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Abstract: This paper presents a method for estimating the six Degrees of Freedom (6DoF) pose of
texture-less objects from a monocular image by using edge information. The deep learning-based
pose estimation method needs a large dataset containing pairs of an image and ground truth pose of
objects. To alleviate the cost of collecting a dataset, we focus on the method using a dataset made by
computer graphics (CG). This simulation-based method prepares a thousand images by rendering the
computer-aided design (CAD) data of the object and trains a deep-learning model. As an inference
stage, a monocular RGB image is entered into the model, and the object’s pose is estimated. The
representative simulation-based method, Pose Interpreter Networks, uses silhouette images as the
input, thereby enabling common feature (contour) extraction from RGB and CG images. However,
estimating rotation parameters is less accurate. To overcome this problem, we propose a method
to use edge information extracted from the object’s ridgelines for training the deep learning model.
Since edge distribution changes largely according to the pose, the estimation of rotation parameters
becomes more robust. Through an experiment with simulation data, we quantitatively proved the
accuracy improvement compared to the previous method (error rate decreases at a certain condition
are translation 22.9% and rotation: 43.4%). Moreover, through an experiment with physical data,
we clarified the issues of this method and proposed an effective solution by fine-tuning (error rate
decrease at a certain condition are translation 20.1% and rotation 57.7%).

Keywords: pose estimation; monocular RGB image; edge; ridgeline; deep learning; fine-tuning

1. Introduction

The research topic of estimating an object’s pose is important from the viewpoint
of work support using Augmented Reality (AR) [1] or robot picking [2]. As a target, we
refer to a study by Moteki et al. [3]. This study presented a visualization method for
inspecting manufacturing defects by estimating the object’s pose and superimposing the
object’s CAD model. Though the proposed pose estimation method includes part of the
manual manipulation, the fully automatic method is preferable. Our study’s purpose is to
estimate the pose of a manufacturing object by using only one image taken of the object.
Here, the pose means six Degrees of Freedom (6DoF) parameters, consisting of translation
and rotation.

There are numerous kinds of methods to estimate the 6DoF pose of an object from one
image [1,2,4–6]. In recent years, deep learning (DL)-based methods have been developed
and shown remarkable results [7–14]. However, the DL-based methods require a large
number of sets of images and pose values as training data. It costs a lot for onsite workers to
create these training data. Therefore, we propose a method to train the DL model by using
the simulation data; that is, using images rendered by computer graphics (CG) software.
In the manufacturing field, the design data of the products are prepared as CAD data in
advance. Using simulation data, the ground truth pose is easily acquired, so a training
dataset can be created with less cost.
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One of the main problems when using simulation data as a training dataset is domain
shift [15], where the method trained on simulation data cannot perform well on practical
data. In the case of the recent DL-based approach [11,13,14], many methods use an original
RGB image as input, so they are also affected by the real environmental conditions such as
lighting conditions or surface materials. However, estimating these kinds of parameters
and rendering simulation data with the parameters are also difficult problems. Hence, we
make use of the common feature extraction from both RGB and CG images to overcome
the domain shift. In a previous work, Pose Interpreter Networks [7] use silhouette images
as input for pose estimation. Although contours can be obtained commonly from both CG
and RGB images, one disadvantage of using contours is inaccurate estimation for rotation.

To solve this problem, we propose a method to make use of edge information extracted
from the object’s ridgelines. Industrial products have many straight lines and little texture.
Furthermore, the extraction of the ridgelines from a CAD model is not affected by the
rendering parameters. Therefore, the proposed method extracts dominant ridgelines from
CAD data and creates edge images from the ridgelines for training data. Since this method
can take advantage of common features (edge) from both CG and RGB images, the trained
DL model can be available for inference.

We evaluated our method by making an original 3D model, which is produced at
the factory. In quantitative simulation experiments, we confirmed that edge information
is useful for improving the accuracy of pose estimation. Moreover, with this 3D model,
we created the original dataset based on the LINEMOD dataset [5]. We evaluated the
performance against the domain shift and confirmed effective results through various
abbreviation studies.

2. Related Work

The object pose estimation methods are roughly divided into two types: depth-based
and RGB-based. Depth-based methods [4,6] use point cloud information acquired from a
depth camera, such as the Time of Flight (ToF) camera or LiDAR. While these methods use
3D geometric information measured by a depth sensor, they are not applicable to outdoor
scenes or large-size objects.

