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Abstract: Mechanical industrial infrastructures in mining sites must be monitored regularly.
Conveyor systems are mechanical systems that are commonly used for safe and efficient trans-
portation of bulk goods in mines. Regular inspection of conveyor systems is a challenging task
for mining enterprises, as conveyor systems’ lengths can reach tens of kilometers, where several
thousand idlers need to be monitored. Considering the harsh environmental conditions that can
affect human health, manual inspection of conveyor systems can be extremely difficult. Hence, the
authors proposed an automatic robotics-based inspection for condition monitoring of belt conveyor
idlers using infrared images, instead of vibrations and acoustic signals that are commonly used for
condition monitoring applications. The first step in the whole process is to segment the overheated
idlers from the complex background. However, classical image segmentation techniques do not
always deliver accurate results in the detection of target in infrared images with complex back-
grounds. For improving the quality of captured infrared images, preprocessing stages are introduced.
Afterward, an anomaly detection method based on an outlier detection technique is applied to the
preprocessed image for the segmentation of hotspots. Due to the presence of different thermal sources
in mining sites that can be captured and wrongly identified as overheated idlers, in this research, we
address the overheated idler detection process as an image binary classification task. For this reason,
a Convolutional Neural Network (CNN) was used for the binary classification of the segmented
thermal images. The accuracy of the proposed condition monitoring technique was compared with
our previous research. The metrics for the previous methodology reach a precision of 0.4590 and an
F1 score of 0.6292. The metrics for the proposed method reach a precision of 0.9740 and an F1 score of
0.9782. The proposed classification method considerably improved our previous results in terms of
the true identification of overheated idlers in the presence of complex backgrounds.

Keywords: belt conveyor; condition monitoring; overheated idlers; thermal imaging; image
classification; convolutional neural network; binary classification

1. Introduction

The automation and robotization of condition monitoring (CM) processes in the mining
sector are inevitable steps for increasing the industrial equipment life cycle and improving
the safety of operations. Modern automation methods provide solutions to reduce or
totally exclude the presence of humans in hazardous environments. Using mobile robots
for CM applications can improve the inspection process, as they apply more sophisticated
techniques for identification and localization of faults in industrial infrastructures located
in mining sites [1–6].

Sensors 2022, 22, 10004. https://doi.org/10.3390/s222410004 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s222410004
https://doi.org/10.3390/s222410004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2067-374X
https://orcid.org/0000-0002-1656-4930
https://orcid.org/0000-0002-3163-8678
https://orcid.org/0000-0003-4781-9972
https://doi.org/10.3390/s222410004
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s222410004?type=check_update&version=2


Sensors 2022, 22, 10004 2 of 20

Conveyor systems have been developed throughout the past decades and used as
the most common method for transporting raw materials in mining sites. The idlers are
responsible for supporting the loaded bulk materials’ weights that are carried by the
belt [7,8]. Faulty idlers can cause serious damage in conveyor systems [9,10].

The minimum L10 life requirement (the amount of time in which 10% of the bearings
will fail) or, in other words, the lifetime of idler bearing in normal environmental conditions,
should be 50,000 h or 5–7 years. However, this time can considerably decrease due to
environmental conditions and belt speed [11,12].

Harsh environmental conditions in mining sites can considerably reduce the life span
of the conveyor system idlers. Dust, high temperature, and sunlight can be considered
as environmental factors that can affect the life span of idlers. The idler sealings are
usually poor; therefore, the accumulation of dust in conveyor systems can increase the
rotation resistance of the conveyor idlers. Similarly, high ambient temperatures and sun
reflection in hot, dry climates can increase the bearing temperature, which reduces the
bearing life span [13]. The idler bearings’ condition can be monitored by analyzing their
surface temperatures, noise emissions, and vibrations [14,15]. Robotic-based infrared
thermography (IRT) can be considered a reliable method for automatic CM of idlers [16,17].

