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Paweł Rybka 1, Tomasz Bąk 1, Paweł Sobel 1 and Damian Grzechca 2,*
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Abstract: Cybersecurity companies from around the world use state-of-the-art technology to provide
the best protection against malicious software. Recent times have seen behavioral biometry becoming
one of the most popular and widely used components in MFA (Multi-Factor Authentication). The
effectiveness and lack of impact on UX (User Experience) is making its popularity rapidly increase
among branches in the area of confidential data handling, such as banking, insurance companies,
the government, or the military. Although behavioral biometric methods show a high degree of
protection against fraudsters, they are susceptible to the quality of input data. The selected behavioral
biometrics are strongly dependent on mobile phone IMU sensors. This paper investigates the harmful
effects of gaps in data on the behavioral biometry model’s accuracy in order to propose suitable
countermeasures for this issue.
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1. Introduction

According to the FBI’s (Federal Bureau of Investigation) 2021 report on Internet
crime [1], the number of phishing attacks reported to the IC3 (Internet Crime Complaint
Center) doubled in 2021 (241,342 incidents) compared to 2020 (114,702 incidents) and
was almost ten-times higher than in 2019 (26,379 incidents). This data clearly shows how
popular phishing attacks [2,3] are and how the demand for phishing countermeasures
is growing in the government, banking, and military sectors. Although a multitude of
companies and governments organize staff training on cybersecurity, accounts are still
being hacked as fraudster attacks become smarter and better targeted [4,5]. Fortunately,
even if the user’s login and password have been voluntarily provided to the fraudster,
there are still a number of ways to protect accounts against being hijacked; one of them is
behavioral biometrics.

Smartphone sensors (for example, accelerometers, magnetometers, gyroscopes) find a
lot of applications when it comes to mobile apps—from entertainment (mobile games) to
monitoring user’s behavior (pedometers, sleep monitoring, and others). Recently, the use
of smartphone sensors has found applications in more advanced systems such as health
monitoring [6] or cybersecurity. As the consumption of multimedia and mobile resources
access rises day-to-day [7], the topic of behavioral biometry and its impact on cybersecurity
has recently been present in many research papers covering both desktop [8] and mobile [9]
device usage.

The latest studies [10,11] have shown that the use of behavioral biometrics has become
an increasingly popular part of MFA (Multi-Factor Authentication) [12]. Over the last
couple of years, institutions for confidential data handling have been more prone to reach
for users’ behavioral patterns (e.g., keyboard strokes, mouse movements, or mobile device
handling) when implementing identity theft countermeasures, as this sort of data does
not require any additional user involvement harmful for the UX (User Experience) [13].
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Moreover, behavioral biometric models show high resistance to fraudsters as their behavior
is vastly different from what users tend to do; as such, the combination of suspicious
activity on user’s account (e.g., a transfer for a high amount) with unusual keyboard or
smartphone readings may indicate an attack [14,15].

Although the individual user behavioral biometrics model is a powerful weapon
against account hijacking, it is still vulnerable to low data quality delivered from used
devices. Swapping mobile phones or damaging certain sensors may lead to reduced quality
of fraud detection. For the sake of maintaining the high quality of behavioral biometry
authentication services, it is a must to implement precautionary rules. This paper compares
how exemplary behavioral models based on aggregated accelerometer and gyroscope
readings deal with incomplete anonymized user data. The first stage for applying quality
drop countermeasures would be labeling certain users’ behavioral data readings as “low
quality” to prevent data damage that reduces the model’s classification accuracy below
established thresholds. The next stages would be more complex—for example, providing
user models resistant to sensor damage or applying additional safe mode pipelines.

The most recent papers published on the matter of behavioral biometrics show experi-
mental attitudes towards data and introduce results which do not cover real-life scenario
difficulties. The following analysis presents a real-life industrial-based case study on be-
havioral authentication for one of the leading national banks. This paper covers all the data
processing pipeline issues and problems regarding the quality and quantity of certain users’
data as well as the struggle encountered with the use of multiple devices and OS versions.

At the beginning of the manuscript, the dataset is introduced; then, the mathematical
background of the behavioral model (input vectors, structure, hyperparameters etc.) is
presented. In the end, the models’ input vectors are artificially disturbed with commonly
occurring data damage and their quality is examined to verify whether the presented
solution is susceptible to certain types of data absence.