Meanwhile, RGB-based methods are divided into three styles: edge-based, template-
based, and DL-based. All these methods calculate some features by textures of the image,
but the kind of feature and algorithm differs. As an edge-based method, Han et al. [1]
realized edge-based pose estimation of aircraft structural parts by integrating inertial sensor
data and the voting scheme. As a template-based method, Konishi et al. [2] proved that
ingeniously developed orientation features and data structures make pose estimation fast
and accurate. However, these methods are specialized in each target object, and more
investigation is needed for processing other objects.

For improving generalization performance, DL-based methods are recently widely
proposed. SSD-6D [8] expanded SSD [16] to 3D pose estimation and outperformed depth-
based methods in accuracy and speed. SingleShotPose [9] enabled accurate pose estimation
by using a Yolo [17]-like architecture to estimate the 2D coordinate of the 3D bounding box
which surrounds the object. HybridPose [11] predicted an object’s poses by estimating in-
termediate representations such as keypoints, edge vectors, and symmetry correspondence.

More recently, an end-to-end approach with various input information marks remark-
able performance with public datasets. GDR-Net [12] directly predicted 6DoF pose by using
dense correspondence-based intermediate geometric representations. DSC-PoseNet [13]
enabled pose estimation with only RGB images and 2D object annotations by dividing the
method into two steps, weakly-supervised segmentation, and self-supervised keypoint
learning. ZebraPose [14] generated 3D surface code hierarchically in advance, and ex-
tracted a multi-layer code by a convolutional neural network (CNN) for estimating the
pose. Since these methods make use of texture information from an image at the training
stage, fluctuation in the environmental situation greatly deteriorates inference performance.
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To prevent the domain shift between training data (CG) and test data (RGB), domain
randomization is often used. Tobin et al. [18] trained models on simulated images that
transfer to real images by randomizing renderings in the simulator. On the other hand,
Sundermeyer et al. [10] developed the Augmented AutoEncoder, which is an improvement
of AutoEncoder in terms of parameter deviation. However, domain randomization needs a
large amount of data to deal with various real environments.

Another approach to prevent the domain shift is to use common features extracted
from both CG and RGB images. Pose Interpreter Networks [7] use silhouette images as
input and train CNN models to estimate 6DoF object pose. The network architecture is
composed of two cascaded components: Segmentation Network which creates silhouette
images from RGB images, and Pose Interpreter Network which estimates pose from sil-
houette images. The disadvantage of this method is less accurate for estimating rotation
because the silhouette image has no feature inside the contour.

Our approach overcomes rotation inaccuracy problem for domain shift by using
ridgeline information. Since ridgeline distribution changes more frequently than contour
distribution as an object rotates, edge information can represent the rotation of an object.
Even in the recent literature [11–14], ridgeline information is not used. Therefore, we
implemented the approach and evaluated the performance.

3. Methods
3.1. Outline

Figure 1 shows the overview of our method. An overall process is divided into two
stages: a training stage and an inference stage. This architecture is adopted in the Pose
Interpreter Network [7], whose source code is publicly available. As a training stage, the
regression model is trained with training data consisting of sets of edge images and ground
truth pose values. First, an edge image is created according to a randomly generated
ground truth pose by using the 3D model. In this study, two kinds of edge images are
considered: CAD-based edge images and CG-based edge images. The CNN model is
trained with the generated dataset. This model outputs 6-DoF pose values; that is, the
translation element as a 3D vector p and the rotation element as a quaternion q. As an
inference stage, an RGB-based edge image is generated by extracting line segments from
an RGB image. Then, the RGB-based edge image is input to the pre-trained CNN and the
pose is estimated. The following section describes the details of edge image generation and
the process of each stage.

3.2. Edge Image Generation

Figure 2 shows the process flow of three kinds of edge image generation. The RGB-
based edge images are created from physically captured RGB images, and the line segment
detector is adapted for extracting edges. Moreover, CAD-based edge images and CG-based
edge images are created by simulation with randomly generated ground truth poses. Since
the former is made by projecting the edges of the CAD model, it can represent detailed
shape information. On the other hand, since the latter is made by extracting edges from
rendering CG images by the line segment detector, it can reproduce the edge distribution
of RGB-based images. All these images have a “& mask” option, which adds a mask image
to the “only edge” image. Here, an image pixel value of black (mask) is 0 and that of white
is 255. This option has the effect of clarifying the object’s contour. The following is the
description of how to create these images.
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Figure 1. Overview of our method. Firstly, an edge image is randomly created by using the 3D model.
The CNN model is trained with the generated dataset. At the inference stage, an RGB-based edge
image is generated from an RGB image. Finally, the RGB-based edge image is input to pre-trained
CNN and the pose is estimated.