Different fault signatures in rotating machinery can be caused by misalignment, and
bearing damage and mass imbalance are recognizable by IRT methods [18–21]. Analyzing
the temperature patterns on the outer surface of idlers can give us information to evaluate
the degree of deterioration on inspected idler bearings [22,23]. Detection of anomalous
temperature signatures in thermal or infrared (IR) images can help us to determine the
overheated idlers [24].

Two different methods can be used to measure the thermal condition of idlers. In
quantitative methods, we need to determine the exact temperature of the idler surfaces. On
the other hand, in the qualitative methods, the acquired thermal signatures are analyzed to
find the characteristic patterns based on relative temperatures of equipment in a captured
scene. In our study, we chose to identify the overheated idlers base on qualitative methods;
therefore, the relative temperature values of detected hotspots in IR images were analyzed
with respect to other areas [25–28].

Modern IR image analysis software has the capability to prepare an inspection re-
port. However, despite its ease of use and functionality, the manual evaluation of data is
time-consuming for inspectors [29]. Furthermore, in our case, for conducting inspection
programs in a large mining site, where series of conveyor systems need to be inspected
individually, the manual evaluation of reports can become more complicated.

Over-centralized distribution of pixels and their low-intensity contrast are the main
features of the IR images that bring difficulties in correct identification of temperature
anomalies within the region of interest (ROI). The classical threshold-based segmentation
techniques can accurately segment the ROI areas in images that are captured in visual
light. However, due to the nature of IR images, the accuracy of final results can be affected
by over- and undersegmentation [30–32]. Furthermore, in our case study, the presence of
reflective objects with high emissivity values that are not related to idlers can create complex
background conditions which directly affect the accuracy of segmentation results [33].

In this paper, we developed solutions for improving the proposed CM method in
our previous study [24]. Therefore, we focused on proposing a classification method for
accurate detection and classification of the overheated idlers in segmented frames from
other thermal sources that were not related to idlers. The development of a methodology
for the classification of thermal defects in segmented IR images can allow us to improve
the number of true detections and the overall accuracy of the proposed CM method. So,
the main contributions are:

1. A novel method based on binary classification with CNN was developed for classifi-
cation of overheated idlers in segmented frames.

2. We showed that our proposed CM method can accurately classify the overheated
idlers, even in IR images with complex backgrounds.
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3. Our novel CM method based on the deep learning approach was compared against
an IRT method that was specifically developed for identification of the overheated
idlers in IR images.

2. Literature Review

In this section, we firstly focus on the importance of application of robotic-based
IRT for the reliability of conveyor systems in mining environments. The length of a
conveyor belt in mining sites can reach several kilometers, while hundreds of idlers that
support the belt, and the loads need to be monitored by technicians [34,35]. The manual
condition monitoring methods are time-consuming and inaccurate due to low frequency
of inspections. Furthermore, working in high-pollution environments can be harmful for
human health [36–38]. By using automatized CM solutions in mining sites, operators can
considerably reduce the number of unplanned shutdowns and increase Overall Equipment
Efficiency (OEE) [39–41].

Autonomous or semi-autonomous robotics IRT are categorized as a non-destructive
CM method that can be used as a proper solution for automatic detection of faulty idlers in
conveyor systems. In IRT-based techniques, the emitted IR radiation from objects’ surfaces
is analyzed for identification of temperature anomalies [42].

IRT methods are used in a wide range of fields, including medical imaging, non-
destructive testing, defect detection in civil structures, and so on [43]. However, due to
the complexity of mining environments and various factors that need to be considered
in developing IRT methods, the application of machine learning methods in automated
diagnoses of IR images captured in mining environments is still in the early stages [44–46].

Most of the proposed automated diagnostic system for analyzing IR images of indus-
trial infrastructures consist of three steps: estimation of ROI, extraction of relevant features
and, finally, classification of extracted features [18,47,48]. The definition of ROI can reduce
the complexity of the analyzed images and improve the feature extraction results in the next
steps. Afterward, the desirable features should be processed and extracted in such a way
that it gives us enough information to understand the current state of the monitored equip-
ment. Finally, in the classification stage, the extracted features from previous stages are
studied to understand whether or not the images contain possible signs of thermal defects.