The related papers the authors highly recommend getting familiarized with are [16],
where researchers present a proposal of a continuous authentication system for smart-
phone user classification based on interactions with the device, and [17], which provides
BehavePassDB—a public database for mobile behavioral biometrics solution benchmark-
ing. This database can be used as a sandbox for testing new features and classification
algorithms before feeding further data. The use of behavioral biometry in mobile devices
provides reliable security for zero price when UX is considered, and numerous researchers
emphasize the importance of maintaining UX of the highest quality [18]. It is the clients
themselves (banks and other institutions covered by behavioral biometry cybersecurity
solutions) that insist on keeping the system user-friendly. Additionally, as the global
COVID-19 pandemic and its repercussions caused severe changes in the use of digital
resources, behavioral biometry has proven to be a high-quality cyberattack countermeasure
in fields where other security systems have failed [19].

2. Materials and Methods

The data used for this research was acquired from the accelerometer and gyroscope
sensors of smartphone devices running banking applications on the Android operating
system [20], coming from users of one of the leading national banks. Sensor readings
were collected from the beginning until the end of use of the banking application. In
this case, the data was sent to the upstream node and evaluated in real time. Whenever
fraudulent behavior is detected at any stage of the session, an alert signal is sent to the
mobile application provider (usually the bank’s department of security). The alerting
system does not take any additional meta-data apart from an historical behavioral profile.
No information on age, gender, banking history, device type, OS, or other data is stored or
analyzed. The following block diagram presents how the information exchange between
the client and the provided security system is organized (Figure 1):
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2.1. Dataset Structure

Users u perform a certain number SNu of connections called sessions Su (1) with the
server via the banking application. Each user session su

i that lasts for TSsu
i

seconds, consists
of feature vectors whose count is a number denoted by FCsu

i
(2). Every single user feature

vector D in the entire population consists of a fixed number (N = 6) of features d (3). The
feature vector used for the analysis was formed in the following manner: accelerometer
x axis; accelerometer y axis; accelerometer z axis; gyroscope x axis; gyroscope y axis;
gyroscope z axis.

Su =
[
su

1 , su
2 , . . . , su

k , . . . , su
SNu

]
(1)

su
i =

[
D1, D2, . . . , DFCsu

i

]
(2)

Di = [d1, d2, . . . , dN ] (3)

For the sake of applying user classification, the sensor readings from a single session
su

i are aggregated column-wise into windows W of intervals WI = 20 s (4). Each element of
window vector W denotes a single window where all feature vectors from a certain interval
are stored. The sampling frequency is not uniform and varies based on the user’s device
and data pipeline processing issues (e.g., packet losses). The aggregates are responsible
for converting the data into smaller chunks and for immunizing it from being sampling
frequency-susceptible.

W =
[
W1, W2, . . . , WNW

]
, where NW = b

TSsu
i

WI
c (4)

t0 indicates the session starting time and tDx indicates the time which passed since t0 until
the creation of a feature vector Dx (5). The number of all feature vectors in a single window
is denoted by NM (6).

Wj = su
i , where

⌊
tDx

WI

⌋
= j (5)

Wj =
[
w1, w2, . . . . , wNM

]
(6)

The following Formulas (7)–(9) show how the aggregated features vector F is created:

Wk
j =

[
w1(k), w2(k), . . . , wNM (k)

]
(7)

F = [ f1, f2, . . . , f4N ] (8)

fk = aggregatek mod 4

(
Wk

j

)
(9)

The total length of the aggregated feature vector equals the length of the original
feature vector times the number of all the aggregating methods (8)—standard deviation,
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arithmetic mean, amplitude, and median—which is denoted by 4N. The formula on which
the aggregates are based is shown below (10):

aggregatetype(X)

=



1
P ∑P

j=1 (xj − µ)2, where µ = 1
P ∑P

j=1(xi), f or type = 0
1
P ∑P

j=1

(
xj

)
, f or type = 1

max(X)−min(X) f or type = 2

sx P
2

i f P mod 2 = 0,
sx bPc

2
+sx bPc

2 +1

2 i f P mod 2 = 1 where SX = sort(X) f or type = 3

(10)

2.2. Data Preparation

In order to ensure reliable training and testing datasets, only those users with more
than a certain number of unique sessions (SNu > 12), and ones for which a model could
be built (undamaged data) were considered. Each viable session had to last for a fixed
amount of time TSmin or longer (TSsu

i
> TSmin = 100 s) to assure the occurrence of at least

WCmin = 5 windows lasting for WI. Each window generated a sub-score; further sub-score
processing resulted in score generation. The user choice rule described above is presented
in a flow chart below (Figure 2):
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Figure 2. The user choice rules pipeline.