3.2.1. CAD-Based Edge Image

A CAD-based edge image is created by a 3D model of the object. This study uses a
3D model whose format is Standard Triangulated Language (STL, .stl) or Wavefront OBJ
(.obj). These formats record information about triangle meshes that consist of the object
shape. Our method uses v: geometric vertices of each mesh and vn: vertex normals. All
lines are judged as being either ridgelines or lines on the plane according to the similarity
of the formed angle of normals concerning the adjacent meshes. All extracted ridgelines
are connected by the similarity of the angle of the direction vector concerning the adjacent
ridgelines. Then, the integrated ridgelines are projected onto the image surface with
each ground truth pose. Here, camera parameters, including frame size and focal length,
suppose to be obtained in advance.

These projected ridgelines include hidden lines; that is, invisible ridgelines in the
current pose’s viewpoint. Hidden lines should be eliminated to reproduce the actual edge
appearance. Our method uses a simplified Z-buffer algorithm [19] to judge hidden lines by
calculating the depth value of each certain ridgeline and potentially relevant meshes. If
the ridgeline is in the back in some meshes, it is regarded as a hidden line. In addition, to
be robust against fluctuation of the pose, the averaging filter is processed for each image.
Hence, the free parameter to tune for better performance is (1) with or without the mask,
(2) the line width of the projected ridgelines, and (3) the kernel size of the averaging filter.
We evaluated the performance by changing these parameters in the Results section.
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Figure 2. Process flow of edge image generation. Upper: CAD-based edge image. First, all ridgelines
are projected. Then, hidden lines are removed. Finally, smoothing is adapted to each edge image.
Middle: CG-based edge image. The 3D model is rendered by a renderer with certain environmental
conditions. Then, line segments are detected and smoothing is adapted to each edge image. Lower:
RGB-based edge image. The line segments are detected from RGB images. If a mask image is used,
line segments are drawn onto the mask image.

3.2.2. CG-Based Edge Image

A CG-based edge image represents line segments extracted from the rendered image
by the CG renderer. As a CG renderer, we use BlenderProc [20], a procedural Blender [21]
pipeline for photo realistic rendering. BlenderProc requires the 3D model, the intrinsic and
extrinsic camera parameters, and the lighting conditions as input. From the rendered image,
line segments are detected by the Line Segment Detector (LSD) [22]. These line segments
are drawn onto the image. Like a CAD-based edge image, the averaging filter is processed,
if needed. We also evaluated the performance by changing the three parameters mentioned
above in the Results section. (Though some rendering parameters or LSD parameters can be
also tuned for the performance, we selected only 1 set of parameters for evaluation because
there are so many parameters. Automatic parameter estimation by learning method can be
an important alternative, and we mentioned it in future work.)
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3.3. Training

By using CAD-based or CG-based edge images, the CNN model is trained. We made
use of the Pose Interpreter Network [7] as a CNN model. This model is ResNet-18 [23]
followed by a multilayer perceptron. As the author of Pose Interpreter Networks indicates,
the global average pooling layer is also removed from the feature extractor. The multilayer
perceptron is composed of one fully connected layer with 256 nodes, followed by two
parallel branches corresponding to translation and rotation. Note that we trained only one
object class, so the translation branch has three outputs, while the rotation branch has four
outputs. As a loss function, L4 loss proposed in the Pose Interpreter Network is used. The
L4 loss showed the best performance in other loss functions. This loss function consists
of two terms: the first term means a penalty for easy convergence, and the second term
means the sum of 3D distances of sampling points between the ground truth and points
transformed by estimated pose. We set the number of sampling points as 1000.

3.4. Inference

In the inference stage, an RGB image captured by a camera is used. The resolution
of the captured image should be the same as the images used for training. Then, like the
CG-based edge image, an RGB-based edge image is created by detecting line segments
from the original image. A generated RGB-based edge image is input to the pre-trained
CNN model and a pose of the object is estimated.