In [16,20,24,49], researchers proposed a different CM method using the IRT method
for identification of overheated idlers in conveyor systems located in mining sites. From
the investigations with IR images taken with mobile robots, some researchers only focused
on the segmentation of hotspots without discriminating against the defected idlers. In [16],
for identifying thermal defects in idlers, researchers proposed a method based on Canny
edge detection and blob detection techniques. In other researches, alternatively, overheated
idlers were segmented by the following methods: color-based thresholding [20], an outlier
detection technique [24], and a simple thresholding method based on maximum and
minimum temperatures [49]. The mentioned methods have been referred to as classical
methods. Classical IRT methods only focus on excluding hotspots from backgrounds, but
they do not classify them based on their IR sources.

For the detection of the idlers from their background, different methods based on deep
learning are proposed. For instance, a CM method based on object detection, Hough line
transform, and template matching algorithms are proposed by [36]. However, the presence
of other thermal sources and objects with high emissivity values in complex backgrounds
lead to hotspots with atypical geometries that the mentioned method could not address.

The weaknesses of the related works are grouped into three categories: the first
category focuses only on the detection of hotspots; the second category uses stationary
camera systems for CM of equipment; and the third category handles deep learning
techniques but does not propose methods for classification of other thermal sources that
can be wrongly identified as thermal defects. Information is presented in more detail in
Table 1.
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Table 1. Comparison between research that proposed different IRT methods for identifying over-
heated idlers in conveyor systems.

Methods Descriptions Weaknesses

Dabek et al. [16]
Identifies hotspots in captured
IR videos based on Canny edge
and blob detection methods.

Lacks a method to classify
segmented hotspots.
It does not propose a solution for
frames with complex backgrounds.

Siami et al. [24]

Proposed an image processing
pipelines for identification of
hotspots based on outlier
detection method.

It does not present a solution for
classification of segmented hotspots
based on their IR sources.

Szurgacz et al. [49]
Proposed a CM method based
on simple
thresholding technique.

Tested on limited number of
IR images.
IR images were captured manually
by inspectors.

Liu et al. [36]

Proposed a method for
identification hotspots in IR
images based on Hough line
transform and template
matching algorithm.

Tested on limited number of IR
images on a controlled environment.
The data were captured by
stationary camera systems.

3. Materials and Methods

The main idea of the methodology is described in Figure 1. Firstly, the captured data
by mobile robot including IR and RGB videos were loaded and prepared for preprocessing.
Afterward, the total number of frames from both sources were extracted. Furthermore, to
reduce the size and complexity of captured frame, we choose to convert the colored IR
frames into 8-bit grayscale ones.

Figure 1. The proposed procedure flowchart.

In some frames, due to the existence of different thermal sources that are not re-
lated, the segmentation algorithm cannot always precisely exclude hotspots (overheated
idlers) due to oversegmentation. For improving the oversegmentation issue, we choose
to preprocess the ROIs using different preprocessing techniques. In this study, intensity
normalization, Contrast Limited Adaptive Histogram Equalization (CLAHE), and the Fast
Non-Local Means Algorithm (FNLM) were used.

For segmenting overheated idlers in preprocessed frames, an outlier detection method
based on the interquartile range (IQR) technique was used to calculate the optimal threshold
value in each frame.

Based on the visual analysis of the segmented frames, we noticed that in some frames
other thermal sources including sun reflection or other overheated equipment were wrongly
segmented and recognized as overheated idlers. This can reduce the accuracy of the CM
method. For the identification of hotspots in segmented frames, we proposed a classification
method based on binary classification technique using a CNN. The different stages of
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the proposed methodology were developed in the Python programming language using
OpenCV library for image processing and did not have major changes. Furthermore, the
Keras and TensorFlow libraries were used for developing the proposed image classifier.

