU 97.5%± 1.13% 88.15%± 2.84%

Reinforcement
learning [16] EMG 90.47%± 14.24% 87.51%± 14.1%

Supervised
learning—KNN classifier EMG + IMU 80.04%± 13.66% 66.12%± 18.30%

Supervised
learning—CNN classifier EMG + IMU 84.49%± 7.10% 70.02%± 8.21%

Supervised
learning [25] EMG 95% 81.6%

4. Discussion

• According to the test results, the best classification accuracies were obtained for static
gestures using the Myo armband sensor and were 97.50%± 1.13% and 88.15%± 2.84%
for the classification and recognition, respectively. On the other hand, for dynamic
gestures using the Myo armband sensor, the accuracies were 98.95%± 0.62% and
90.47%± 4.57% for the classification and recognition, respectively. The accuracies of
the test results for static gestures using the G-force sensor were 93.24%± 3.43% and
56.45%± 8.12% for the classification and recognition, respectively. On the other hand,
for dynamic gestures using the G-force sensor, the accuracies were 97.13%± 2.04%
and 70.57%± 11.99% for the classification and recognition, respectively. This indicates
that the method based on a DQN for the Myo armband sensor obtained slightly better
results than the method based on a DQN for the G-force sensor.

• We compared the proposed method that used EMG and IMU signals with respect
to other similar works where the same sensor was used with only EMG signals for
static gestures. We obtained accuracies of 97.5%± 1.13% and 88.15%± 2.84% for
the classification and recognition, respectively, using both EMG and IMU signals
versus accuracies of 90.47%± 14.24% and 87.51%± 14.1% for the classification and
recognition, respectively, using only EMG signals. This indicates the benefits of using
EMG-IMU signals over using EMGs alone. This represents a 7% and 1% improvement
in the classification and recognition, as well as a substantial reduction of more than
10% in the standard deviation of these metrics when using EMG-IMU signals instead
of EMG signals alone. This also indicates the benefits of using EMG-IMU signals over
using EMGs alone. Moreover, it can be seen that we are the first study to use RL with
EMG-IMU signals to obtain better results compared to using only EMG signals with
RL. Our results also outperformed those obtained with methods that use EMG or
EMG-IMU with supervised learning.

• In general, the difference between the results of the validation and testing with regard
to the classification and recognition was less than 5%. This difference is small so it
can be said that the proposed method is robust and does not suffer from the effects of
overfitting for the proposed dataset distribution.
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• The processing time of each window observation was, on average, 33 ms for both
sensors. Since this is less than 300 ms, we can consider that both models work in real
time for the proposed application.

• Although the proposed results are encouraging, it is important to mention that in
future works we will focus on the convenience and comfort that users experience when
using static or dynamic gestures. User preference data can impact the development of
HGR architectures so we will study this in depth in future work.

5. Conclusions

In this work, we proposed an HGR system based on the DQN algorithm for the
classification of 11 different hand gestures including static and dynamic gestures. We tested
and compared the results of two different sensors, the Myo armband and G-force sensors,
from which we used the EMG and IMU signals to obtain the feature vectors. The proposed
models were validated on 43 users and tested on 42 different users. The best classification
accuracy was obtained for the Myo armband sensor, reaching up to 97.50%± 1.13% and
88.15%± 2.84% for the classification and recognition, respectively, with regard to static
gestures, and 98.95%± 0.62% and 90.47%± 4.57% for the classification and recognition,
respectively, with regard to dynamic gestures. The results obtained in this work showed
that the DQN was able to learn a policy from online experience to classify and recognize
gestures based on EMG and IMU signals, significantly improving the results obtained by
similar methods using only EMG. It was also observed that the use of the Myo armband
sensor compared to the G-force sensor obtained better accuracy for this application and
data distribution. Future work includes testing other feature extraction methods and
reinforcement learning algorithms to evaluate the proposed dataset.
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Appendix A

A summary of the validation results from changing the learning rate (alpha) parameter
is presented in Table A1.

Table A1. User-specific validation results for Myo armband and G-force sensors.

Alpha Classification Accuracy Recognition Accuracy

0.07 39.2%± 16.52% 25.0%± 16.86%

0.05 38.9%± 17.5% 22.0%± 17.86%

0.03 45.9%± 15.79% 37.0%± 15.55%

0.01 51.9%± 16.45% 47.0%± 14.36%

0.007 54.2%± 15.58% 48.6%± 16.57%

0.005 70.5%± 9.58% 57.2%± 10.45%

0.003 71.4%± 10.25% 58.2%± 13.33%

0.001 77.3%± 6.78% 73.4%± 11.56%

0.0007 87.3%± 4.11% 83.2%± 12.22%

0.0005 89.2%± 3.58% 75.2%± 10.12%

0.0003 96.9% ± 2.78% 87.0% ± 9.36%

0.0001 93.2%± 4.51% 83.5%± 9.78%

0.00007 94.3%± 3.58% 82.1%± 8.35%

0.00005 88.3%± 4.58% 80.1%± 8.89%

0.00003 83.5%± 6.52% 77.0%± 13.48%

0.00001 85.3%± 5.86% 81.0%± 12.89%
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