However, in most cases, the background of the image is cluttered so many irrelevant
line segments are detected. Although in this study, we set the region of the object manually,
well-known object detection frameworks, such as Yolo [17] are also available. In addition,
for creating a mask image, the object’s pose should be known. Although this study used
the ground truth pose value from the dataset, semantic segmentation such as Segmentation
Network [7] could also be applicable.

4. Evaluation

To present the proposed method’s efficacy, we evaluated the pose estimation accuracy
using the following procedure. Firstly, the dataset we leveraged is presented. We prepared
two kinds of datasets: simulation and physical. Secondly, the experiment methodology is
presented. We tested various kinds of conditions to conduct some abbreviation studies.
Then, the results of the experiments and considerations are shown.

4.1. Dataset
4.1.1. 3D Model

The Oil Change dataset [7] used in Pose Interpreter Networks is not suitable for
evaluating the proposed method. The distribution of the ridgelines should be similar to the
distribution of the line segments extracted by LSD. However, since the dataset includes
various objects shaped by curved surfaces, the proposed method cannot extract enough
ridgelines. In other words, the target object of our method should be a convex polyhedron.
Therefore, we used the Mixture model [3] shown in Figure 1. This was modeled after the
actual manufacturing product, which is a joint part of huge constructions. It is 10 cm3

and contains a combination of triangles and spheres. We prepared a 3D model of OBJ
format and extracted edge information. Furthermore, 3D point clouds of the Mixture model
needed for calculating a loss function were created by Point Cloud Library [24]. There are
1000 point clouds, which is the same as the Oil Change dataset.

4.1.2. Simulation Environment

We prepared CAD-based and CG-based edge images described in Section 3.2. Figure 3
presents an example of these images. We used the same camera intrinsic parameters
required for perspective projection as acquired by the physical environment mentioned
in Section 4.1.3. As for the random pose, the blue funnel object pose information from
the Oil Change dataset was applied: that is, 64,000 poses for training and 640 poses for
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validation. However, by using this predefined pose and the Mixture object, out-of-frame or
partially occluded images were found. Hence, if a bounding box surrounding the object is
not completely included in the frame, the pose was replaced with a re-generated random
pose. The parameters for random sampling used in the original Oil Change dataset and the
re-generated version are the following:

• Translation (original) avg.: (0, 0, 0.6) [m], s.d.: (
√

0.15,
√

0.08,
√

0.2);
• Translation (re-gen.) avg.: (0, 0, 0.6)[m], s.d.: (

√
0.05,

√
0.03,

√
0.1);

• Rotation (original) avg.: (0, 0, 0, 0), s.d.: (1, 1, 1, 1) (the values were divided by norm);
• Rotation (re-gen.) the same as original.

Figure 3. Examples of edge images created by simulation environment.

4.1.3. Physical Environment

Currently, the public datasets containing the ground truth of the pose exist. However,
we could not find the dataset corresponding to the condition of our use case. That is,
(1) including meshed CAD data (.stl or .obj) made manually and (2) shaped by several
straight ridgelines. For example, LINEMOD [5] includes 13 textureless objects. Since 3D
models used in the LINEMOD are constructed based on reconstructed point clouds, there
are fewer straight lines. T-LESS [25] contains 30 objects having the following characteristics:
(i) textureless, (ii) including similar parts between the objects, and (iii) symmetric architec-
ture. While designed 3D models are included in the dataset, there are fewer objects with
straight lines.

Therefore, we created an original dataset compatible with the LINEMOD criteria.
Figure 4 shows the details. A physical object is shaped with a 3D printer and painted
reddish-brown, similar to the manufacturing product. We placed this object on the center
of the board where AR markers are printed. The ground truth object pose is calculated
by the ArUco [26] algorithm. Then, we captured images from the viewpoints distributed
on the surface of the hemisphere (Figure 4: right). The hemisphere has a varying radius
from 45 cm to 95 cm. The total number of captured images is 1788 and the resolution of the
image is 320 × 240. Camera intrinsic parameters are calculated using Zhang’s method [27]
in advance. The orientation of the camera (Logicool C920) is always focused on the object.
We denote it as a focusing pose. The following is the parameter of the pose: (i) longitude:
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0–360◦, (ii) tilt angle: 0–90◦, (iii) role angle: −45–45◦, and (iv) distance between an object
and a camera: 45–95 cm.