3.1. Region of Interest Estimation

Through the conducted experiments, the inspection mobile robot moved alongside the
conveyor systems and captured different data, including IR and RGB videos. The mobile
robot camera system was installed on a fixed hand above the robot and pointed toward the
conveyor system. The mobile robot followed a straight line with constant speed; therefore,
we did not have major changes in the camera system POV toward the conveyor system.
The captured RGB and IR videos from the conveyor systems contain information on target
pixels that are related to idlers and redundant areas. For improving the segmentation
accuracy, we excluded the non-ROI areas from the original captured frames.

Through analyzing the extracted frames, we understand that idlers that are located on
the right side of the conveyor (from mobile robot POV) were not always visible for being
analyzed in extracted IR and RGB frames; therefore, for improving idler detection, we
chose to define ROI on extracted frames for capturing idlers that were on the left side of
the conveyors.

By observing neglectable changes in the camera system POV through the sequence
of extracted frames, we could accurately predict the location of idlers. Different detection
algorithms can be used for following the idlers in the sequence of the frame. In our
work, we chose to consider a rectangular ROI with predetermined size: 200 × 200 pixels
with a fixed position to extract ROIs from captured IR and RGB frames. The size of the
extracted ROIs covers the idler sections, while it is considerably smaller than the originally
captured frames Figure 2.

Figure 2. The location of a predefined ROI on an original frame.

3.2. Pre-Processing of Region of Interests

The captured IR images are characterized by noise due to illumination and contrast
variation; therefore, the use of automatic segmentation methods for detection of overheated
idlers can become a challenging task. To address this issue, in this paper, intensity nor-
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malization, CLAHE, and FNLM were used for improving the overall quality of extracted
IR images.

3.2.1. Normalization

The intensity value of each pixel in an original frame is predefined by the IR camera,
considering the hottest and coldest point within the frame borders. For defining statistical
parameters that work well for analyzing ROIs, we need to recalculate the pixels’ values with
respect to the pixel distribution in defined ROIs. Normalization of the ROIs can reduce the
seasonal differences and lets us define statistical parameters that work in ROIs with varying
temperature ranges. The normalization was performed using the following equation:

Ni =
TSi − TSmin

TSmax − TSmin
(1)

In Equation (1), Ni can be defined as the normalized value of pixel i, where TSi is
defined as the intensity value of pixel i. Furthermore, the maximum and minimum values
of pixel intensities within the ROIs are defined as TSmax and TSmin.

3.2.2. CLAHE Method

Histogram equalization (HE) is an elementary method to improve the contrast of
underexposed and overexposed images. However, in the HE method, changes in natural
brightness of the processed images can cause undesirable noise in the results [50]. Adaptive
Histogram Equalization (AHE) is the improved version of the HE method [51]. In AHE,
the input image is split into smaller areas, while the cumulative distributive function (CDF)
is generated for each of these smaller images. In this method, the noise can considerably
increase when the image histogram slope is steep. For addressing this issue, the CLAHE
method is proposed. CLAHE is an improved version of the AHE that works in the same
way. In the CLAHE method, the extracted histogram of the input image is clipped at specific
values for limiting the amplification before computing the CDF, which can considerably
reduce the amount of the unwanted noise in the final results. The calculation of CLAHE is
performed as follows:

p = (pmax − pmin) ∗ P( f ) + pmin (2)

In Equation (2), the maximum and minimum intensity value of pixels in an image
are defined by pmax and pmin, while P( f ) defines the cumulative probability distribution
function, and p represents the assigned value to each pixel after applying CLAHE.

3.2.3. Fast Non-Local Means Algorithm

The Non-Local Means Denoising Algorithm (NLM) is an effective method for reducing
the unwanted noise in images Figure 3. As opposed to Gaussian, median, and Wiener
filters, the NLM method uses the Euclidean distance as a weight; therefore, it can provide
better results. The NLM denoising algorithm can be defined as follows:

NL[I](m) = ∑
N∈I

ω(m, n)I(n) (3)

In Equation (3), the weight: ω(m, n) can be expanded as follows:

ω(m, n) =
1

Z(m) ∑ e−
Gσ(τ)‖I(M+τ)−I(n+τ)‖22

d2 (4)

where τ describes the number of pixels in an image and Gσ(τ) can be defined as Gaus-
sian distribution of pixels with size σ2 of the number of available pixels in the background.
Furthermore, ‖I(M + τ)− I(n + τ)‖2