From a total of 264 users, only 127 fulfilled the requirements (118 users did not meet
data quantity needs and 19 users failed training, resulting in generation of a low-quality
model). The exemplary aggregate W of the sensor readings of 4 random users are presented
in Figure 3.
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Figure 3. Exemplary user data on average accelerometer readings (a) and standard deviation of
gyroscope readings (b) from 20-second intervals.

Each session consisted of at least 5 sub-scores, varying from 0 to 1 (indicating the
similarity measure coming from the classifier’s output)—to indicate that the behavior
was user-like. In order to correctly evaluate the session, the final score—consisting of M
sub-scores—was calculated as their average (11). Whenever the final score exceeded the
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user-defined threshold (evaluated based on certain business requirements of the bank), the
session was considered fraudulent (12).

score =
∑M

i=1 subscorei

M
, where M ≥ 5 (11)

assignment =
{

0 (user), is score < thr
1 ( f raudster), i f score ≥ thr

(12)

To provide in-depth data insight, the feature importance [21–23] for 24 aggregates was
calculated. The feature significance was estimated using the XGBoost (eXtreme Gradient
Boosting) classification algorithm, with its hyperparameters heuristically optimized. [24].
The boxplot below (Figure 4) shows the feature importance distribution, sorted by descend-
ing average importance.
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Figure 4. Feature importance of aggregated data (averages, standard deviations, medians, and
amplitudes) of the x, y, and z axes of the accelerometer and gyroscope readings.

By analyzing the data presented in Figure 2, we can notice a relationship—the ac-
celerometer data worked best with averages while the gyroscope provided the best diagnos-
tic value (higher average and median feature importance) with standard deviations. This is
caused by the nature of the data provided by those sensors; a certain user distinguishability
depending on the sensor type and aggregation method can be seen in Figure 5 (accelerom-
eter) and Figure 6 (gyroscope). In order to provide a clearer visualization, 4 randomly
chosen users were highlighted.
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2.3. XGBoost Training

To train a model, the user’s data (sub-sessions) were labeled as an authorized session
and the data considering the remaining 126 users were labeled as a fraudulent one. Subse-
quently, the data set was passed to the XGBoost classifier—the boosting estimator based on
decision trees [25–30], in which the trees are expanded to a forest where each estimator is
built on the residual value of the previous classification. To reach the best possible model,
the XGBoost’s hyperparameters were tuned for the whole population [31]. The method
used for reaching the best possible model quality is presented in a flow chart in Figure 7.
The method trains users stored in a queue with certain hyperparameters set. When all
the users are trained, their mean model quality is calculated and is treated as fitness. This
procedure was reproduced a fixed number of times with a different set of hyperparameters
(which came from the evolutionary algorithm). The best hyperparameter set did not change
and was treated as the target set.
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The classifier hyperparameters were optimized using an evolutionary algorithm
whose outcome is presented in Table 1 below (non-listed parameters were set to default).
The evolutionary algorithm started with a population of 10 randomly chosen values of
6 hyperparameters taken randomly from the uniform distribution, with upper and lower
boundaries denoted as “min” and “max” in Table 1) and performed 10 steps of vector
crossing (selecting 2 equal subparts of two different hyperparameters’ dictionaries and
combining them) and a one-value mutation (randomly reselecting a particular parameter’s
value from the specified domain), leaving only the top set of hyperparameter values at
each step. Its fitness function was the same as the classifier’s objective function, denoted by
Formula (13). The vector that provided the best model qualities among the entire popula-
tion was kept for further consideration. The exemplary genotype division and mutation
are presented in Figure 8.

Table 1. XGBoost classifier hyperparameters optimized with the use of a genetic algorithm.