Figure 4. Physical dataset. (a) An example of the image. The 3D-printed object is placed on the AR
marker. (b) The distribution of camera position. An object is placed on the origin of the coordinate.

After capturing images of the object, LSD [22] is adapted and line segments are
displayed on the image. We used the default value of OpenCV implementation for the LSD
parameter. The thickness of displayed line segments is two ways: 1 and 2. We matched the
condition of thickness between training and inference images. Figure 5 shows examples of
RGB-based edge images.

Figure 5. Examples of edge images created by physical environment. These images are width 2.

4.2. Methodology
4.2.1. Kinds of Experiments

To present the proposed method’s efficacy, we experimented with conditions shown
in Table 1. There are eight types of experiments (E1~E8). In E1~E4, we compared the pros
and cons of CAD-based and CG-based edge images. In E5 and E6, models were trained
by simulated images, and RGB-based edge images were used as inference data to confirm
the performance against the domain shift. In E7 and E8, fine-tuning [28] with RGB-based
edge images was adapted. In the fine-tuning process, the model’s weights are modified
with a small learning rate. While CAD-based/CG-based and RGB-based edge images both
represent the place of the ridgeline, essentially, the tendency of edge distribution differs
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between both images. Therefore, though it needs additional training data with ground
truth labels, the fine-tuning process may affect good performance for pose estimation.

Table 1. Kinds of experiments described in this Section. There are three kinds of edge image
generation methods: CAD-based, CG-based, and RGB-based. There are two types of pose generation:
simulation and physical. Training means how to train the model. Validation means how to check valid
training. Inference means how to estimate in a physical situation.

Training Validation Inference

E1 CAD-based, Simulation CAD-based, Simulation
E2 CAD-based, Simulation CAD-based, Physical
E3 CG-based, Simulation CG-based, Simulation
E4 CG-based, Simulation CG-based, Physical
E5 CAD-based, Simulation RGB-based, Physical
E6 CG-based, Simulation RGB-based, Physical
E7 CAD-based, Simulation RGB-based, Fine-tuning
E8 CG-based, Simulation RGB-based, Fine-tuning

4.2.2. Parameter of Each Experiment
Edge Image Generation

As for CAD-based and CG-based edge image generation, we regard the width of the
edge, the size of the filter, and with/without mask image as parameters. Figure 6 shows
examples of CAD-based edge images. As a previous method (condition S0), we adopted
the Pose Interpreter Network, which leverages silhouette images. As the proposed method,
we generated 12 kinds of images depending on the width of the edges, the filter size, and
and mask or not. S1 to S12 denote the indices of the conditions.

To generate CG-based images, the lighting condition should be decided. We used the
following parameter at rendering Blender: a kind of source is the point light source, the
location of the source is (−6,−5,−5), and the energy of light is 1000. These parameters
were chosen so that the image’s appearance resembles a physical capture image.

For fine-tuning E7 and E8, 1788 RGB-based images are divided into 1620 images
for training data and 162 images for inference data. Each data contains all ranges of the
distance between an object and a camera (45–95 cm).

Figure 6. CAD-based edge images used at E1 and E2. Width means the width of the edge line (1 or 2)
and filter means the size of the smoothing filter. Each condition has an and mask option mentioned
in Figure 2. The previous method uses a silhouette image (S0). S1 to S12 denote the indices of the
conditions proposed by us.
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CNN Architecture

The values of the parameters for training, such as learning rate, batch size, and so
on, were the same as in the previous method. However, the number of epochs was set to
3000 because all converged data completed training before 3000 epochs. We used a GPU
server that has Intel Core i7-6850K CPU (3.60GHz) and NVIDIA Quadro GV100 GPU. It
takes approximately 12 h to train the model with 64,000 images.

For fine-tuning of E7/E8 experiment, at first, a training process, which is the same as
E1/E3, was performed until 3000 epochs, and then an additional training process that uses
1620 RGB-based images was performed until 1000 epochs.

Evaluation Metrics

Evaluation metrics are the error of translation et (cm) and that of rotation er (deg).
These are the same as Pose Interpreter Networks. N means the number of evaluation data,
namely, 640 for validation of random pose and 1788 for inference of focusing pose.