2 describes the differences in intensities between adja-
cent pixels based on calculating the euclidean distance values. The leveling constant is set
by Z(m):
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Z(m) = ∑
n

e−
Gσ(τ)‖I(m+τ)−I(n+τ)‖22

d2 (5)

The calculation of ω(m, n) in FNLM is modified from one dimension to two dimen-
sions. The modified version of ω(m, n) can be defined as follows:

ω(m, n) =
1

Z(m)
Hi(I(m + s)− I(m− s)) (6)

In Equation (6), τ is defined based on n − m, s is defined as m + τ, and Hi can be
describe as follows:

Hi(s) =
s

∑
q=0

e−
‖I(q)−I(q+τ)‖22

d2 . (7)

By simplifying the process through one-dimensional computations, the FNLM method
can denoise the image four times faster than the NLM method [52–60].

(a) Grayscaled ROI (b) Normalized (c) CLAHE (d) FNLM

(e) Grayscaled
histogram

(f) Normalized
histogram

(g) CLAHE histogram (h) FNLM histogram

Figure 3. Comparison of a preprocessed and an original IR image after modifications through
preprocessing stages.

3.3. IR Image Segmentation

Image segmentation is a process of dividing images into regions that may be meaning-
ful for extracting the desirable objects or constituent areas. Thresholding techniques are
considered as the simplest way of performing image segmentation in IR images. Generally,
in IR images, regions with high temperatures are correlated to the foreground; therefore,
pixels with high intensity represent the heated objects. In the proposed method, the optimal
threshold value for captured IR images can be defined based on analyzing the statistical
features that are extracted from the IR images’ histogram.

3.3.1. Histogram Analysis of IR Images

An IR image histogram describes the tonal or color distribution of pixels. The tonal dis-
tribution of pixels in grayscaled IR images refers to discrete temperature values; therefore,
the analysis of IR images’ histogram from a statistical point of view is a useful approach
for detecting temperature anomalies in monitored equipment. Different statistical features
such as: mean value, variance, and standard deviation can be extracted to describe the
pixel tonal distribution in IR images. For a gray-leveled IR image, the first-order histogram
probability P(g) is computed as follows [61]:



Sensors 2022, 22, 10004 8 of 20

P(g) =
L(g)

M
(8)

In Equation (8), L(g) is the number of gray levels g, where the total number of pixels in
a processed image is defined by M. In gray-scaled IR images, the total number of available
levels for the pixel L span into [0, 256]. The general brightness, or in other words average
temperature, in a captured frame can be defined by mean value as follows:

ḡ =
L−1

∑
g=0

g · P(g) (9)

Furthermore, the dispersion of a set of data points around their mean can be defined
by variance value as follows:

σ2
g =

L−1

∑
g=0

(g− ḡ)2 · P(g) (10)

The standard deviation or the square root of the variance indicates the image contrast.
It can be considered as an important factor for identifying the thermal anomaly, as analyzing
temperature distribution in IR images is a key index of detection of possible defects.

3.3.2. Anomaly Detection

In this work, a qualitative-based method is proposed for identification of hotspots
in preprocessed frames. In IR images with uniform background, the defected idlers can
be recognized as hotspots. For separation of the hotspots from the background, thermal
anomalies in idlers’ surfaces are treated as outliers. Outlier detection can be described as
a problem of finding data that cannot be defined in the range of normal behavior. The
interquartile range (IQR) can be used to extract histogram features that can help us to define
the outliers.

The IQR defines the difference between the first and the third quartile: IQR = Q3−Q1
where Q1 and Q3 can be calculated as follows [62,63]: ,

Q1 = ḡ− 0.675σ

Q3 = ḡ + 0.675σ
(11)

The outliers can be extracted and classified in two different groups, namely: mild
and extreme outliers. The lower and upper bounds can be calculated as Q1− 3IQR and
Q3 + 3IQR. The values that are either among inner or outer bounds are classified as mild
outliers; on the other hand, extreme outliers can be considered as values that are beyond
outer bounds [64,65].