Hyperparameter Value Min Max Description

n_estimators 220 1 350 Number of weak classifiers (gradient-boosted trees)

min_child_weight 7 2 7 Minimum sum of instance weight (hessian) needed
in a child

subsample 0.658 0.1 0.99 Subsample ratio of the training instance

colsample_bytree 0.791 0.5 1.0 Subsample ratio of columns when constructing
each tree

reg_alpha 0.415 0.0 2.0 L1 regularization term on weights

reg_lambda 0.566 0.0 2.0 L2 regularization term on weights
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The model validation data set consists of 30% of the total data. To reproduce real-life
model usage, as well as to prevent data leakage, the evaluation was run only on the most
recent readings. The objective function used for the model training is represented by
Formula (13), where TP stands for “true positive” prediction, TN for “true negative”, FP
for “false positive”, and FN for “false negative”:

f itness = e
log ( TP

TP+FN )∗log ( TN
TN+FP )

2 (13)

To illustrate what an undamaged sensor’s model quality looks like, let us examine
Figure 9, showing the model quality distribution in terms of the objective function and
the receiver operating characteristic’s area under the curve (ROC-AUC) for the entire
population. The higher the value of both the objective function and the receiver operating
characteristic, the better the model quality is. Any damage done to models (for example,
by applying data with missing values for training) will result in the decay of both metrics.
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3. Results

The experiment investigating the harmful effects of sensor damage on behavioral
biometrics model quality was run by replacing certain axis data with zero values. The
idea behind conducting such an analysis derives from the necessity of knowing whether
the model output is still valid, meaning the authentication provided by the behavioral
biometry can be trusted. For minor damage—e.g., one gyroscope axis—the model could
still provide valuable information, while deleting the data coming from all the axes may
cause the model to become utterly useless. To find those boundaries, the two most common
data collection failures were considered: damaging the data from one axis of the sensor
and damaging the data from all axes of the sensor. Table 2 provides information on how
average models’ quality decays due to the zeroing of certain vector values.

Table 2. The influence of sensor data damage on average model quality.

Zeroed Feature Sensitivity
(True Positive Rate)

Specificity
(True Negative Rate)

Objective
Function ROC-AUC

None (undamaged data) 0.78 0.74 0.72 0.76

Accelerometer (x axis) 0.71 0.65 0.56 0.68

Accelerometer (y axis) 0.70 0.61 0.50 0.66

Accelerometer (z axis) 0.80 0.43 0.38 0.61

Accelerometer
(x, y, z axes) 0.71 0.33 0.14 0.52

Gyroscope (x axis) 0.77 0.61 0.58 0.69

Gyroscope (y axis) 0.78 0.60 0.58 0.69

Gyroscope (z axis) 0.77 0.68 0.63 0.72

Gyroscope (x, y, z axes) 0.77 0.45 0.38 0.61

The presented table explicitly proves that the lack of even one axis may severely
damage the quality of predictions. What is also worth noticing is that the true negative rate
heavily dropped due to data changes while the true positive rate remained almost the same.
Such behavior causes models to produce an increased amount of false positive output, and
this leads to overwhelming of the system with false fraudster alerts (correct user detection
is in most cases the same though). The histograms presented in Figure 10 (sensitivity) and
Figure 11 (specificity) clearly show this relationship—the higher the specificity, the less
likely the model is to classify a fraudster as a user, and the higher the sensitivity, the more
reliable user detection becomes.
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4. Discussion

The presented paper investigates commonly occurring issues with mobile sensor data
used for behavioral biometry. To properly approach faulty data handling (while detecting,
e.g., zero values on a certain axis), it is necessary to know the model quality drop for
particular-axis damage. The results of the analysis showed that when certain sensor axis
data is missing, then vectors used for user authentication may cause a major drop in model
accuracy. What is worth noticing and what derives from both the feature importance
plot and from the damage influence table is the fact that the most harmful factor for user
identification is the loss of accelerometer readings (especially the z axis—34 p.p. compared
to the original objective function). Such damage causes the same ROC-AUC drop as losing
all the gyroscope’s readings (ROC-AUC lowered by 0.15). This is caused by the fact that the
accelerometer’s z axis provides user-distinctive data—it is highly responsible for indicating
at what position the smartphone or tablet is held by the user and how his/her grip changes
over time. On the other hand, when it comes to the gyroscope’s z axis, this parameter holds
the lowest amount of user-distinctive data (objective function only dropping by 9 p.p.).
This may be caused by the fact that there exists no substantial angular movement in this
axis, or because all the movements are repeatable over the entire population.