4.3. Result

The quantitative results are summarized in Tables 2 and 3. The accuracy of the pro-
posed method outperforms that of the previous method in some conditions at experiments
E1~E4 when the edge extraction method matches. For example, at the E1/S10 condition,
the error rate decreases by 22.9% in translation and 43.4% in rotation. In particular, rotation
error is improved more than translation error. In contrast, when there is a difference in
the data source (E5/E6), the accuracy of the previous method is better than that of the
proposed method. However, when fine-tuning is adapted (E7/E8), the accuracy of the
proposed method is better than that of the previous method. For instance, at the E7/S10
condition, the error rate decreases by 20.1% in rotation and 57.7% at translation.

With respect to the mask’s effect, only edge (S1~S6) images could seldom converge.
Especially, in the case of only edge images with some filtering, the training is not converged
(denoted as N/A). This tendency is found in both CAD-based and CG-based patterns. As
for edge and mask images (S7~S12), S10 (no filter, width 2) shows comparably the highest
performance of all. In the condition of width 1, the edges are sometimes too thin to make
the image distinguishable. Furthermore, in the condition of filtering, the effect on the
performance is limited. On the whole, however, there is no common tendency in terms
of edge width or smoothing parameters. In other words, the condition of the highest
performance differs depending on the situation. It means that the parameter of edge width
or filter size may be trainable depending on the model shape.

Examples of qualitative results are presented in Figure 7. The S0 row represents
the result of the previous method (only mask) and the other rows show the result of the
proposed method. We chose the result of condition S10 (edge and mask, no filter, width 2)
because it shows the comparatively highest performance in other conditions. At E5/E6,
due to the domain shift, pose estimation is worse than that of E2/E4. In contrast, at E7/E8,
pose estimation performance is as high as that of E2/E4 or the previous method. With
regard to the distance between an object and a camera, the estimation error is not changed,
depending on the distance. That is because both learning and inference datasets include
near and far data.
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Table 2. Translation error. S0 is the previous method. S1~S12 are the proposed methods. ’s.d.’ means
standard deviation. N/A means the training is not converged. ↓ means lower value is more accurate.

et (Translation Error) (cm) ↓
Exp. S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
Mask — w/ w/ w/ w/ w/ w/
Line width — 1 1 1 2 2 2 1 1 1 2 2 2
Filter — no 3 × 3 5 × 5 no 3 × 3 5 × 5 no 3 × 3 5 × 5 no 3 × 3 5 × 5

E1(mean) 1.70 44.48 N/A N/A 12.69 N/A 44.07 5.45 1.13 1.73 1.31 55.93 22.31
E1(s.d.) 1.93 14.56 N/A N/A 4.54 N/A 12.91 41.00 1.07 6.50 1.27 474.49 215.28
E2(mean) 1.56 48.88 N/A N/A 13.14 N/A 52.40 2.06 2.39 7.25 1.42 4.20 4.09
E2(s.d.) 1.52 15.42 N/A N/A 4.36 N/A 13.07 1.43 1.91 4.66 0.96 23.85 2.11
E3(mean) 1.70 12.71 N/A N/A 8.98 N/A N/A 4.37 1.15 14.25 6.64 10.57 1.35
E3(s.d.) 1.93 4.55 N/A N/A 4.40 N/A N/A 26.33 1.19 116.09 64.51 95.98 2.60
E4(mean) 1.56 12.71 N/A N/A 10.86 N/A N/A 1.00 1.20 3.31 1.24 3.00 6.29
E4(s.d.) 1.52 4.70 N/A N/A 4.23 N/A N/A 1.31 0.90 3.03 1.03 2.02 3.20
E5(mean) 1.56 49.50 N/A N/A 18.11 N/A 53.47 2.55 2.29 6.91 3.03 4.26 4.95
E5(s.d.) 1.52 15.38 N/A N/A 5.83 N/A 13.37 2.33 2.16 4.60 2.52 15.21 2.84
E6(mean) 1.56 14.95 N/A N/A 11.85 N/A N/A 6.70 7.69 8.07 4.21 6.40 9.34
E6(s.d.) 1.52 5.28 N/A N/A 4.25 N/A N/A 4.09 4.19 3.96 3.70 4.66 4.52
E7(mean) 2.56 57.80 N/A N/A 26.57 N/A 32.95 1.64 1.47 2.66 2.03 8.15 6.37
E7(s.d.) 2.35 17.37 N/A N/A 7.45 N/A 8.59 1.96 0.97 1.82 1.44 38.60 30.82
E8(mean) 2.56 55.90 N/A N/A 44.01 N/A N/A 4.39 1.93 5.95 2.94 4.68 2.05
E8(s.d.) 2.35 16.35 N/A N/A 11.75 N/A N/A 16.75 1.29 24.04 10.62 19.97 1.38