The optimal thresholder value can be defined as T in each frame, while α and β refer
to the segmented frames and preprocessed ROIs, respectively. Furthermore, W and H
can be considered as the processed ROI height and width, while x and y represent the
pixel coordination.

β(x, y) =

{
1 if α(x, y) > T
0 if α(x, y) ≤ T

∀0 ≤ x < W, 0 ≤ y < H

(12)

To separate the hotspots from background in α, the pixel values were set to 1 when
they were greater than computed T, otherwise they were set to 0:

γ(x, y) =

{
α(x, y) if β(x, y) = 1
0 if β(x, y) = 0

∀0 ≤ x < W, 0 ≤ y < H

(13)
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The pixels that are related to overheated idlers cannot always be defined as mild
outliers. Furthermore, the definition of overheated idlers based on mild outliers can cause
oversegmentation. For addressing the oversegmentation issue, we choose to extract extreme
outlier values in extracted IR frames and consider them as the optimal threshold values for
segmentation of possible hotspots, as shown in Figure 4.

Figure 4. Comparison of detected outliers by mid and extreme values in a preprocessed ROI.

3.4. Convolutional Neural Networks

During the visual inspection of the results, we found out that the proposed segmen-
tation method could accurately segment the overheated idlers from the background in
the majority of extracted frames. However, due to overestimation in some frames, other
thermal sources were wrongly segmented as overheated idlers.

The objective of this section is to propose a method to accurately classify the segmen-
tation results in two different classes considering the differences between hotpot shapes in
segmented frames. The first class consists of frames where the segmentation method could
accurately separate overheated idlers from the background, while the other class consists
of hotspots that were not related to idlers.

A CNN is an ANN (artificial neural network) with different numbers of intermediate
layers. The CNN models are able to automatically detect the specific features on each image
and then train a classifier model on them [66,67]. CNNs performance in classification tasks
can be improved when the size of the given dataset continues to increase. A developed
CNN can learn to extract specific features from a given dataset and classify them at the
same time.

Deep learning models that use CNN architecture are suitable for image processing
classification problems. In CNNs, different layers in a network work as a detection filter
for the recognition of specific patterns or features. The first layer of a CNN model can
detect major features in an image that can be easily interpreted, while in middle layers,
more abstract features can be detected. Finally, in the last layer, the collected details from
previous layers are accurately merged and classified [68].
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3.4.1. Data Collection and Description

Through the experiments, two conveyor systems that were located in an opencast
mining site were inspected. The inspected conveyor systems were used for the continuous
transportation of mineral materials from the mine pit to the bunker. The length of the
investigated conveyor systems reached one hundred meters and is designed to operate
in harsh environmental conditions. The opencast mining site in this study is located in
Jaroszów, 50 km to the west of Wrocław. The length of the inspected parts of the conveyor
systems were 150 m, where there was a 1.45 m space between each idler. Furthermore, the
idlers’ diameter was 1.33 m and the belt length was 0.8 m.

A mobile inspection robot was used for data accusation Table 2. The inspection mobile
robot is specially designed for Wrocław University of Science and Technology as a mobile
platform that can conduct inspection missions in harsh environmental conditions, as shown
in Figure 5.

Table 2. The main characteristics of the mobile inspection robot.

Locomotion type Wheeled, skid steering

Navigation systems Autonomous (internal computer)
Manual (pilot using remote computer connection)

Internal operating software Robot Operating System (ROS)

Power system Internal battery, 24 V

Max gross weight 140 kg

Maximum payload capacity 75 kg

(a) (b)

Figure 5. (a) Mobile robot during inspection. (b) A general picture of the mining site.

The precision of an IRT method is directly related to environmental parameters and
the IR camera specifications Table 3. The parameters such as environmental conditions and
emissivity values of the objects should be taken into account for accurate identification of
overheated equipment [33]. In our case study, one can notice that in a raw IR image there
are different radiation sources that can be wrongly identified as overheated idlers Figure 6.