5. Conclusions

The true negative ratio is the most affected metric, and this means that the model’s
ability to correctly distinguish a user from the rest of the population will not work well—the
model will classify user sessions as fraudulent ones. Such behavior will heavily deteriorate
security systems by setting off false alerts. To prevent this, we can change the classification
threshold level by increasing specificity at the cost of sensitivity; yet, this approach will not
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improve the total model accuracy. These minor specificity drops should be compensated
for by increasing the classification threshold by a predefined factor (which will result in
increases in objective function), while higher drops should raise a flag indicating that the
evaluation score is invalid. A different approach to dealing with lower-quality models
rests with decreasing their weights in an authentication system. Usually, authorization
via behavioral biometry uses several models that measure several types of activity—if
we can assess a certain model’s quality for certain data, we can lower the contribution
provided by this model in generating the final score. Yet another way of evading quality
drop is using different classifiers—those less susceptible to data damage or those using data
preprocessing methods that immunize models against data damage. We can as well think
of modifying the classification pipeline—whenever nothing but zero values are present on
a specific axis, we can decide whether to evaluate the session or to skip the evaluation (for
example, the authentication process is run only if sensitivity did not drop below 70% and
specificity did not drop below 60% after introducing certain-axis damage). The additional
session evaluation block would take model statistics, as well as a data structure, and assess
the prediction reliability (Figure 12).
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What may be worth noticing is that further examination of the model quality drop can
be used to estimate numerous device/user-related issues, e.g., to identify device damage.
If the user did not show any symptoms of classification problems, and after some time
generates numerous false alerts, we may conclude that the sensors do not work correctly
anymore or that there are different issues (e.g., user illness or malware attack). These
assumptions, however, require further studies.

Future work will mostly be focused on building high-quality damaged-sensor han-
dling pipelines. In case of damaged data occurrence, we must be able to quickly assess the
quality of incoming information and to find an efficient way of detecting session hijacking,
even if the most valuable information is lost due to data collection errors.

Additional study directions to take should be focused on immunizing the system to
erroneous data as well as improving the system’s overall quality by introducing novel
noise-resistant classifiers and data processors. What should also be kept in mind is the fact
that different devices (keyboard or mouse) and different features may not respond similarly
to what the analysis has shown. Quality drops caused by missing data be separately
examined and countermeasures introduced to them may differ from the ones implemented
for mobile devices.

Author Contributions: Conceptualization, P.R.; methodology, P.R. and D.G.; software, P.R., T.B. and
P.S.; validation, P.R. and D.G.; formal analysis, P.R., T.B. and D.G.; investigation, P.R.; resources, P.R.;
data curation, P.R. and P.S.; writing—original draft preparation, P.R.; writing—review and editing,
T.B. and D.G.; visualization, P.R.; supervision, D.G.; project administration, T.B.; funding acquisition,
P.R. and T.B. and D.G. All authors have read and agreed to the published version of the manuscript.

Funding: The article was carried out under the project no. POIR.01.01.01-00-0082/20 “Development
and verification of new methods of user authentication based on behavioral biometrics and machine
learning methods”, co-financed by the European Regional Development Fund under Measure 1.1 of
the Operational Programme Smart Growth 2014-2020, and was partially supported by Statutory Re-
search for Young Researchers funds and partially by Statutory Activity from the Faculty of Automatic
Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland.



Sensors 2022, 22, 9580 11 of 12

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Internet Crime Report. Internet Crime Complaint Center (IC3). 2020. Available online: https://www.ic3.gov/Media/PDF/

AnnualReport/2020_IC3Report.pdf (accessed on 1 November 2022).
2. Desolda, G.; Ferro, L.S.; Marrella, A.; Catarci, T.; Costabile, M.F. Human Factors in Phishing Attacks: A Systematic Literature

Review. ACM Comput. Surv. 2022, 54, 173. [CrossRef]
3. Alkhalil, Z.; Hewage, C.; Nawaf, L.; Khan, I. Phishing Attacks: A Recent Comprehensive Study and a New Anatomy. Front.