Table 3. Rotation error. S0 is the previous method. S1~S12 are the proposed methods. ’s.d.’ means
standard deviation. N/A means the training is not converged. ↓ means lower value is more accurate.

er (Rotation Error) (deg) ↓
Exp. S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
Mask — w/ w/ w/ w/ w/ w/
Line width — 1 1 1 2 2 2 1 1 1 2 2 2
Filter — no 3 × 3 5 × 5 no 3 × 3 5 × 5 no 3 × 3 5 × 5 no 3 × 3 5 × 5

E1(mean) 13.83 121.95 N/A N/A 67.71 N/A 118.48 8.76 7.18 8.30 7.83 10.75 9.20
E1(s.d.) 21.12 36.51 N/A N/A 39.25 N/A 39.57 20.33 9.37 14.01 10.16 23.43 18.65
E2(mean) 11.22 124.12 N/A N/A 61.60 N/A 85.07 9.93 14.33 89.79 7.38 8.14 9.82
E2(s.d.) 19.14 36.49 N/A N/A 34.98 N/A 43.94 11.91 19.20 54.32 5.61 8.07 7.84
E3(mean) 13.83 65.21 N/A N/A 85.73 N/A N/A 9.64 7.44 10.24 9.78 8.85 7.76
E3(s.d.) 21.12 40.40 N/A N/A 43.17 N/A N/A 21.63 9.89 23.89 18.81 17.31 13.42
E4(mean) 11.22 59.28 N/A N/A 88.78 N/A N/A 5.44 6.88 27.99 6.33 17.20 53.48
E4(s.d.) 19.14 42.25 N/A N/A 39.55 N/A N/A 6.78 7.32 35.78 6.74 17.84 46.56
E5(mean) 11.22 135.71 N/A N/A 61.89 N/A 85.78 16.90 17.95 84.18 16.51 15.18 20.50
E5(s.d.) 19.14 32.25 N/A N/A 37.42 N/A 44.01 25.57 25.13 56.21 24.03 17.42 27.90
E6(mean) 11.22 89.90 N/A N/A 93.54 N/A N/A 61.57 71.43 77.36 27.30 48.64 83.38
E6(s.d.) 19.14 49.79 N/A N/A 38.95 N/A N/A 54.99 44.87 44.83 37.08 48.80 54.50
E7(mean) 21.82 110.76 N/A N/A 45.47 N/A 82.24 10.80 10.56 16.81 9.22 9.46 11.32
E7(s.d.) 31.78 33.54 N/A N/A 29.98 N/A 31.89 16.98 10.78 20.15 6.36 9.28 17.55
E8(mean) 21.82 104.83 N/A N/A 119.93 N/A N/A 16.75 12.61 17.35 13.72 13.42 14.40
E8(s.d.) 31.78 43.51 N/A N/A 30.34 N/A N/A 21.96 16.98 27.05 14.95 15.96 18.92
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Figure 7. Examples of pose estimation results with the physical environment. The S0 row represents
the result of the baseline method. Bounding boxes (BB) surrounding the object are calculated with pose
information. Green BB is the ground truth pose and Blue BB is the estimated pose. Note that only the
edge and mask result is represented because learning was not converged at several only edge conditions.

4.4. Discussion
4.4.1. Simulation Environment

In the simulation environment, with the appropriate parameter setting, both CAD-
based and CG-based methods outperformed the previous method. This indicates that
the projected lines have discriminative characteristics for pose estimation. Speaking of
the difference between CAD-based and CG-based, CAD-based results are slightly more
accurate than CG-based. The reason is that adequate environmental parameters conforming
to the physical situation should be designated for CG-based rendering. However, these
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results are only the case with the Mixture model. We will need to evaluate other 3D models
that have a similar shape as the actual manufacturing product.