Sensors 2022, 22, 10004 11 of 20

Table 3. The IR camera system specification.

Parameter Value

Resolution 640 × 480 pixles

Frames per second 25 fps

Observation angle 45◦

Mounting height 100 cm above shelf

In opencast mining sites, solar radiation can warm up the conveyor system surfaces,
especially modules that can absorb the considerable amount of sun energy. Our experiment
was conducted on a sunny day. As long as we organized the measurement session a few
weeks before the experiment, it was almost impossible to predict the weather. However,
in the proposed method, we tried to provide a solution that can be applicable in different
environmental conditions. Furthermore, in our case, the solar radiation was mostly blocked
by ceiling; therefore, their affect on the idler surface temperature was negligible.

Figure 6. Examples of IR sources that are not related to idlers.

Examples presented here show the application of IRT in industrial data sets is always
challenging. As a result, the classical image segmentation techniques cannot provide
accurate detection results due to instances of different thermal sources in mining areas, as
shown in Figure 7. prances of different thermal
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(a) Sun reflection on the belt

(b) Overheated belt

(c) A worker body

Figure 7. Segmentation results of overheated objects that were not related to idlers.

3.4.2. Binary Classification

In this work, we developed a binary classification model for classification of the
segmented hotspots to identify frames where overheated idlers are correctly segmented
Figure 8.
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Figure 8. Simplified flowcharts of binary classification procedure.

The proposed classification model includes three blocks, where each block is composed
of a convolution layer with a 3 × 3 filter, followed by a maximum grouping layer. The ReLU
activation function was used in each conventional layer. The depths of our architecture
for the three blocks are 32, 32, and 64 respectively. A value of zero (0) or one (1) should
be predicted for each input image, as we used a binary classification. The sigmoid type
of activation was used to regularize the deep neural network at the final output layer.
Regularization simulates the different possible changes on the structure of the network and
increases the strength of the nodes in the developed network. Finally, for compiling the
data, the binary cross-entropy method was used as a loss function, and the Adam method
was used as the optimizer to form a classifier on the image data sets Figure 9.

Figure 9. Summary of the proposed CNN architecture.

3.5. Training and Testing the CNN

Three different data sets, which consist of segmented IR images captured from two
different conveyor systems, were used for training the CNN model. Through the exper-
iments, the inspection robot moved alongside conveyor system number one (back and
forth) and conveyor system number two (forth). As a result, three different data sets,
6275 frames from conveyor one (moving forward), 6135 frames from conveyor 2 (moving
backward), and 10896 frames from conveyor two (moving forward), were selected and
underwent preprocessing stages and segmentation. Afterward, the segmented frames were
filtered based on the size of the segmented hotspots; therefore, in each segmented frame,
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the number of non-black pixels was calculated, and frames that the number of non-black
pixels was above 400 pixels were kept for further analysis.

The classifier was trained using images labeled by experts. We labeled each segmented
image as “contained an overheated idler” or “other thermal sources”, as shown in Figure 10.
Furthermore, the filtered and labeled frames from the mentioned data sets are combined
together for training the CNN model. A total of 1216 frames from the three different data
sets was selected for the training process. The images are randomly split, and 20% of the
total images were used for testing images and the remainder as training images.

(a) (b)
Figure 10. Image annotation process base on fusion of IR and RGB images. (a) Segmentation of other
thermal sources; (b) segmentation of an overheated idler.

4. Evaluation

For evaluation of the proposed classifier, we computed the following performance
metrics: sensitivity, precision, accuracy, and F1-score.