Comput. Sci. 2021, 3, 563060. [CrossRef]
4. Shahbaznezhad, H.; Kolini, F.; Rashidirad, M. Employees’ Behavior in Phishing Attacks: What Individual, Organizational, and

Technological Factors Matter? J. Comput. Inf. Syst. 2021, 61, 539–550. [CrossRef]
5. Aneke, J.; Ardito, C.; Desolda, G. Help the User Recognize a Phishing Scam: Design of Explanation Messages in Warning

Interfaces for Phishing Attacks. In Proceedings of the International Conference on Human-Computer Interaction, Málaga, Spain,
22–24 September 2021; Springer: Cham, Switzerland, 2021; pp. 403–416. [CrossRef]

6. Majumder, S.; Deen, M.J. Smartphone Sensors for Health Monitoring and Diagnosis. Sensors 2019, 19, 2164. [CrossRef]
7. Falkowski-Gilski, P. On the Consumption of Multimedia Content Using Mobile Devices: A Year to Year User Case Study. Arch.

Acoust. 2020, 45, 321–328. [CrossRef]
8. Teh, P.S.; Teoh, A.B.J.; Yue, S. A Survey of Keystroke Dynamics Biometrics. Sci. World J. 2013, 2013, 408280. [CrossRef]
9. Stylios, I.; Kokolakis, S.; Thanou, O.; Chatzis, S. Behavioral biometrics & continuous user authentication on mobile devices: A

survey. Inf. Fusion 2021, 66, 76–99. [CrossRef]
10. Sahdev, S.L.; Singh, S.; Kaur, N.; Siddiqui, L. Behavioral Biometrics for Adaptive Authentication in Digital Banking—Guard

Against Flawless Privacy. In Proceedings of the 2021 International Conference on Innovative Practices in Technology and
Management (ICIPTM), Noida, India, 17–19 February 2021; pp. 261–265. [CrossRef]

11. Almalki, S.; Assery, N.; Roy, K. An Empirical Evaluation of Online Continuous Authentication and Anomaly Detection Using
Mouse Clickstream Data Analysis. Appl. Sci. 2021, 11, 6083. [CrossRef]

12. Ometov, A.; Bezzateev, S.; Mäkitalo, N.; Andreev, S.; Mikkonen, T.; Koucheryavy, Y. Multi-Factor Authentication: A Survey.
Cryptography 2018, 2, 1. [CrossRef]

13. Chalhoub, G.; Flechais, I.; Nthala, N.; Abu-Salma, R.; Tom, E. Factoring User Experience into the Security and Privacy Design of
Smart Home Devices: A Case Study. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on Human Factors in
Computing Systems, Honolulu, HI, USA, 25–30 April 2020. [CrossRef]

14. Matsuoka, K.; Irvan, M.; Kobayashi, R.; Yamaguchi, R.S. A Score Fusion Method by Neural Network in Multi-Factor Au-
thentication. In Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy, Orleans, LA, USA,
16–18 March 2020. [CrossRef]

15. Miyazawa, A.; Thao, T.P.; Yamaguchi, R.S. Multi-factor Behavioral Authentication Using Correlations Enhanced by Neural
Network-based Score Fusion. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference
(CCNC), Las Vegas, NV, USA, 8–11 January 2022; pp. 569–577. [CrossRef]

16. Rocha, R.; Carneiro, D.; Costa, R.; Analide, C. Continuous Authentication in Mobile Devices Using Behavioral Biometrics.
In Proceedings of the Ambient Intelligence—Software and Applications—10th International Symposium on Ambient Intelligence,
Ávila, Spain, 26–28 June 2019; Novais, P., Lloret, J., Chamoso, P., Carneiro, D., Navarro, E., Omatu, S., Eds.; Springer International
Publishing: Cham, Switzerland, 2020; Volume 1006, pp. 191–198. [CrossRef]

17. Stragapede, G.; Vera-Rodriguez, R.; Tolosana, R.; Morales, A. BehavePassDB: Public Database for Mobile Behavioral Biometrics
and Benchmark Evaluation. Pattern Recognit. 2023, 134, 109089. [CrossRef]
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