The use of edge and mask images is preferable for effective convergence of training.
According to experiments E1 and E3, all cases using edge and mask images converged
adequately. The result suggests that the mask (contour) complements the lack of edge lines
for misdetection. Ridgelines and contours both seem to be necessary features for pose
estimation tasks with the proposed network.

4.4.2. Physical Environment

The results of E5 and E6 demonstrate that the reason for the performance decrease
is derived from the difference in edge extraction tendency between the simulation and
physical environment. Figure 8 shows an example of the difference between RGB-based
(physical) and CAD-based (simulation). The result of LSD is affected by the lighting
condition or parameters for LSD. Hence, false positive or false negative edge misdetection
occurs for RGB-based images. On the other hand, because we originally implemented the
algorithm for hidden line removal in order to fasten the processing speed, some insufficient
edge detection also occurs. By contrast, regarding E6, lighting conditions for rendering CG
images should be decided so that the renderer can reproduce the physical environment as
close as possible. However, sensing the physical environment is a very costly procedure.

Figure 8. An example of the difference between RGB-based and CAD-based images.

To improve responsiveness to the domain shift, both CAD/CG-based images and
RGB-based images should be similar representations. For example, data augmentation
that eliminates the part of the edge information seems to resolve the problem. Moreover,
these days, learning-based line segment detection algorithms are being developed. For
instance, M-LSD [29] is a fast line segment detector. By using this technique, the line
detection models may be trained so that they output the edge image, such as CAD-based
or CG-based images.

4.4.3. Fine-Tuning

Another effective way to alleviate the domain shift is fine-tuning. As pertains to E7
and E8, almost all edge and mask results of the proposed method outperform that of the
baseline method. Figure 9 presents examples of learning curves by Tensorboard [30]. This
plot shows the change of L4 loss in proportion to the progress of training. The CAD-based
or CG-based edge images are used for training until epoch 3000, and RGB images are used
until epoch 4000. According to the graph, right after the start of fine-tuning around epoch
3000, the loss value temporally increases. In contrast, at epoch 4000, the loss value decreases
at the same value as before fine-tuning. Moreover, the result of E7 is more accurate than that
of E8. Even by fine-tuning, the gap in lighting conditions may affect the performance of the
CG-based method. However, it takes much cost to prepare RGB images with ground truth
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labels for fine-tuning. The number of epochs or RGB-based images required is dependent
on the required accuracy. This trade-off should be investigated further.

Figure 9. The example of a learning curve with fine-tuning (E7, S7). A vertical axis shows the loss
value and a horizontal axis shows the number of epoch.

5. Conclusions and Future Work

In this paper, we proposed a method for estimating the 6DoF pose of an object from
a monocular RGB image. To improve the accuracy and be robust to domain shift, we
used edge information, which is a common feature for both simulation and physical
situations. In the evaluation, we tested various conditions and parameters. In the simulation
environment, the proposed method outperforms the previous method [7]. In the physical
environment, however, the proposed method is less accurate than the previous method due
to domain shift. We mentioned some solutions to domain shift. For example, by fine-tuning
with physical data, the proposed method marks better accuracy than the previous method.
We concluded that the experimental results revealed the effectiveness of edge-based pose
estimation for objects having many straight lines.

There are several future works to consider. Although we adopted Pose Interpreter
Networks as a previous method, we should confirm the performance improvement when
other CNN-based pose estimation methods are used as an inference model. Moreover, we
should compare the performance between recently published methods and Pose Interpreter
Networks with our proposed preprocessing. Next, as mentioned in Section 4.4, we need to
fill more gaps between simulation and physical. We aim to achieve data augmentation with
respect to edge distribution or learning-based line segment detection. Transfer learning,
including fine-tuning, also needs to be investigated further. In addition, the target object
should be broadened. Although this method presumes the existence of a designed 3D
model that has enough straight ridgelines, the method should be able to deal with other 3D
formats, such as point clouds made by a multi-view 3D reconstruction technique to expand
the use case.
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Abbreviations
The following abbreviations are used in this manuscript:

DoF Degrees of Freedom
CG Computer Graphics
CAD Computer-Aided Design
RGB Red, Green and Blue
AR Augmented Reality
DL Deep Learning
ToF Time of Flight
CNN Convolutional Neural Network
STL Standard Triangulated Language
LSD Line Segment Detector
BB Bounding Box
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