Accuracy =
(TP + TN)

(TP + FN) + (FP + TN)
(14)

Sensitivity =
(TP)

(TP + FN)
(15)

Precision =
(TP)

(TP + FP)
(16)

F1 Score =
(2 ∗ Precision ∗ Sensitivity)
(Precision + Sensitivity)

(17)

Here, accuracy is the proportion of correctly classified overheated idlers among the
whole population. Sensitivity is measured as the proportion of true positive cases that are
correctly predicted by the classifier, while specificity is the prediction of true negative cases
that are correctly predicted. Precision is the proportion of the correct predictions in the
confusion matrix out of all positive predictions. Furthermore, the F1-score is the harmonic
mean of precision and sensitivity. The coefficient takes into account the TP (true positive),
TN (true negative), FP (false positive), and FN (false negative) factors for scoring the model.
The ideal value of these metrics is 1 and is the target for the models in this study.

5. Results

In this section, we evaluate the performance of the proposed method in the detection
of overheated idlers. Furthermore, the performance of the proposed method is compared
with our previous research using test data randomly chosen from 20% of the whole data
set [24].

The confusion matrix is used to display the results of classifications and generate all
of the performance metrics. Our binary classification model could accurately classify the
segmentation results in over 97% of studied cases, as shown in Figure 11.
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Figure 11. Confusion matrix of the binary classification.

The training and validation loss graph of the trained model is shown in Figure 12. The
loss of validation data significantly decreased until the 6th epoch, but on the next epoch,
the trends tended to increase. This means that our model converged fast until the 6th epoch,
and the greater epoch would not give any significant change on the classification result.

Figure 12. Training and validation loss plot for the binary classification model.

The training and validation accuracy curves are shown in Figure 13. The curves indi-
cate that through each training epoch the accuracy parameter varies and then continuously
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converges to a certain accuracy level with a lot of small oscillation. The trends also show
that the classifier did not affect by significant overfitting or underfitting.

Figure 13. Accuracy plot for the binary classification model.

The receiver operating characteristic curve (ROC) for a binary classification model
is shown in Figure 14. ROC is a receiver operating curve, which is one of the model’s
measuring metrics. The area under curve can be defined as the AUC that indicates the
performance of the model. It is a graph that shows how the true positive rate (TPR) and the
false positive rate (FPR) are related. For the studied binary classification model, the ROC
was 100%.

Figure 14. ROC Curves of the binary classification model.
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Table 4 compares the performance metrics of the proposed method and our previous
work in the identification of overheated idlers in captured IR frames. The precision value
shows that the binary classification method has few errors. In this table, it is shown how
the shape-based classification of segmented hotspots affects the accuracy metrics. It is
demonstrated that the false identification of other thermal sources as overheated idlers in
our previous research had a major effect on the performance of the CM method. Reducing
the portion of false negatives by more than 54% led to an increase in the F1 score value
from 0.62 to 0.97 in this work.

Table 4. Comparison of the precision, recall, and F1 score metrics for overheated idler detection in IR
images using binary classification and Siami et al.’s work [24].

Measures Siami et al. Siami et al. + FNLM + Binary Classification Improvement

True Positive 112 112
False Positive 132 3

False Negative 0 2

Sensitivity 1 0.9825 −1.75%
Precision 0.4590 0.9740 51.50%
Accuracy 0.4590 0.9795 52.05%

F1 Score 0.6292 0.9782 34.90%

6. Conclusions

In this paper, we solve the problems related to the identification of overheated idlers in
IR images with complex backgrounds. We demonstrate that the identification of overheated
idlers in IR images captured in real case scenarios is a challenging task. For the proposed
methodology, the following points were covered: Firstly, in Section 3.2.2, we replaced our
previous noise reduction method with the FNLM method, which could help us to reduce
the amount of presented noise more efficiently. Secondly, the proposed binary classification
methodology allows the detection of frames that other thermal sources wrongly segmented
as overheated idlers.

The value of the accuracy metrics in Table 4 for the proposed method is greater than
0.9795, which implies that the discussed binary classification method is reliable, confirmed
by the precision value being greater than 0.9740.

Future work assumes the improvement of the CM method in terms of adaptability to
different conveyor systems that are located in different mining sites. Furthermore, our team
is interested in working on methods that can be used for the detection and localization
of overheated idlers in global navigation satellite system denied environments, such as
deep underground mines, by fusion of LIDAR and IR images captured by an inspection
mobile robot.
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